1. 实验名称及目的

1.1. 实验名称

Offboard 模块 OffboardAdvCtrlAPI,OffboardAttCtrlAPI,OffCtrlMsgAll 验证实验

1.2. 实验目的

OffboardAdvCtrlAPI是 OffboardPvaCtrlAPI 接口的进阶版本,能够在弹出配置窗上勾选需要控制的通道,并通过 Ctrls 输入匹配序号和维度的控制量。

1.3. 关键知识点

预备知识

Offboard 模式通常是指一种飞行模式,其中多旋翼通过外部计算机(通常是地面站) 发送的命令来控制。在 Offboard 模式下,多旋翼不依赖于自身的传感器数据或内部算法进 行飞行控制,而是依赖外部计算机提供的指令。

Offboard 模式的一般解析:

通信接口:Offboard 模式的关键是与外部计算机之间的通信。这通常通过一种无线通 信协议(如Wi-Fi、蓝牙、或者专用的无线电链路)实现。多旋翼通过这个通信接口接收来 自外部计算机的控制指令,并将飞行状态信息发送回外部计算机用于监控和反馈。

地面站软件:外部计算机通常运行着地面站软件,用于生成控制指令并监控多旋翼的 状态。地面站软件可以提供图形用户界面(GUI)或命令行界面,使操作员能够轻松地与 多旋翼进行交互。

控制算法:外部计算机上运行的控制算法负责生成适当的控制指令,以实现期望的飞行动作。这些控制指令通常基于多旋翼的当前状态以及用户输入的指令。

实时性要求: Offboard 模式对通信的实时性要求较高,因为多旋翼需要及时地接收和执行外部计算机发送的控制指令。延迟过高可能会导致多旋翼失去控制,甚至发生事故。

安全性考虑:由于多旋翼的控制权被外部计算机接管,因此必须考虑安全性问题。通 信链路需要加密和验证机制以防止未经授权的访问和指令篡改。

总的来说,Offboard 模式提供了一种灵活的飞行控制方式,使我们能够通过外部计算 机实现复杂的飞行任务和自主飞行。但是,使用 Offboard 模式需要考虑通信的可靠性和安 全性,并确保控制算法的准确性和稳定性。

更多信息可以参考 <u>API.pdf</u>。

实验原理

实验一: Exp1_OffboardAdvCtrlAPI1_Pos.slx

1、OffboardAdvCtrlAPI 是 OffboardPvaCtrlAPI 接口的进阶版本,能够在弹出配置窗上 勾选需要控制的通道,并通过 Ctrls 输入匹配序号和维度的控制量。

2、OffboardAdvCtrlAPI的使用更简单,但是灵活度较弱,没法在运行过程中修改通道

数量,和使能位。

3、可以通过多勾选,暂时不想控制的通道赋值 NaN 的方法,来实现控制通道的调整。 例如,同时勾选 x y z vx vy vz,但是 x y z 赋值 NaN,则只响应速度 vx vy vz 通道。

实验二: Exp2_OffboardAdvCtrlAPI2_Vel.slx

和 Expl_OffboardAdvCtrlAPI1_Pos 完全相同,都使用了 OffboardAdvCtrlAPI 接口。

实验三: Exp3_OffboardAdvCtrlAPI3_Acc.slx

和 Exp1_OffboardAdvCtrlAPI1_Pos 完全相同,都使用了 OffboardAdvCtrlAPI 接口。

实验四: Exp4_OffboardAttCtrlAPI_Euler.slx

1、通过进入 offboard 模式,并分别发送 vehicle_rates_setpoint 和 vehicle_attitude_setpoint m 两条消息,来实现姿态或角速度控制。

2、OffboardAttCtrlAPI 还会根据是否为 VTOL 且处于固定翼还是多旋翼模式,来发送 mc virtual 或 fw virtual 消息,因此本接口还支持 VTOL 垂起无人机的控制。

3、本接口支持真机和 HIL 仿真,且姿态环的 offboard 不需要 GPS 定位就能实现切换, 在室内也可以测试。

实验五: Exp5_OffboardAttCtrlAPI_Rate.slx

和 Exp4 OffboardAttCtrlAPI Euler.slx 完全相同,都使用了 OffboardAttCtrlAPI 接口。

实验六: Exp6_OffboardPvaCtrlAPI.slx

1、OffboardPvaCtrlAPI的 PVAYR11d 和 Enlist11d 相互配合,实现灵活的速度、位置外 部控制切换。

2、EnList 是 11 维的 boolean 类型的向量,分别表示 x y z vx vy vz ax ay az yaw yawrate 十一个维度的响应规则,置于 true,则 PX4 会响应本通道控制量。

3、PVAYR是11维的控制量输入,如果设置为NaN,则PX4也会忽略本通道。因此,可以 EnList 设置为全 true,然后 PVAYR 选择性设置 NaN 的方法,也能实现通道的启用和屏蔽。两者配合能够实现更灵活的控制。

4、配置页面上的 Auto arm/loiter 选项,分别决定了 isEnCtrl 变为 true 时,是否自动解锁;变为 false 时,是否自动切换悬停; auto unblock 选项勾选,会自动解除 PX4 的控制屏蔽,使得能够使用 PX4 官方控制器的 offboard 功能。

5、GenOffCtrl接收CH5的通道,低位时不启用Offboard,中位时isEnCtrl变为true,解锁并进入Offboard,同时发送[00-10]位置控制量将飞机控制到10米高,CH5高位时切换[200]速度控制模式,以2米每秒向前飞。

实验七: Exp7_OffCtrlMsgAll.slx

1、本实验展示用利用 OffCtrlMsgAll 接口,来订阅到所有 Offboard 控制相关的数据,

主要包括以下 uORB 消息:

vehicle_status
offboard_control_mode
trajectory_setpoint
vehicle_attitude_setpoint
vehicle_rates_setpoint

