### 说明文档

### 1. 简介

飞思集群仿真单元是一套高度集成化的系统,专为无人机集群仿真而设计。该系统由十个精密的飞控单元、一套高效的继电器控制阵列以及先进的网络交换机组成,构成了一个功能强大且易于管理的仿真平台。

飞思集群仿真单元以其卓越的设计和高效的连接方式,彻底革新了无人机 集群的仿真体验。它巧妙地解决了传统方法中多个飞控单元连接复杂、操作繁 琐的问题,现在仅需一根网线,即可实现与十个飞控单元的快速连接。在飞思 集群仿真单元中,每个飞控单元都具备独立的计算能力和控制逻辑,能够模拟 真实无人机的飞行行为。通过简洁明了的命令,用户可以轻松决定每个飞控单 元是否参与仿真,从而控制整个仿真集群。无需复杂的设置和繁琐的操作,大 大提高了仿真工作的效率和便捷性。同时,网络交换机的高效性能保证了仿真 数据在集群内部的高速传输,实现了对无人机集群行为的实时监控和数据获 取。

总之, 飞思集群仿真单元是一套功能强大、易于使用且高度集成的无人机 集群仿真系统。它不仅可以模拟真实无人机的飞行行为, 还可以通过丰富的仿 真场景和模型库满足用户的多样化需求。

2. 构成

| 名称           | 数量 |
|--------------|----|
| 6x-min 飞控    | 10 |
| 风扇           | 3  |
| RJ45 网络控制继电器 | 1  |
| 交换机          | 1  |
| 电源适配器        | 1  |
| 网线           | 1  |

#### 3. 线路图

飞控集群仿真单元整体电路图:



| 继电器                                                                                        | Pixhawk 6X Mini |                              |           |            |  |  |  |
|--------------------------------------------------------------------------------------------|-----------------|------------------------------|-----------|------------|--|--|--|
|                                                                                            | Eth 端口          |                              |           | ļ          |  |  |  |
|                                                                                            | 针               | 信号                           | 伏特        |            |  |  |  |
| . G.                                                                                       | 1 (红色)          | RXN系列                        | +3.3伏     |            |  |  |  |
| в ТСР-КР-LС1А                                                                              | 2 (黑色)          | RXP系列                        | +3.3伏     | в          |  |  |  |
|                                                                                            | 3 (黑色)          | TXN网络                        | +3.3伏     |            |  |  |  |
| 大体也                                                                                        | 4 (黑色)          | TXP系列                        | +3.3伏     | -          |  |  |  |
|                                                                                            | I2C 端口          |                              |           |            |  |  |  |
|                                                                                            | 针               | 信号                           | 伏特        | c          |  |  |  |
|                                                                                            | 1 (红色)          | VCC公司                        | +5伏       |            |  |  |  |
| Annual | 2 (黑色)          | SCL3型                        | +3.3伏     |            |  |  |  |
| <u>┡╪╪</u>                                                                                 | 3 (黑色)          | SDA3型                        | +3.3伏     |            |  |  |  |
|                                                                                            | 4 (黑色)          | 接地                           | 接地        |            |  |  |  |
| D                                                                                          |                 |                              |           | C          |  |  |  |
|                                                                                            | IIILE:          | 飞思集群仿真单:                     | 元         | REV: 1.0   |  |  |  |
| ,,,,,,                                                                                     |                 | Company:<br>Date: 2024-04-07 | Drawn By: | Sheet: 2/1 |  |  |  |

## 4. 仿真

### Step1:硬件连接

在进行仿真时,需将主机电脑与飞思集群仿真单元用网线连接到同一路由器下。如下图所示:路由器一根网线连接电脑主机,一根网线连接飞思集群仿 真单元。



# Step2:确定本机 IP 地址和路由器地址

Windows 系统,在桌面右击鼠标,选择在终端打开。在打开的窗口输入 ipconfig 命令,点击回车,出现如下图所示界面,为本机 IP 地址和路由器地 址。

| 无线局域网适配器 WLAN:                                                                   |
|----------------------------------------------------------------------------------|
| 连接特定的 DNS 后缀 ......:<br><u>本地链接 IPv6 地址 ......: fe80::8210:514</u> 4:174:a599%18 |
| IPv4 地址 ...........:192.168.50.78                                                |
| 于网港码                                                                             |
| PS C:\Users\Administrator>                                                       |

