Al

Development and Practice of Intelligent

Unmanned Cluster System Full Stack

Development Case Based on RflySim Toolchain

Lesson 8 Visual Perception and Obstacle Avoidance Decision

At

rﬁ
‘l']
=
i

!,7‘_‘ Outline

1. General introduction

The video address of this PPT public welfare course is:

The base interface uses Station B:
Visual control example

2
3
4. Visual Al is advanced
5

Distributed visual simulation

Mobile phone
scanning code
to watch

At

rﬁ
‘l']
=
i

https://www.bilibili.com/video/BV1t3411K7Nh

1. General Introduction

Al

1.1 Visual Routine Folder Note: It is recommended that you use the Python 38
« The current vision control routines for the €nvironment that comes with the platform to run the
platform are in the directory routines. If you use another Python environment, be

As sure to install the following components:

shown in the figure on the right, it contains pip3 install pymavlink pyserial opencv
four folders, namely:

» 0. Api Exps: Free Edition Routine
« 1. Basic Exps: Free Edition Routine

I 0.ApiExps 2024/1/29 9:06 it

MW 1BasicExps 2024/1/26 18:40 ol

« 2. AdvExps: Free Edition Routine M 2 AdvExps 2024/1/26 18:40 et

o 3. CustExps: Full Version Routine I 3.CustExps 2024/1/26 18:40 XfisE
e« APIl. PDF: Chapter 8 introduces various &= APlpdf 2023/12/29 14:40 Microsoft Edge PD... 3,649 KB
interfaces and some basic know|edge B Intro.pdf 2024/1/19 15:01 Microsoft Edge PD.. 659 KB

° Readme PDF |ntrOdUCtI0n tO EaCh ROUtIne B Readme.pdf 2024/1/22 18:33 Microsoft Edge PD... 751 KB
Table of Content

* Intro. PDF: Introduction to Chapter 8

At

rﬁ
‘l']
=
i

../8.RflySimVision

1. General Introduction

1.2 Python Program Running

In the "RflySimAPIs \ Python38 Scripts" folder,

create a new txt file and rename it to hello. Py.
Right click the file, open it with VS Code, and
type the following code in it

print(*'Hello, RflySim!"")

Run in VS Code, as shown in the figure on the
right.

= x=
P FTFAT(H) > | Visual Studio Code
e Q HEnEEmE [F] &= Microsoft Store
Q FFEERE b HEEEABAA(C)
hello.py @ untrakdit y log.ulg

Similarly, double-click the Python38Env
desktop shortcut or "RflySImAPIs \
Python38Env.bat" to view the running
results as shown below.

R g

C: \PX4PSPFull\Rf1lyS

hellp.py - Visual S...

) XD @WEO WES BERV EIG

hellp.py X

C: > Users > dream > Desktop > hellp.py
print|(|“He lysim! ")

(3] £ i Pyihon

Windows Powershell

RUBETHE (C) Microsoft Corporation. {REATEF -
A HEFS Powershell https://aka.ms/pscore6

PS C:\Users\dream> & c:/PX4PsPFull/Python38/python.exe c:/Users/dream/Des

Keopr el tpe Py

Hello, RflySim!

PS C:\Users\dream>

Python 3.8.164-bit @D O0A0 24bytes {71, FI25 =Z=t&4 UTF-8 CRIF Python & [

BN C: \WINDDWS\systemE‘rE\cmd exe

with openC

€ '—1| ymay __111'—111_1
1d to _11._=t_1'_'_ 5

rthon3

'SimAPIs\Python3d

4

Al

1.3 Python Syntax Learning

Visit: Learn the
basics and programming methods of Python :
(similar to MATLAB language) Easy to get
started.

Note: Python2 has stopped updating at
present. It is recommended that you learn
Python3 directly for development.

Python 3 uses UTF-8 encoding by default, so
Chinese characters are natively supported.

Python uses indentation to distinguish levels
of code, so write code with care about
indentation. (Guides, indent-rainbow and
other plug-ins can be installed in VS Code for
assistance)

1. General Introduction
RUNOOB

Python3 {&7T

Python3 HiEiEE
Python3 ERtiEE
Python3 EAEIE2SE
Python3 #&fEsE
Python3 i

Python3 iEE&F
Python3 £#{=F(Number)
Python3 =5
Python3 FlIz=

Python3 JT4H

Python3 =&

Python3 £&

Python3 $RfE2E—
Python3 £{4354]

Python3 BHiES

Python3 = EE S 4RkEE

Python 3 {8

ﬁ pgthOﬂ Python f9 3.0 kA, BS#FRJ9 Python 3000, &R Py3k, 1ERTF Python FUSE
pOWENKJ B, NI AENTBHEE, Python 3.0 IERHTRHESSEEEE NEEA.
Python S ME R 22353k EPython 2 X iR ARIHIERES A, XEFFFEA

{RIBATLLASTE Python2 x53 xiR AR SEEEREIE.
AFFETEERT Python 3.x ARAFIES], GNER(REAERYE Python 2.x FANEHELZE Python 2 X R RBEIEE,
BEAET, 202081 H1H, {Z1k Python 2 RS,

B8& Python [RF

HNELERS

orld!")