2、每个消息内字段的详细定义,可以去 PX4PSP\Firmware\msg 目录下查看。

3、本接口展示了订阅到 offboard 控制相关的 x y z vx vy vz yaw yawrate 数据,并用 rfly _px4 发出去,被 QGC 的 Control_Target 消息接收。

4、利用本接口,可以接收外部的 offboard 消息,并自定设计控制算法,输出到力+力 矩层,或者电机层,实现 PX4Offboard 功能的覆盖。

2. 实验效果

该实验通过 QGC 和 RflySim3D 观察,四旋翼是否定在预设的位置。

3. 文件目录

文件夹/文件名称	说明
Exp1_OffboardAdvCtrlAPI1_Pos.slx	Offboard 模式下位置控制模型
Exp2_OffboardAdvCtrlAPI2_Vel.slx	Offboard 模式下速度控制模型
Exp3_OffboardAdvCtrlAPI3_Acc.slx	Offboard 模式下加速度控制模型
Exp4_OffboardAttCtrlAPI_Euler.slx	Offboard 模式下欧拉角控制模型
Exp5_OffboardAttCtrlAPI_Rate.slx	Offboard 模式下欧拉角速率控制模型
Exp6_OffboardPvaCtrlAPI.slx	Offboard 模式下 API 控制模型
Exp7_OffCtrlMsgAll.slx	Offboard 模式下 Msg 信息控制模型
Exp7_OffCtrlMsgAll.bat	Offboard 模式下 Msg 信息控制硬件在环仿真脚本
Exp7_OffCtrlMsgAll.py	Offboard 模式下 Msg 信息控制 python 脚本

4. 运行环境

这号	护 任 更 史	硬件要求			
11, 4	$\chi_{\Pi} \neq \chi$	名称	数量		
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1		
2	RflySim 工具链				
3	MATLAB 2022b 及以上				

①: 推荐配置请见: <u>https://doc.rflysim.com</u>

 ②:须保证平台安装时的编译命令为: px4_fmu-v6x_default, 固件版本为: 1.12.3。其他配 套飞控请见: <u>http://rflysim.com</u>

注:本实验不屏蔽 PX4 输出。

③: 本实验演示所使用的遥控器为:天地飞ET10、配套接收器为:WFLYRF209S。遥控器相关配置见: <u>https://rflysim.com/doc/zh/B/3.1ET10.html</u>

5. 实验步骤

5.1. Exp1_OffboardAdvCtrlAPI1_Pos.slx—Offboard 模式下位置控 制模型

如下图所示,打开[安装目录]\5.RflySimFlyCtrl\0.ApiExps\17.OffboardCtrlsAPI中的Exp 1_OffboardAdvCtrlAPI1_Pos.slx 文件。该系统模型主要由 InputRcNorm、input_rc 和 Offboar dAdvCtrlAPI模块构成。

5.1.1. InputRcNorm-遥控器信号归一化模块

将遥控器的数据通过归一化处理映射到的-1~1范围数据中。

CH1:为输出滚转通道,范围为:-1~1,1表示向最右方飞行;
CH2:为输出俯仰通道,范围为:-1~1,1表示向最下方飞行;
CH3:为输出油门通道,范围为:0~1或-1~1,1表示向最上方飞行;
CH4:为输出偏航通道,范围为:-1~1,1表示向右方转动;
双击打开本模型的配置页面后,其具体定义如下:

Block Parameters: InputRcNorm
Subsystem (mask) (link)
This block outputs the normalized control signals from \ensuremath{RC}
roll: [-1,1] move right, positive roll rotation, right side down
pitch: [-1,1] move forward, negative pitch rotation, nose down
yaw: $[-1,1]$ positive yaw rotation, $$ clockwise when seen top down
throttle: [0,1] for 0% to 100% throttle, move up when throttle>0.5 throttle or [-1,1] for 0% to 100% throttle, move up when throttle>0 throttle
Throttle range type:
○ [0,1]: 0 for 0% throttle and 1 for 100% throttle
\bigcirc [-1,1]: -1 for 0% throttle and 1 for 100% throttle
Sample Time (s) 1/250
OK Cancel Help Apply

若勾选[0,1]:则 CH3 端口输出数据范围为 0~1。

若勾选[-1,1]:则 CH3 端口输出数据范围为-1~1。

Sample Time(s): 采样时间。

5.1.2. input_rc-遥控器输入模块

该模块允许用户访问来自 RC 发射机的信号, 通过这个模块可以选择输出的信号, 包括多个遥控器通道的值,以及其他的一些信息。如下图所示, 这些包括:

- 1. Channel Selection—通道选择
 - a) uint16数据类型,表示来自控制器的PWM(在使用中)值。
 - b) 测量每个支持通道的脉冲宽度。
- 2. Channel Count-通道数
 - a) Uint32 位数据类型,被 PX4 检测器检测的通道数。
- 3. RC Failsafe—遥控器信号失效保护
 - a) 布尔数据类型,指示 RC Tx 正在发送 FailSafe 信号(如果设置正确)
 - b) 显示 failsafe 标志:在 Tx 失败或者 Tx 超出范围时为 true,否则为 false。
 - c) 只有真实状态是可靠的,因为市场上有一些(PPM)接收器在没有明确告诉 我们的情况下进入故障安全。
- 4. RC Input Source—遥控器信号输入源
 - a) 枚举数据类型,指示 RC 输入来自哪个源。
 - b) 在 ENUM 文件中找到有效值:

RC INPUT SOURCE ENUM.m

RCINPUT_SOURCE_UNK	NOWN	(0)
RCINPUT_SOURCE_PX4	FMU_PPM	(1)
RCINPUT SOURCE PX4	IO_PPM	(2)
RCINPUT SOURCE PX4	IO_SPEKTRUM	(3)
RCINPUT_SOURCE_PX4	IO_SBUS	(4)