## Step3: 飞思集群仿真单元飞控参数配置

注意: 在进行飞控参数配置时,需将10个飞控进行参数配置,且需要按照 飞思集群仿真单元上的飞控编号依次进行配置。

(1)通过数据线将飞思集群仿真单元的飞控 USB1 接口连接到电脑主机上; 启动 QGC,等待 QGC 显示飞控连接成功。



(2) 点击 QGC 图标—>Analyze Tools—>Mavlink 控制台,在控制台输 netman show 指令,查看飞控的网络相关配置,并且确认飞控连接是否正常,输入指令 后如下图所示:

由下图可知飞控参数 IP 地址和网关地址与 Step1 查询到的本机 IP 地址和网 关地址是一致的。如果不同,则按照步骤(3)进行参数配置。



(3) 修改参数

在 Mavlink 控制台通过以下命令配置飞控网络参数:

```
echo DEVICE=eth0 > /fs/microsd/net.cfg //接口名称,默认值为 etho
echo BOOTPROTO=dhcp >> /fs/microsd/net.cfg //用于获取 PX4IP 地址的协议
echo IPADDR=192.168.50.78 >> /fs/microsd/net.cfg //静态 IP 地址
echo NETMASK=255.255.255.0 >>/fs/microsd/net.cfg //网络掩码
echo ROUTER=192.168.50.1 >>/fs/microsd/net.cfg //默认路由的地址
echo DNS=192.168.50.1 >>/fs/microsd/net.cfg //DNS 服务器的地址
netman update -i eth0
```

如下图所示,点击 Back,等待 QGC 显示断开连接,则参数配置成功。

| QGroundControl |                                                                                                                                                                                                                                            |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ✓ Back < ▲     | Analyze Tools                                                                                                                                                                                                                              |
| 日志下载           | Provides a connection to the vehicle's system shell.                                                                                                                                                                                       |
| 地理标记图像         | <pre>echo DEVICE=eth0 &gt; /fs/microsd/net.cfg nsh&gt; echo BOOTPROTO=dhcp &gt;&gt; /fs/microsd/net.cfg nsh&gt; echo IPADDR=192.168.50.78 &gt;&gt; /fs/microsd/net.cfg</pre>                                                               |
| ➤ Mavlink 控制台  | <pre>nsh&gt; echo NETMASK=255.255.255.0 &gt;&gt;/fs/microsd/net.cfg<br/>nsh&gt; echo ROUTER=192.168.50.1 &gt;&gt;/fs/microsd/net.cfg<br/>nsh&gt; echo DNS=192.168.50.1 &gt;&gt;/fs/microsd/net.cfg<br/>nsh&gt; netman update -i eth0</pre> |
| MAVLink 检测     | INFO [netman] Network settings updated, rebooting                                                                                                                                                                                          |
|                |                                                                                                                                                                                                                                            |

(4) 查看飞控关于 Mavlink 协议相关参数配置,通过点击 QGC 图标 —>Vehicle Setup—>参数,搜索框输入 MAV\_2 将看到如下图所示:

| 🖸 QG                   | roundControl    |                    |               |                                             |                    |  |  |  |  |
|------------------------|-----------------|--------------------|---------------|---------------------------------------------|--------------------|--|--|--|--|
| Back < 🌸 Vehicle Setup |                 |                    |               |                                             |                    |  |  |  |  |
| 4                      | 概况              | 搜索: MAV_2 清除 只显示修改 |               |                                             |                    |  |  |  |  |
|                        |                 | MAV_2_BROADCAST    |               | Broadcast heartbeats on local network for   | MAVLink instance 2 |  |  |  |  |
|                        | 固件              | MAV_2_CONFIG       |               | Serial Configuration for MAVLink (instance  | 2)                 |  |  |  |  |
|                        | 机架              | MAV_2_FLOW_CTRL    | Auto-detected | Enable serial flow control for instance 2   |                    |  |  |  |  |
|                        |                 | MAV_2_FORWARD      |               | Enable MAVLink Message forwarding for i     | nstance 2          |  |  |  |  |
| 00                     | 遥控器             | MAV_2_MODE         |               | MAVLink Mode for instance 2                 |                    |  |  |  |  |
| N                      | 飞行模式            | MAV_2_RADIO_CTL    |               | Enable software throttling of mavlink on in | stance 2           |  |  |  |  |
| _                      |                 | MAV_2_RATE         |               | Maximum MAVLink sending rate for instar     | ice 2              |  |  |  |  |
|                        | 电源              | MAV_2_REMOTE_PRT   |               | MAVLink Remote Port for instance 2          |                    |  |  |  |  |
|                        | 电机              | MAV_2_UDP_PRT      |               | MAVLink Network Port for instance 2         |                    |  |  |  |  |
| Ô                      | 安全              |                    |               |                                             |                    |  |  |  |  |
| ţţ                     | PID Tuning      |                    |               |                                             |                    |  |  |  |  |
| ţţ                     | Flight Behavior |                    |               |                                             |                    |  |  |  |  |
| Ô                      | 相机              |                    |               |                                             |                    |  |  |  |  |
| 90                     | 参数              |                    |               |                                             |                    |  |  |  |  |

