1. 实验名称及目的

1.1. 实验名称

模型 FaultParamAPI.InitInParams 参数动态修改实验(仅限完整版及以上版本)

1.2. 实验目的

本实验通过 Python 动态修改模型中的 FaultParamAPI.InitInParams 参数,以实现仿真中 模型状态的更改。以此实验让平台用户熟悉 FaultParamAPI.InitInParams 参数这种 Python 程 序动态修改的方法。

1.3. 关键知识点

本实验需要电脑中部署 Visual Studio 2022 环境,部署方式见:[安装目录]\RflySimAP Is\1.RflySimIntro\2.AdvExps\e6_VisualStudioInstall

**\4.RflySimModel\3.CustExps\e0_AdvApiExps\5.ParamAPI\Intro.pdf

2. 实验效果

将 FaultParamAPI.InitInParams 参数的不同维度配置在飞机模型中的初始位置、速度等 位置后,之后启动没有拷贝 csv 文件的启动脚本时初始状态为 InitInParams 的默认值。随后 运行 InitParamModDemo.py 程序,实现载具初始状态(初始位置的更改)。

3. 文件目录

例程目录: [安装目录]\RflySimAPIs\4.RflySimModel\3.CustExps\e0_AdvApiExps\5.Para mAPI\1.initParams\2.initParamsAPI_py\

文件夹/文件名称	说明		
\Intro.pdf	dll 模型参数实时修改实验原理		
InitParamModDemo.slx	四旋翼飞机模型文件。		
GenerateModelDLLFile.p	DLL 格式转化文件。		
InitParamModDemo_SITL_No.bat	软件在环启动脚本。		
MavLinkStruct.mat	MavLink 数据结构体 mat 文件		
InitParamModDemo.dll	四旋翼飞机动态链接库		
InitParamModDemo_init.m	动力学模型相关参数。		
InitParamModDemo.py	动态修改参数脚本。		
Python38Run.bat	Python 程序运行脚本		

4. 运行环境

序号	软件要求	硬件要求		
		名称	数量	

1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 工具链	\	\
3	MATLAB 2017B 及以上 [®]	\	\
4	Python	\	\

①: 推荐配置请见: <u>https://rflysim.com/doc/en</u>

5. 实验步骤

5.1 必做实验:模型参数动态修改

Step 1: 初始化参数接口

在 InitParamModDemo_Init.m 文件里面,声明参数 FaultParamAPI.InitInParams 为 32 维的浮点数向量。注意:这里使用结构体是为了自动代码生成时,不会被优化为静态常数, 使之具备可修改性。

34	
35	
36	%% 初始化参数接口
37	% Define the 32-D InitInParams vector for external modification
38 —	FaultParamAPI.InitInParams = zeros(32,1);
39	

Step 2: 修改 6DOF 模块

打开 InitParamModDemo.slx 将 6DOF 模块中能够配置参数的地方,用 FaultParamAPI.In itInParams 的特定维数来填充。

6DOF EoM (Body Axis) (mask) (link) Integrate the six-degrees-of-freedom equations of motion in body axis. Parameters Main State Attributes Units: Metric (MKS) V Mass type: Custom Variable Representation: Quaternion					
Integrate the six-degrees-of-freedom equations of motion in body axis. Parameters Main State Attributes Units: Metric (MKS) v Mass type: Custom Variable v Representation: Quaternion v					
Parameters Main State Attributes Units: Metric (MKS) Mass type: Custom Variable Representation: Quaternion					
Main State Attributes Units: Metric (MKS) V Mass type: Custom Variable V Representation: Quaternion V					
Units: Metric (MKS)					
Mass type: Custom Variable					
Representation: Quaternion ~					
Initial position in inertial axes [Xe, Ye, Ze]:					
FaultParamAPI. InitInParams(1:3)					
Initial velocity in body axes [U,v,w]:					
FaultParamAPI. InitInParams(4:6)					
Initial Euler orientation [roll, pitch, yaw]:					
FaultParamAPI. InitInParams (7:9)					
Initial body rotation rates [p,q,r]:					
FaultParamAPI. InitInParams(10:12)					
Gain for quaternion normalization:					
1.0					
□ Include mass flow relative velocity					
□ Include inertial acceleration					
OK Cancel Help Apply					

Step 3: 设置 ExtToUE4 输出接口

将前16维输出到ExtToUE4,便于观察结果。

Step 4: 编译模型

修改模型完成后,将模型编译为 C++代码。

编译配置可参考 <u>4.RflySimModel\0.ApiExps\2.UserDefinedC++\2.GenC++\Readme.pdf</u>

对于 MATLAB 2019a 及之前版本,工具栏样式见下图,直接点击它的编译按钮 "Build"即可。

🔁 • 🗂 • 📑	\$ \$ \$	- 📰 🕐 -	📫 🐗	۱	✓ 10	Accelerator •	0.	***

对于 2019b 及之后版本,点击 APPS - CODE GENERATION - Embedded Coder 才能弹出 代码生成工具栏,在其中如下图所示点击 "C++CODE" - "Generate Code"- "Build"按钮就能 编译生成代码。