- 5. RSSI-接收信号强度指标
 - a) 接收信号强度指标 (RSSI): <0: 未定义; 0: 无信号; 255: 全接收。
- 6. RC Lost Connection—遥控器信号丢失连接
 - a) 指示 RC 接收器连接状态的布尔数据类型。
 - b) 如果没有帧在预期时间内到达,则为 True,否则为 false。
 - c) True 通常意味着接收器已断开连接,但也可以表示在"愚蠢的"系统上无线 电链路丢失。
 - d) 如果带有 failsafe 选项的 RX 在链路丢失后继续传输帧,则保持 false。

		🚡 Block Paramet	ers: input_rc		×	
		- PX4_Input_RC (mask) (link)			
		RC Input Block				
	Ch1	Receiver Input	s from the Pixhawl	k hardware		
	[Sample Time				
		1/250				
		- Channel Select	ion			
出	Ch2	🗹 Channel 1	🕑 Channel 2	🗹 Channel 3	🗹 Channel 4	
<u> </u>		Channel 5	Channel 6	Channel 7	Channel 8	
La comment		Channe19	Channel10	Channel11	Channel12	
		Channel13	Channel14	Channel15	Channel16	
		Channel17		Channel18		
	Ch3	- Optional Outpu	its			
		Channel Cou	nt	RSSI		
		🗌 RC Failsafe		🗌 RC Lost Con	nection	
		🗌 RC Input So	urce			
	Ch4 🕨					
input_rc			确定(0)	取消(C) 1	帮助(H) 应用(A)	

5.1.3. OffboardAdvCtrlAPI—Offboard 模式高级控制模块

本模块可使能载具进入 Offboard 模式,通过发送的指令(可以是: x、y、z、vx、vy、v z、ax、ay、az、yaw、yawrate)控制载具在 Offboard 模式下运动。

>	isEnCtrl
	Offboard PVA API isEnCtrl: 0 or 1 Ctrls: meter or rad
	Ctris[4]=vx+vy+vz+YawRate
>	Ctrls[4]

isEnCtr: 当 isEnCtrl 端口输入为 true 时,则发送 CtrlS[*]端口控制数据;否则不发送且 PX4 将进入 Loiter 模式。

Ctrls[*]:为该模块输入*维归一化控制信号,用于Offboard模式的控制指令。具体协议如下:

```
NED 坐标系下:
x、y、z: 位置控制(m)
Vx、Vy、Vz: 速度控制(m/s)
Ax、Ay、Az: 加速度控制(m/s<sup>2</sup>)
Yaw: 偏航控制(rad, 范围: -pi~pi)
Yawrate: 偏航速度控制(rad/s)
```

8 为了平稳飞行,需要保持运动学上的一致性和可行性。

|--|

双击打开本模型的配置页面后,其具体定义如下:

a 1 (1) (1···)			
Subsystem (mask) (link) —			
You can check the channel: sequence corresponding to	s and prepare an input sig the of the checked channe	gnal Ctrls with dimensions.	on and
This Block enable offboard	d control for x y z vx vy	vz ax ay az yaw yawrate	е
If the input port isEnCtr be sent and PX4 will chang	l is true, the Ctrls will ge to Loiter mode	be sent; otherwise Ctrl	ls will no
# Needs to be kinematical # setting a value to NaN n	ly consistent and feasible means the state should not	e for smooth flight. be controlled	
<pre>x,y,z: position # in meter Vx, yy,z: position # in meter Vx, Vy, Vz: velocity # in m Ax, Ay, Az: acceleration # yaw: euler angle of desir yawspeed: angular velocity In configuration page: If "Auto arm and offboard"</pre>	rs eters/second in meters/second 2 ed attitude in radians -Pi y around NED frame z-axis " is checked, the module y	i+PI in radians/second vill send arm command ar	nd switch
to orrooard mode (with a If "Auto unblock PX4" is a controls, which makes sur- PX4's Offboard API. If "Auto Loiter" is checkk when isEnCtrl is disabled, and stay in the air.	1.bs delay) when isEnCtrl checked, the module will : e this Simulink controller ed, the module will send e , which makes sure the vel	is enabled send signals to unblock c can control the vehicl end to switch to auto lo nicle can switch to PX4	PX4's le through piter mode controlle
to offooard mode (with a ff "Auto unblock PX4" is a controls, which makes sur PX4's Offboard API. If "Auto Loiter" is checku when isEnCtrl is disabled, and stay in the air. Parameters	1.5s delay) when isEnCtrl checked, the module will s e this Simulink controller ed, the module will send of , which makes sure the vel	is enabled send signals to unblock • can control the vehicl md to switch to auto lo nicle can switch to PX4	PX4's le through oiter mode controlle
to orroward mode (with a If "Auto unblock PX4" is a controls, which makes sur- PX4's Offboard API. If "Auto Loiter" is checku when isEnCtrl is disabled, and stay in the air. Parameters Select channels to control	1.5s delay) when isEnCtri checked, the module will se this Simulink controller ed, the module will send (, which makes sure the vel 1	is enabled send signals to unblock c can control the vehicl md to switch to auto lo nicle can switch to PX4	PX4's le through piter mode controlle
to offooard mode (with a 1 f "Auto unblock PX4" is a controls, which makes sur- PX4's Offboard API. If "Auto Loiter" is checku- when isEnCtrl is disabled, and stay in the air. Parameters Select channels to control x	<pre>1.bs delay) when isEnCtr1 checked, the module will s e this Simulink controller ed, the module will send o , which makes sure the vel 1 2 y</pre>	is enabled send signals to unblock c can control the vehicl md to switch to auto lo nicle can switch to PX4	PX4's le throug piter mode controlle
to offooard mode (with a 1 f "Auto unblock PX4" is a controls, which makes sur- PX4's Offboard API. If "Auto Loiter" is check when isEnCtrl is disabled, and stay in the air. Parameters Select channels to control x vx	<pre>1.bs delay) when isEnCtr1 checked, the module will s e this Simulink controller ed, the module will send o , which makes sure the vel 1 ≤ y y y</pre>	is enabled send signals to unblock • can control the vehicl md to switch to auto lo icle can switch to PX4	PX4's le through piter mode controlle
to orroard mode (with a If "Auto unblock PX4" is a controls, which makes sur- PX4's Offboard API. If "Auto Loiter" is check when isEnCtrl is disabled, and stay in the air. Parameters Select channels to control x vx vx ax	<pre>1.bs delay) when isEnCtr1 checked, the module will set e this Simulink controller ed, the module will send of , which makes sure the vel 1 ≤ y y y y ay</pre>	is enabled send signals to unblock c can control the vehicl md to switch to auto lo icle can switch to PX4	PX4's le through piter mode controlle
to orroard mode (with a 1 f "Auto unblock PX4" is a controls, which makes surv PX4's Offboard API. If "Auto Loiter" is check when isEnCtrl is disabled, and stay in the air. Parameters Select channels to contro x vx ax yaw	<pre>1.bs delay) when isEnCtrl checked, the module will se e this Simulink controller ed, the module will send o , which makes sure the vel 1 2 y y y y ay y y y y y y y y y y y y y</pre>	is enabled send signals to unblock c can control the vehicl mund to switch to auto la sicle can switch to PX4	PX4's le through diter mode controlle
to orroard mode (with a 1 f "Auto unblock PX4" is a controls, which makes sur- PX4's Offboard AP1. If "Auto Loiter" is check when isEnCtrl is disabled, and stay in the air. Parameters Select channels to contro x vx x vx ax yaw Option Functions	<pre>1.bs delay) when isEnCtrl checked, the module will se e this Simulink controller ed, the module will send o , which makes sure the vel 1 1 2 y 2 y 2 y 3 ay 2 yawrate</pre>	is enabled send signals to unblock c can control the vehici md to switch to auto la icle can switch to PX4	PX4's le through biter mode controlle
to offooard mode (with a 1 f "Auto unblock PX4" is a controls, which makes sur- PX4's Offboard API. ff "Auto Loiter" is check, when isEnCtrl is disabled, and stay in the air. Parameters Select channels to contro 2 x 2 x 2 x 2 ax 3 ax 3 yaw Option Functions 2 Auto arm and offboard	<pre>1.bs delay) when isEnCtrl checked, the module will se e this Simulink controller ed, the module will send d , which makes sure the vel 1 1 2 y 2 y 2 y 3 ay 2 yawrate 2 Auto unblock PX4</pre>	is enabled send signals to unblock c can control the vehicl and to switch to auto lo nicle can switch to PX4 z z vz az Auto Loiter	PX4's le through diter mode controlle
to ofrooard mode (with a 1 f "Auto unblock PX4" is a controls, which makes sur- PX4's Offboard AP1. If "Auto Loiter" is check when isEnCtr1 is disabled, and stay in the air. Parameters Select channels to contro 2 x 2 x 2 x 2 ax 3 ax 3 yaw Option Functions 2 Auto arm and offboard ample Time (s) -1	<pre>1.bs delay) when isEnCtrl checked, the module will se e this Simulink controllen ed, the module will send a , which makes sure the vel 1</pre>	is enabled send signals to unblock c can control the vehicl and to switch to auto lo nicle can switch to PX4 z vz az Auto Loiter	PX4's le throug controllo