S&EO(Windows £ win+R B cmd iIZ{TEERLL F S EERA 1A Python ik
python -V

LA ESSHITERINT .

Python 3.3.2

BERA:

{REATLAH) PythonfZr E R 4RTEET,

7 esks

https://runoob.com/python3

1. General Introduction

Al
L 0 OpenCV

1 4 OpenCV Learn | ng o Open Source Computer Vision

Main Page | Related Pages | Modules | Namespaces ~ Classes ~ Files = Examples

« OpenCV is an open source, Java documentation & seacr
cross-platform computer vision gpencv modules

and machine learning software

library with a wide range of + Introduction
. - « OpenCV Tutorials
appl ICatlonS « OpenCV-Python Tutorials
« OpenCV.,js Tutorials
[OfflClaI tutorlal WebSIte « Tutorials for contrib modules

» Frequently Asked Questions
« Bibliography
« Main modules:

o core. Core functionality

. Recommended Chlnese o imgproc. Image Processing

- - o imgcodecs. Image file reading and writing
translation document website: « videolo, Video /0

o highgui. High-level GUI

) o video. Video Analysis
o calib3d. Camera Calibration and 3D Reconstruction
o features2d. 2D Features Framework
o objdetect. Object Detection
o dnn. Deep Neural Network module
« ml. Machine Learning

7 esks

https://docs.opencv.org/4.0.0/
https://github.com/makelove/OpenCV-Python-Tutorial
https://github.com/makelove/OpenCV-Python-Tutorial

Al

1. General Introduction

Using Pymavlink Libraries (mavgen)

1.5 MAVLink communication protocol

Pymavlink is the Python version of MAVLink Pymavlink is a low level and general purpose MAVLink message processing library, writte
communication protocol, which has been pre-installed many types of MAVLIink systems, including a GCS (MAVProxy), Developer APls (DroneKi
in the platform Python environment. Through it, Iitis The library can be used with Python 2.7+ (recommended) or Python 3.5+ and supports b
convenient to communicate with Pixhawk real machine
through serial port, UDP, TCP and other ways for top-
level control. C[: Pymavlink is developed in its own project, which includes the command line |

The official document URL is as follows: and other useful tools and utilities. MAVLink includes the Pymavlink repositor

documentation explains how to work with pymavlink using the MAVLink pro

This topic explains how to get and use the Pymaviink MAVLink Python libraries (generate

Learn how to use it on your own

Note: Pymavlink IS jUSt a convenient Iibrary function. lf] If you're writing a MAVLink application to communicate with an autopilot you
you have hlgher customization requirements you need DroneKit-Python. These implement a number of MAVLink microservices.
to learn how to use the MAVLink protocol.

The MAVLiInk message protocol can be read at the

following address Getting Libraries

If you need a standard dialect then you can install these (for both MAVLink 1 and 2) with |

7 esks 7

https://mavlink.io/en/mavgen_python
https://mavlink.io/en/messages/common.html

!,7‘_‘ Outline

A A A

. General introduction

The base interface uses
Visual control example
Visual Al is advanced

Distributed visual simulation

At

=
¥l
|-|:n

2. The base Interface uses

2.1 UAV Control Interface-PX4MavCtrlV4.py

Open the PX4MavCtriV4.py file in the *
"" directory, and you can see the
interface file shown in the right figure.

This interface defines a PX4MavCtrler class used
to implement interfaces such as MAVLink
message sending and receiving, RflySim3D scene
control, and Offboard control of Pixhawk/PX4.

This interface can send a message to
CopterSim/PX4 to control the aircraft, or send it
to RflySim3D to control the scene or request for
drawing.

This interface file communicates with RflySim3D
through UDP, controls the aircraft through UDP-
CopterSim-MAVLink-PX4, or controls the

aircraft directly through "'Serial-MAVLink-PX4".

avlink import mavutil

avlink.dialects.v2@ import common as

t struct
import math

ue = UEACtrlAPI.UEACtrlAPI()

PXAMavCtrler:

mavlink2

../RflySimSDK/ctrl

nl‘ ‘ 2. The base interface uses

2.1 UAV Control Interface-Internal Principle of PX4 MavCtrlV4
Class PX4 CUSTOM _ MAIN _ MODE: # PX4 Main Module Enumeration Variables to set the mode
Class PX4 CUSTOM _SUB _MODE _AUTO: # PX4 Submodule Enumeration Variables

Class PX4MavCtrler: # The main communication interface class of RflySim, which can be connected by
UDP or serial port.