SIMULATION	DEBUG	MODI	eling	Format	APPS
Get Add-Ons ▼ ENVIRONMENT <u>C</u> ode	Search CODE GENERATIO Embedded Coder	Simulin Coder	k	AUTOSAR Component	HDL Coder
FORMAT	APPS	C++ CODE	×		
or opterNoCtrl			Generate Code ▼	View 🏡 Rer Code	en Report ▼ move Highlighting
	GENERATE CODI	E		uild enerate code and build	d model

Step 5: 生成 DLL 文件

运行 GenerateModelDLLFile.p, 生成 DLL 文件

Step 6: 启动仿真

运行 InitParamModDemo_SITL_NoCsv.bat(没有自动拷贝 csv 文件的版本), 输入 2, 创建两个飞机。(为了保证不会有 csv 文件存在,干扰实验,这个 bat 还增加了删除 csv 文件 的代码)

可以看到,创建了两个飞机,没有响应 bat 脚本的位置布局控制(取决于 dll 的 Modell nit_PosE 参数,这里并没有用到),初始位置都是 0,0,0,两架飞机重叠在一起,有一个慢慢从地下上升到地表的过程(地面模型的作用),这是因为现在使用的是 InitInParams 的默认值,全为 0, RflySim3D 界面按下键盘 D 可以看到飞机参数。

Step 7: 运行 Python 程序

在文件夹下,双击 Python38Run.bat,打开集成好的 python 环境,在该环境下运行 InitP aramModDemo.py 文件,输入 python InitParamModDemo.py

Step 8: 观察结果

通过 Python 向模型发送了改变参数的消息(使用 DllSimCtrlAPI 的 sendInitInParams 接口),可以看到飞机位置发生了变化。

5.2 选做实验(VS Code 调试运行)

准备工作:

- 先确保已经按<u>RflySimAPIs\1.RflySimIntro\2.AdvExps\e3_PythonConfig\Readme.pdf</u>
 步骤,正确配置 VS Code 环境。或者配置了自己的 Pycharm 等自定义 Python 环境。
- 其他步骤与上文相同,运行 InitParamModDemo.py 时,可使用 VS Code (或 Pycha rm 等工具)来打开 InitParamModDemo.py 文件,并阅读代码,修改代码,调试执行等。

扩展实验:

● 请自行使用 VS Code 阅读 InitParamModDemo.py 源码,通过程序跳转,了解每条 代码的执行原理;再通过调试工具,验证每条指令的执行效果。

6. 参考资料

- [1]. API.pdf中 DLL/SO 模型与通信接口的重要参数部分。
- [2]. <u>API.pdf 中的环境配置</u>
- [3]. <u>API.pdf 中的 Simulink 建模模板介绍</u>

7. 常见问题

Q1: 未正确安装 visual studio c++编译环境并配置 mex, 导致 Simulink 文件编译失败

```
      Diagnostic Viewer

            9:57 AM: Build
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
            I
```

```
Code Mappings - Component Interface
Ready
```

View 1 error

A1: 首先将低于当前 MATLAB 版本的 Visual Studio C++编译环境安装到 VS 默认安装 目录, 然后在 MATLAB 的命令行窗口中输入指令"mex -setup", 一般来说会自动识别并安 装上支持的编译器 (例如 Visual C++ 2017), 命令行显示"MEX 配置使用'Microsoft Visua 1C++ 2017'以进行编译"的字样说明安装正确。详细环境配置参考" [RflySim 平台安装目 录]\RflySimAPIs\4.RflySimModel\API.pdf"中的环境配置

Q2: 编译报错,无法加载库文件

A2: 这可能是由于安装平台时 PX4PSP 工具箱未更新到最新版,更新 RflySim 安装包后按 照如下配置重新安装平台即可

承 Toolbox one-key installation script: RflySimA — 🗌 🗙
(1) Software package installation directory
C:\PX4PSP
(2) PX4 firmware compiling command: firmware versions <= PX4-1.8 use format px4fmu-v3_default; >= PX4-1.9 use format px4_fmu-v3_default
px4_fmu-v6c_default
(3) PX4 firmware version (1: PX4-1.7.3,, 6: PX4-1.12.3, 7: PX4-1.13.2, 8: PX4-1.14.4, 9: PX4-1.15.0)
9
(4) PX4 firmware compiling toolchain (1: WinWSL[suitable for all versions], 2: Msys2[suitable for <= PX4-1.8], 3: Cygwin[for >=PX4-1.8])
1
(5) Whether to reinstall PSP toolbox (yes to reinstall and no to remain current nstallation)
yes
(6) Whether to reinstall the dependent software packages (CopterSim, QGroundControl, CopterSim, etc. About 5 minites)
no
(7) Whether to reinstall the selected compiling toolchain (yes to reinstall and no to remain unchanged, about 5 minites)
no
(8) Whether to reinstall the selected PX4 firmware source code (yes to reinstall and no to remain unchanged, about 5 minites)
no
(9) Whether to pre-compile the selected firmware with the selected command (yes to compile and no to remain unchanged, about 5 minites)
no
(10) Whether to block the actuator outputs in the PX4 fimrware code ("yes" to use Simulink controller, "no" to use PX4 offical controller)
no
OK Cancel