- ①:控制通道选择区域可以根据个人需求自定义选择不同的 Offboard 模式的控制 指令。
- ▶ 若勾选 Auto arm, 当 isEnCtrl 端口输入为 true 时, 模块将发送解锁指令。

若勾选 Auto block PX4,则模块将发送信号屏蔽 PX4 的输出。当 isEnCtrl 接口输入为 true 时,将使用 Simulink 控制器控制载具。

若勾选 Auto Loiter,模块将发送命令解除对 PX4 输出的屏蔽,并切换到自动 Loiter 模式,当 isEnCtrl 接口输入为 false 时切换到 Loiter 模式,从而确保载具可以切换到 P X4 控制器并保持在空中。

Sample Time(s): 采样时间。

5.2. Exp2_OffboardAdvCtrlAPI2_Vel.slx—Offboard 模式下速度控

制模型

如下图所示,打开<u>[安装目录]\5.RflySimFlyCtrl\0.ApiExps\17.OffboardCtrlsAPI</u>中的 Exp 2_OffboardAdvCtrlAPI2_Vel.slx 文件。该系统模型主要由 InputRcNorm、input_rc 和 Offboar dAdvCtrlAPI 模块构成

InputRcNorm、input_rc和 OffboardAdvCtrlAPI 模块的详细介绍请参考: InputRcNorm、

<u>input_rc</u>和 OffboardAdvCtrlAPI

5.3. Exp3_OffboardAdvCtrlAPI3_Acc.slx—Offboard 模式下加速度 控制模型

如下图所示,打开<u>[安装目录]\5.RflySimFlyCtrl\0.ApiExps\17.OffboardCtrlsAPI</u>中的 Exp 3_OffboardAdvCtrlAPI3_Acc.slx 文件。该系统模型主要由 InputRcNorm、input_rc 和 Offboar dAdvCtrlAPI 模块构成

InputRcNorm、input_rc和 OffboardAdvCtrlAPI 模块的详细介绍请参考: <u>InputRcNorm</u>、 <u>input rc</u>和 <u>OffboardAdvCtrlAPI</u>

5.4. Exp4_OffboardAttCtrlAPI_Euler.slx—Offboard 模式下欧拉角

控制模型

如下图所示,打开<u>[安装目录]\5.RflySimFlyCtrl\0.ApiExps\17.OffboardCtrlsAPI</u>中的Exp 4_OffboardAttCtrlAPI_Euler.slx文件。该系统模型主要由 InputRcNorm、input_rc 和 Offboard AttCtrlAPI 模块构成