如果参数设置与上图不同,则按照上图进行参数修改。

注意:监听端口从6001 开始,按照飞思集群仿真单元飞控接口编号依次+1进行配置,不按照规则配置,将导致 coptersim 连接飞控失败。

(5) 重启飞控。

修改完成参数,进行飞控重启,重启飞控,再次在控制台输入 netman show,看参数是否已经更改。且在 Vehicle Setup—>参数,搜索框输入 MAV\_2,查看参数是否更改

(6) 重复步骤 Step2(1) - (5), 依次按照顺序配置剩余9个飞控。

|                          |                   |               | CoroundControl                            |                                             |             |                  |               |                                              |                    |  |
|--------------------------|-------------------|---------------|-------------------------------------------|---------------------------------------------|-------------|------------------|---------------|----------------------------------------------|--------------------|--|
| 🖉 Back < 😵 Vehicle Setup |                   |               | 🔊 Back < 😵 Vehicle Setup                  |                                             |             |                  |               |                                              |                    |  |
| 🔺 #652                   | 授家 MAV_2 清除 凡並示修改 |               | A 80                                      | ● 概元 - 代素: MAV_2 - 建涂 - 只显示协改               |             |                  |               |                                              |                    |  |
|                          | MAV_2_BROADCAST   |               | Broadcast heartbeats on local network for | or MAVLink instance 2                       |             | MAV_2_BROADCAST  |               | Broadcast heartbeats on local network for I  | MAVLink instance 2 |  |
| H#                       | MAV_2_CONFIG      |               | Serial Configuration for MAVLink (instand |                                             |             | MAV_2_CONFIG     |               | Serial Configuration for MAVLink (instance   |                    |  |
| 11.81                    | MAV_2_FLOW_CTRL   | Auto-detected | Enable serial flow control for instance 2 |                                             |             | MAV_2_FLOW_CTRL  | Auto-detected | Enable serial flow control for instance 2    |                    |  |
|                          | MAV_2_FORWARD     |               | Enable MAVLink Message forwarding for     | instance 2                                  |             | MAV_2_FORWARD    |               | Enable MAVLink Message forwarding for in     | stance 2           |  |
| <b>00</b> 地把器            | MAV_2_MODE        |               | MAVLink Mode for instance 2               | MAVLink Mode for instance 2                 |             | MAV_2_MODE       |               | MAVLink Mode for instance 2                  |                    |  |
| 10 <b>3</b> 668          | MAV_2_RADIO_CTL   |               | Enable software throttling of mavlink on  | instance 2                                  |             | MAV_2_RADIO_CTL  |               | Enable software throttling of mavlink on ins | tance 2            |  |
|                          | MAV_2_RATE        |               | Maximum MAVLink sending rate for insta    | Maximum MAVLink sending rate for instance 2 |             | MAV_2_RATE       |               | Maximum MAVLink sending rate for instance    | e 2                |  |
| <u> </u>                 | MAV_2_REMOTE_PRT  |               | MAVLink Remote Port for instance 2        |                                             |             | MAV_2_REMOTE_PRT |               | MAVLink Remote Port for instance 2           |                    |  |
| 📥 चग                     | MAV_2_UDP_PRT     |               | MAVLink Network Port for instance 2       |                                             | 📤 क्ष       | MAV_2_UDP_PRT    |               | MAVLink Network Port for instance 2          |                    |  |
| _                        |                   |               |                                           |                                             | _           |                  |               |                                              |                    |  |
| <b>*</b> *               |                   |               |                                           |                                             | 安全 安全       |                  |               |                                              |                    |  |
| 수 나 PID Tuning           |                   |               |                                           |                                             | PID Tuning  |                  |               |                                              |                    |  |
| <b>%</b> 9%              |                   |               |                                           |                                             | <b>%</b> 98 |                  |               |                                              |                    |  |