InputRcNorm 和 input_rc 模块的详细介绍请参考: InputRcNorm 和 input_rc

5.4.1. OffboardAttCtrlAPI—Offboard 模式姿态控制模块

本模块可使能载具进入 Offboard 模式,通过发送的姿态指令(可以是:欧拉角度和四元数)控制载具在 Offboard 模式下运动。

isEnCtr: 当 isEnCtrl 端口输入为 true 时,则发送 CtrlS[*]端口控制数据;否则不发送且 PX4 将进入 Loiter 模式。对于多旋翼模型, CtrlS[i]=1000~2000 将对应匹配到 CopterSim 中

DLL 文件的 0~1; 对于固定翼模型, CtrlS[i]=1000~2000 将对应匹配到 CopterSim 中 DLL 文件的-1~1。

Ctrls[*]:为该模块输入*维控制信号,用于Offboard模式的姿态控制指令。该控制信号可以是:

```
机体坐标系下:
三维欧拉角: [roll_body, pitch_body, yaw_body], 单位 rad
或
四元数: [w, x, y, z]
或
RollRate 1D (rad/s)
PitchRate 1D (rad/s)
YawRate 1D (rad/s)
```

Thrust3D Norm 默认选择,但:对于多旋翼,Thrust[0]和Thrust[1]通常为0,Thrust[2]是负油门请求。 对于固定翼,Thrust[0]是油门需求,Thrust[1]、Thrust[2]将通常为0。

双击打开本模型的配置页面后, 其具体定义如下:

Block Parameters: OffboardAttCtrIAPI
- Subsystem (mask) (link)
You can check the channels and prepare an input signal Ctrls with dimension and sequence corresponding to the of the checked channels.
<pre>isEnCtrl is true, the Ctrls will be sent; otherwise Ctrls will not be sent and PX4 will change to Loiter mode Euler3D=[roll_body, pitch_body, yaw_body] in rad Quat4D: desired quaternion for quaternion control thrust3D: Normalized thrust command in body NED frame [-1,1] # For clarification: For multicopters thrust[0] and thrust[1] are usually 0 and thrust[2] is the negative throttle demand. # For fixed wings thrust[0] is the throttle demand and thrust[1], thrust[2] will usually be zero.</pre>
In configuration page: If "Auto arm and offboard" is checked, the module will send arm command and switch to offboard mode (with a 1.5s delay) when isEnCtrl is enabled If "Auto unblock PX4" is checked, the module will send signals to unblock PX4's controls, which makes sure this Simulink controller can control the vehicle throught PX4's Offboard API. If "Auto Loiter" is checked, the module will send cmd to switch to auto loiter mode when isEnCtrl is disabled, which makes sure the vehicle can switch to PX4 controller and stay in the air.
Parameters
This Block enable offboard attitude control api for angle, rate and thrust control
✓ Attitude
● Euler3D: roll pitch yaw (rad) ○ Quat4D: w x y z
<pre>RollRate 1D (rad/s) PitchRate 1D (rad/s) YawRate 1D (rad/s) Thrust3D Norm</pre>
- Option Functions
✓ Auto arm and offboard ✓ Auto unblock PX4
Sample Time (s) -1
<u>OK</u> <u>Cancel</u> <u>H</u> elp <u>Apply</u>

- ▶ Attitude 区域: 该区域可以选择控制指令为欧拉角或四元数。
- ▶ RollRate: 若勾选则表示通过滚转角速率(rad/s)进行控制。

▶ PitchRate: 若勾选则表示通过俯仰角速率(rad/s)进行控制。

▶ YawRate: 若勾选则表示通过偏航角速率(rad/s)进行控制。

▶ 若勾选 Auto arm, 当 isEnCtrl 端口输入为 true 时, 模块将发送解锁指令。

➤ 若勾选 Auto block PX4,则模块将发送信号屏蔽 PX4 的输出。当 isEnCtrl 接口输入为 true 时,将使用 Simulink 控制器控制载具。

若勾选 Auto Loiter,模块将发送命令解除对 PX4 输出的屏蔽,并切换到自动 Loiter 模式,当 isEnCtrl 接口输入为 false 时切换到 Loiter 模式,从而确保载具可以切换到 P X4 控制器并保持在空中。

Sample Time(s): 采样时间。

5.5. Exp5_OffboardAttCtrlAPI_Rate.slx—Offboard 模式下欧拉角

速率控制模型

如下图所示,打开<u>[安装目录]\5.RflySimFlyCtrl\0.ApiExps\17.OffboardCtrlsAPI</u>中的 Exp 5_OffboardAttCtrlAPI_Rate.slx 文件。该系统模型主要由 InputRcNorm、input_rc 和 Offboard AttCtrlAPI 模块构成

InputRcNorm、input_rc 和 OffboardAttCtrlAPI 模块的详细介绍请参考: <u>InputRcNorm</u>、<u>i</u> nput rc 和 OffboardAttCtrlAPI

5.6. Exp6_OffboardPvaCtrlAPI.slx—Offboard 模式下 API 控制模型

如下图所示,打开[安装目录]\5.RflySimFlyCtrl\0.ApiExps\17.OffboardCtrlsAPI 中 Exp6_

OffboardPvaCtrlAPI.slx 文件。该系统模型主要由 InputRcNorm、input_rc 和 OffboardPvaCtrl API 模块构成

InputRcNorm 和 input_rc 模块的详细介绍请参考: InputRcNorm 和 input_rc

5.6.1. OffboardPvaCtrlAPI—Offboard 模式下控制方式切换控制模块

本模块可使能载具进入 Offboard 模式,通过发送的指令(可以是:位置控制、速度控制、 加速度控制)控制载具在 Offboard 模式下运动,并且可在位置控制、速度控制、加速度控制 中切换不同的控制方式。

isEnCtr: 当 isEnCtrl 端口输入为 true 时,则发送控制数据并进入 Offboard;否则不发送 且 PX4 将进入 Loiter 模式。当指令从 false 到 true 时,会自动解锁并进入 Offboard。

PVAYR[11]: 可输入 11 维 single 类型控制信号,用于 Offboard 模式的控制指令。具体协议如下:

```
NED 坐标系下:
x、y、z: 位置控制(m)
Vx、Vy、Vz: 速度控制(m/s)
Ax、Ay、Az: 加速度控制(m/s^2)
Yaw: 偏航控制(rad, 范围: -pi~pi)
Yawrate: 偏航速度控制(rad/s)
```

% 为了平稳飞行,需要保持运动学上的一致性和可行性。% 将值设置为 NaN 表示不应控制状态

EnList[11]: 可输入 11 维 boolean 类型的向量,每一维对应上述的具体的控制信号,当 某一维置于 true,则 PX4 会响应本通道控制量。例如,Enlist11d=[true,true,true, 0,...]表示使 能 xyz 的 pos 位置控制量。

双击打开本模型的配置页面后,其具体定义如下:

Block Parameters: OffboardPvaCtrIAPI X
Subsystem (mask) (link)
This Block enable offboard control for x y z vx vy vz ax ay az yaw yawrate
If the input port isEnCtrl is true, the Ctrls will be sent; otherwise Ctrls will not be sent and PX4 will change to Loiter mode
<pre># Needs to be kinematically consistent and feasible for smooth flight. # setting a value to NaN means the state should not be controlled</pre>
<pre># NED local world frame x, y, z: position # in meters Vx, Vy, Vz: velocity # in meters/second Ax, Ay, Az: acceleration # in meters/second^2 yaw: euler angle of desired attitude in radians -PI+PI yawspeed: angular velocity around NED frame z-axis in radians/second</pre>
In configuration page: If "Auto arm and offboard" is checked, the module will send arm command and switch to offboard mode (with a 1.5s delay) when isEnCtrl is enabled If "Auto unblock PX4" is checked, the module will send signals to unblock PX4's controls, which makes sure this Simulink controller can control the vehicle throught PX4's Offboard API. If "Auto Loiter" is checked, the module will send cmd to switch to auto loiter mode when isEnCtrl is disabled, which makes sure the vehicle can switch to PX4 controller and stay in the air.
Parameters
✓ Auto arm and offboard ✓ Auto unblock PX4 ✓ Auto Loiter
Sample Time (s) 1/250
OK Cancel Help Apply

▶ 若勾选 Auto arm, 当 isEnCtrl 端口输入为 true 时, 模块将发送解锁指令。

➤ 若勾选 Auto block PX4,则模块将发送信号屏蔽 PX4 的输出。当 isEnCtrl 接口输入为 true 时,将使用 Simulink 控制器控制载具。

若勾选 Auto Loiter, 模块将发送命令解除对 PX4 输出的屏蔽,并切换到自动 Loiter 模式,当 isEnCtrl 接口输入为 false 时切换到 Loiter 模式,从而确保载具可以切换到 PX4 控制器并保持在空中。

Sample Time(s): 采样时间。

5.7. Exp6_OffboardPvaCtrlAPI.slx—Offboard 模式下 API 控制模型

如下图所示,打开<u>[安装目录]\5.RflySimFlyCtrl\0.ApiExps\17.OffboardCtrlsAPI</u>中 Exp6_ OffboardPvaCtrlAPI.slx 文件。该系统模型主要由 OffCtrlMsgAll 和 rfly_px4 模块构成。 rfly px4 消息的具体用法请参考: <u>API.pdf</u>

5.7.1. OffCtrlMsgAll—Offboard 模式相关控制消息

本模块中订阅了关于 Offboard 控制相关的数据, 主要包括以下 uORB 消息: vehicle_sta tus、offboard_control_mode、trajectory_setpoint、vehicle_attitude_setpoint、vehicle_rates_set point。每个消息内字段的详细定义, 可以去【RflySim 安装目录】\Firmware\msg 目录下查 看。

OffCtrlMsgAll

MsgBus: 输出vehicle_status、offboard_control_mode、trajectory_setpoint、vehicle_attitu de_setpoint、vehicle_rates_setpoint的uORB消息中定义的数据,

双击打开本模型的配置页面后,其具体定义如下:

Block Parameters: OffCtrlMsgAll	×
-Subsystem (mask) (link)	
Parameters	
Sample Time (s) <u>1/250</u>	:
OK Cancel Help	Apply

Sample Time(s): 采样时间。

5.8. Offboard 模式下位置控制模型

打开 MATLAB 软件, 在 MATLAB 中打开[安装目录]\5.RflySimFlyCtrl\0.ApiExps\17.Off boardCtrlsAPI 中的 Exp1_OffboardAdvCtrlAPI1_Pos.slx 文件, 点击编译, 等待编译完成后将 固件烧录到飞控。

遥控器 CH5 拨到最低档,以管理员的身份运行 RflyTools 中的 HITLRun 脚本,开启硬件在环仿真。

A 1600	\$*将会从以下信息制中容别气机设置的概况。左边是每个组件的设置录单。							
	in.	× •	遥控器	•	飞行横	LK 😑		•
	系统 ID 机铝类型	1 Simulation (Conter)	横滚		模式切换开关 飞行模式1	Channel 5 Stabilized	电油满电 电油耗尽	
5. %	飞机 固件版本 自定义固件,版本,	HIL Quadcopter X 1.13.2dev 0.0.0	水平 油门 辅助1		飞行模式 2 飞行模式 3 飞行模式 4	Unassigned Unassigned Offboard	电池乙数	
() 単位器			MB的2		飞行模式 5 飞行模式 6	Unassigned Unassigned		
ANTE M								
4#	安	\$						
📥 en	低电量故障保护 - 遥控信号丢失故障保护 - 遥控信号丢失题时	Warning 未知+ 0 0.5 s						
\$ 2	数据连接丢失故障保护 返航爬升至 延航,然后	Disabled 30.0 m 立即者陆						
PID Tuning								
Flight Behavior								
an an								