## Step4: QGC 连接飞控

(1)通过数据线将飞思集群仿真单元的飞控 USB1 接口连接到电脑主机上; 启动 QGC,等待 QGC 显示飞控连接成功。点击 QGC 图标—>Analyze Tools—>Mavlink 控制台,在控制台输 netman show 指令,查看飞控的网络相关 配置是否如下图所示:



(2)如果参数与 Step3 设置一致,移除飞控与电脑数据线,使飞控与 QGC 断 开连接,点击 QGC 图标—>Application Settings—>通讯连接,点击下方添加, 出现如下图所示界面,并按照下图所示进行设置:

| QGroundCc | ntrol                                                                                        |
|-----------|----------------------------------------------------------------------------------------------|
| Back <    | Application Settings                                                                         |
| 常规        | 创建新的连接配置                                                                                     |
| 通讯连接      | Name 1                                                                                       |
| 离线地图      | 开始时自动连接                                                                                      |
| MAVLink   | Type UDP -                                                                                   |
| 控制台       | Note: For best perfomance, please disable AutoConnect to UDP devices on the<br>General page. |
| 帮助        | Port 6001                                                                                    |
|           | Server Addresses (optional)                                                                  |
|           | 192.168.50.78:6001 Add Server                                                                |
|           | 确认 取消                                                                                        |
|           |                                                                                              |

注意:

Name:按照飞思集群仿单元飞控接口编号进行设置

Type:选择 UDP

Port:按照每个飞控设置的监听端口进行设置

Server Addresses:按照如上图所示格式依此类推进行设置。

设置完成后,点击 Add Server,点击确认。

(3) 选中添加的飞控1, 点击连接, 进行连接。

| QGroundControl                |       |    |                |    |      |  |          |
|-------------------------------|-------|----|----------------|----|------|--|----------|
| Back < 🕲 Application Settings |       |    |                |    |      |  |          |
| <b>宠规</b>                     |       |    | 1              |    |      |  |          |
| <b>墙讯连接</b>                   |       |    | 2              |    |      |  |          |
| 高线地图                          |       |    | 3              |    |      |  |          |
| MAVLink                       |       |    | 4              |    |      |  |          |
| 1866                          |       |    | 5              |    |      |  |          |
| 有助                            |       |    | 6              |    |      |  |          |
|                               |       |    | 7              |    |      |  |          |
|                               |       |    | 8              |    |      |  |          |
|                               |       |    | 9              |    |      |  | <u>.</u> |
|                               |       |    | 10             |    |      |  |          |
|                               |       |    |                |    |      |  |          |
|                               |       |    |                |    |      |  |          |
|                               |       |    |                |    |      |  |          |
|                               |       |    |                |    |      |  |          |
|                               |       |    |                |    |      |  |          |
|                               | R(18) | 编辑 | <b>35</b> 5.bo | 堆被 | 新开边接 |  |          |
|                               |       |    |                |    |      |  |          |

注意:每个飞控连接后,确认 IP,确定每个飞控网络是否连接正常。 登录路由器后台(密码可以在路由器上找到或咨询管理员),确认是否可以看 到飞控的 IP 地址。如下图,nuttx 为飞控的 IP,说明已经正常接入网络。



## Step5:单机测试

(1)运行 HITLRun\_net.bat 文件, 输入仿真数量1, 这个数量应该和连接的飞控数量相同。 则可以通过 QGC 控制飞机起飞。

(2) 依次按照 Step4 对剩余飞控进行与 QGC 的连接,并按照 Step5-(1)进行 单机测试。

### Step6: 10 飞控集群仿真

运行 <u>HITLRun\_net.bat</u> 文件, 输入仿真数量 10, 这个数量应该和连接的飞控数量相同。等待所有飞机进入 定点模式 后, 使用 Matlab2017b 及以上版本运行\\RflyCloud\公共 空间\工程师\2022-杨凯\集群盒子仿真\仿真盒子\code <u>HITL\_NET10Swarm3D.slx</u>文件。 可以看到 10 个飞机进行"8"字编队飞行。