CH5 拨到最高,1秒后自动解锁并触发 Offboard 模式

然后推动遥控器杆,通过QGC观察,是否定在预设的位置。 滚转杆推到最右,是右飞10m

俯仰杆推到最前,是前飞10m

满油门推到最上,是上飞20m高注:初始高度在-8m左右。

偏航杆推到最右,是 pi

5.9. Offboard 模式下速度控制模型

打开 MATLAB 软件,在 MATLAB 中打开[安装目录]\5.RflySimFlyCtrl\0.ApiExps\17.Off boardCtrlsAPI中的 Exp2_OffboardAdvCtrlAPI2_Vel.slx 文件,点击编译,等待编译完成后将 固件烧录到飞控。

遥控器 CH5 拨到最低档,以管理员的身份运行 RflyTools 中的 HITLRun 脚本,开启硬

件在环仿真。

QGroundControl								-	
🖉 Back < Çç V	/ehicle Setup								
🧖 概況			您将会从以下信	自息框中看到飞机设置的	的概况。左边是每个组件的设置菜单				
- 因件	机架	•	遥控器	•	飞行模式	t 😐			•
机架	系统 ID 机架类型 飞机 固件版本	1 Simulation (Copter) HIL Quadcopter X 1.13.2dev	横滚 俯仰 水平 油门		模式切换开关 飞行模式1 飞行模式2 飞行模式3	Channel 5 Stabilized Unassigned Unassigned	电池满电 电池耗尽 电池芯数		
100 避拉器	自定义固件. 版本.		辅助1 辅助2	失效 失效	飞行模式 4 飞行模式 5 飞行模式 6	Unassigned Unassigned Unassigned			
₩ 飞行模式									
● 电源	安全								
<u>ف</u> بدير	低电量故障保护 遥控信号丢失故障保护 遥坡位号丢牛超时	Warning 未知:0							
★2	数据连接丢失故障保护 返航爬升至 返航,然后	Disabled 30.0 m 立即考陆							
PID Tuning									
Flight Behavior									
900 \$\$									

CH5 拨到最高,1秒后自动解锁并触发 Offboard 模式

然后推动遥控器杆,通过 QGC 观察,是否定在预设的位置。 满油门推到最上,是上飞 3m/s

滚转杆推到最右,是右飞 5m/s

俯仰杆推到最前,是前飞5m/s

偏航杆推到最右,是 1rad/s 偏转

5.10.Offboard 模式下加速度控制模型

打开 MATLAB 软件,在 MATLAB 中打开[安装目录]\5.RflySimFlyCtrl\0.ApiExps\17.Off boardCtrlsAPI中的 Exp3_OffboardAdvCtrlAPI3_Acc.slx 文件,点击编译,等待编译完成后将

固件烧录到飞控。

遥控器 CH5 拨到最低档, 以管理员的身份运行 RflyTools 中的 HITLRun 脚本, 开启硬

件在环仿真。

QGrou	undControl								-	 ×
A 83	ack < 🍫 🔪	/ehicle Setup								
A =	既況			您将会从以下信息	一個中看到飞机设置的	乌概况。左边是每个组件的设置来单。 				
	16件	ž#up	f1.3k 😑	遥控器	•	飞行模式	Channel 5	****		•
ំំំង		500 机架类型 飞机 固件版本 白安2000年前本	1 Simulation (Copter) HIL Quadcopter X 1.13.2dev 0.0.0	信政 俗句 水平 油门 540P1	1 2 4 3 4-56	概式切会分支 飞行模式1 飞行模式2 飞行模式3 下行模式4	Channel 5 Stabilized Unassigned Unassigned	电泡满电 电池耗尽 电池芯数		
	彩拉器			辅助2	火敗	飞行模式5 飞行模式6	Unassigned Unassigned			
Ŵ										
~ •	包藏		安全							
•		低电量放降保护 遥控信号丢失故障保护 遥控信号丢失超时	Warning 未知:0 0.5 s							
Ö *		地控信号去天超时 数据连接丢失故障保护 返航爬升至 返航,然后	Disabled 30.0 m 立即者陆							
१ ↓१ ₽	1D Tuning									
ţţţ u	light Behavior									
90.	▶敗									

CH5 拨到最高,1秒后自动解锁并触发 Offboard 模式

然后推动遥控器杆,通过 QGC 观察,是否定在预设的位置。 满油门推到最上,是上飞 5m/s^2。

滚转杆推到最右,是右飞5m/s^2。

俯仰杆推到最前,是前飞5m/s^2。

偏航杆推到最右,是 1rad/s 偏转

5.11.Offboard 模式下欧拉角控制模型

打开 MATLAB 软件,在 MATLAB 中打开[安装目录]\5.RflySimFlyCtrl\0.ApiExps\17.Off

<u>boardCtrlsAPI</u>中的 Exp4_OffboardAttCtrlAPI_Euler.slx 文件,点击编译,等待编译完成后将 固件烧录到飞控。

遥控器 CH5 拨到最低档,以管理员的身份运行 RflyTools 中的 HITLRun 脚本,开启硬件在环仿真。

实验现象为:

CH5 拨到最高,1秒后自动解锁并触发 Offboard 模式,

滚转杆推到最右是 60 度、俯仰杆推到最前是 60 度、满油门推到最上是满油门上飞和 偏航杆推到最右,是 pi

5.12.Offboard 模式下欧拉角速率控制模型

打开 MATLAB 软件, 在 MATLAB 中打开[安装目录]\5.RflySimFlyCtrl\0.ApiExps\17.Off boardCtrlsAPI 中的 Exp5_OffboardAttCtrlAPI_Rate.slx 文件, 点击编译, 等待编译完成后将 固件烧录到飞控。

遥控器 CH5 拨到最低档,以管理员的身份运行 RflyTools 中的 HITLRun 脚本,开启硬件在环仿真。

实验现象为:

滚转杆推到最右向右慢慢翻、俯仰杆推到最前向前慢慢翻、满油门推到最上是满油门 上飞和偏航杆推到最右向右慢慢偏航,当上述姿态摇杆回中时,无人机会保持当前姿态, 而不会会到水平。

5.13.Offboard 模式下 API 控制模型

打开 MATLAB 软件, 在 MATLAB 中打开[安装目录]\5.RflySimFlyCtrl\0.ApiExps\17.Off boardCtrlsAPI 中的 Exp6_OffboardPvaCtrlAPI.slx 文件, 点击编译, 等待编译完成后将固件 烧录到飞控。

遥控器 CH5 拨到最低档,以管理员的身份运行 RflyTools 中的 HITLRun 脚本,开启硬件在环仿真。

实验现象为:

CH5 拨到中档位,通过 QGC 观察确认能否自动解锁并触发 Offboard,然后起飞后飞到 10 米高悬停。CH5 摇杆拨到高位,飞机进入 2 米每秒前飞模式; CH5 拨回低位置,飞控进 入悬停模式。

5.14.Offboard 模式下 Msg 消息控制模型

打开 MATLAB 软件, 在 MATLAB 中打开[安装目录]\5.RflySimFlyCtrl\0.ApiExps\17.Off boardCtrlsAPI中的 Exp7_OffCtrlMsgAll.slx 文件, 点击编译, 等待编译完成后将固件烧录到 飞控。

遥控器 CH5 拨到最低档,以管理员的身份运行[安装目录]\5.RflySimFlyCtrl\0.ApiExps\

<u>17.OffboardCtrlsAPI</u>中的 Exp7_OffCtrlMsgAll.bat 脚本,开启硬件在环仿真。

进入 QGC, 用自动起飞功能,确认飞机是否能正常起飞。

将飞机降落地面,打开 QGC,定位到分析工具-MAVLink 检测页面-ACTUATOR_CONTROL_TARGET 消息,可以看到当前值都为 0

0 C	QGroundControl								-	
A	1 Back < 🛃 /	Anal	yze Tools							
:=	日志下载	查看	实时 MAVLink 消息。							•*
0	地理标记图像	1	ACTUATOR_CONTROL_TARGET	30.0Hz	信息: 组件:	ACTUATOR_CONTR 1	ROL_TARGET (140) 30.0Hz			
>	Mavlink 控制台	1	ALTITUDE	10.0Hz	计数:	663				
	0	1			名称		值	类型	绘制1	检制2
Ľč	A MAVLink 检测	1	ATTITUDE_QUATERNION	50.2Hz	time_usec group_mlx		211580423 123	uint64_t uint8_t		
	ト振动	1			controls		0.0285402, -0.0717537, 0.0110324, 0.0007	float		
		1	BATTERY_STATUS	0.2Hz						
		1	CURRENT_EVENT_SEQUENCE							
		1	ESTIMATOR_STATUS	5.0Hz						
		1								
		1	GLOBAL_POSITION_INT	10.0Hz						
		1								
		1	HEARTBEAT	1.0Hz						
		1								

运行[安装目录]\5.RflySimFlyCtrl\0.ApiExps\17.OffboardCtrlsAPI中的 Exp7_ OffCtrlMsg All.py 程序,可以观察到输入 x y z 先是 0 0 -1.7,飞机正常起飞到 1.7 米高。

QGroundControl								-	
✓ Back < ▲	Analy	ze Tools							
日志下载	查看會	实时 MAVLink 消息。							•
● 地理标记图像	1	ACTUATOR_CONTROL_TARGET	30.0Hz	信息: 组件:	ACTUATOR_CONTR 1	OL_TARGET (140) 30.0Hz			
> Mavlink 控制台	1	ALTITUDE	10.0Hz	计数:	1032				
	1			名称			类型	绘制1	给制2
₩ MAVLink 检测	1	ATTITUDE_QUATERNION	50.0Hz	time_usec group_mlx		310248423 123	uint64_t uint8_t		H
	1	ATTITUDE_TARGET	8.0Hz	controls		0, 0, -1.7, nan, nan, nan, 0, nan	float		
	1	BATTERY_STATUS	0.8Hz						
	1	COMMAND_ACK	1.3Hz						
	1	CURRENT_EVENT_SEQUENCE	0.8Hz						
	1	ESTIMATOR_STATUS	5.0Hz						
	1	EVENT	0.4Hz						
	1	EXTENDED_SYS_STATE	2.0Hz						
	1	GLOBAL_POSITION_INT	10.0Hz						
	1	GPS_RAW_INT	10.0Hz						
	1	HEARTBEAT	1.0Hz						

之后, x y z 变为 NaN, vx vy vz 变为 0 0 0.2, 表示飞机切换速度控制模式,并缓慢降

11	
34	
VA-	0
vμ	0

QGroundControl								-	\Box \times
✓ Back < ▲	Anal	yze Tools							
日志下戦	查看	实时 MAVLink 消息。							-
地理标记图像	1	ACTUATOR_CONTROL_TARGET	30.0Hz	信息: 组件:	ACTUATOR_CONTR 1	OL_TARGET (140) 30.0Hz			
> Mavlink 控制台	1	ALTITUDE	10.0Hz	计数:	1426				
	1	ATTITUDE	50.0Hz	名称 			类型	绘制1	绘制2
VQ MAVLINK (2.85	1	ATTITUDE_QUATERNION	50.0Hz	time_usec group_mlx		323380423 123	uint64_t uint8_t		
	1	ATTITUDE_TARGET	8.0Hz	controls		nan, nan, nan, 0, 0, 0.2, nan, 0	float		
	1	BATTERY_STATUS	0.2Hz						
	1	COMMAND_ACK	0.0Hz						
	1	CURRENT_EVENT_SEQUENCE	0.2Hz						
	1	ESTIMATOR_STATUS	5.0Hz						
	1	EVENT	0.0Hz						
	1								
	1	GLOBAL_POSITION_INT	10.0Hz						
	1	GPS_RAW_INT	10.0Hz						
	1	HEARTBEAT	1.0Hz						
	1								
	1	HIL_ACTUATOR_CONTROLS	9.8Hz						
	1		0.2Hz						
	1		1.0Hz						

6. 参考资料

[1] 无。

- 7. 常见问题
 - Q1: ***

A1: ***