Def InitMavLoop: # Enable the MAVLIink receiving thread to receive and update MAVLink messages at
any time

Def sat: # A saturation function that controls the clipping of a variable
Def SendMavCmdLong: # Send COMMAND _ LONG message for MAVLink message

Def sendMavOffboard Cmd: # Send the Offboard command to the flight control to make it enter the
Offboard mode

Def sendMavOffboard API: # Update the data of the offboard message (the data will be sent at a certain
frequency)

Def SendVelNED: # Send Earth coordinate system velocity commands

.uavAngkular = [0, 0, 0]
.uavAngRate = [0, 0, 0]

.uavPosNED = [0, 0, 0]
.uavwVelNED = [0, 0, 0]

2. The base Interface uses

7

2.1 UAV Control Interface-Internal Principle of PX4 MavCtrlV4

Def SendVelFRD: # Send body speed

Def SendPosNED: # Send the NED position to let the aircraft fly to the specified position (relative to the
unlocking point)

Def initOffboard: # Initialize Offboard mode

Def endOffboard: # End Offboard mode

Def sendMavSetParam: # Send a MAVLink message to change the Pixhawk parameter

Def SendHILCtrIMsg: # Send the rfly _ MSG message to the flight control (see Section 4.3 of Lesson 3)
Def SendMavArm: # Send unlock command

Def SendRcOverride: # Send and simulate remote control signals

Def sendMavManualCtrl: # Send and simulate the normalized remote control signal

Def SendSetMode: # Send and set Pixhawk mode

Def stopRun: # Stop running MAVL.ink data receiving thread
Def getMavMsg: # Update the data received by MAVLink

For the detailed definition of each
function, you can read the internal
source code implementation of
PX4MavCtrlV4.py.

AR GERE .

import math

impmrt-time
ni ‘ 2. The base interface uses e

import PX4MavCtrlv4 as PX4MavCtrl
import UEACtrlAPI

ue = UEACtrlAPI.UEACtrlAPI()

2.1 UAV Control Interface-Basic Use Example

{4
mav = PX4MavCtrl.PX4MavCtrler(1)

b

Is a Python example used by the interface. The specific code is parsed as follows:

Create a new MAVLiInk communication instance. The CopterSim interface is the 20100.
mav = PX4MavCtrl.PX4MavCtrler(1)

RflySim3D style adjustment API: sendUE4Cmd function belongs to UE4CtrlAPI interface
style ue.sendUE4Cmd (cmd, windowlD = -1), where cmd should enter a string

Send the window adjustment command to RflySim3D, cmd is the specific command string,
windowlID is the received window number (assuming that multiple RflySim3D windows are open at
the same time), -1 means send to all windows

The # RflyChangeMapbyName command switches the map, followed by the map name, which
switches all open windows to the Grasslands map

ue.sendUE4Cmd(b'RflyChangeMapbyName Grasslands ')

AR GERE .

../6.RflySimExtCtrl/0.ApiExps/e1_PX4MavCtrlAPITest/PX4MavCtrlAPITest.py
../6.RflySimExtCtrl/0.ApiExps/e1_PX4MavCtrlAPITest/PX4MavCtrlAPITest.py

nl‘ ‘ 2. The base interface uses

2.1 UAV Control Interface-Basic Use Example

RflySim3D generates 3D objects and controls the pose and attitude API: sendUE4Pos function, belonging
to UEACTtrIAPI interface

Style ue.sendUE4Pos (CopterID, VehicleType, RotorSpeed, PosM, AngEulerRad, windowsID)
ue.sendUE4Pos(100,30,0,[2.5,0,-8.086],[0,0,math.pi])

Send to RflySim3D and generate a 3D object, where: object ID is CopterID = 100;

Aircraft Type VehicleType = 30 (person); Rotor Speed RotorS peed = 0 RPM; Position Coordinates PosM
=[2.5,0, -8.086] m

Aircraft attitude angle AngEulerRad = [0, 0, math. Pi] rad (rotate 180 degrees to face the aircraft),
default receiving window ID = -1 (send to all opened RflySim3D programs)

VehicleType: 3 Quadrotor, 5/6 Hexacopter, 30 Figure, 40 Calibrated Checkerboard, 50/51 Vehicle, 60
Ball Light, 100 Flying Wing Fixed Wing, 150/152 Ring Square Target

RflyChange3D Model command followed by Airplane ID + Desired Style, where the style of Desired 12 is
a walking person

ue.sendUE4Cmd(b'RflyChange3DModel 100 12°)

Send a message to make CopterID = 100 (the character just created) in all scenes become the style of a

walking person.
) vasis :

ni ‘ 2. The base Interface uses

2.1 UAV Control Interface-Basic Use Example

The command RflyChangeViewKeyCmd means to simulate the shortcut key operation of
RflySim3D, and the B 1 shortcut key means to switch the focus to the object with CopterID =1
It is set here to send to window 0, and other windows do not send.
ue.sendUE4Cmd('RflyChangeViewKeyCmd B 1',0)

The # V 1 shortcut key switches the field of view to the first onboard field of view.
ue.sendUE4Cmd('RflyChangeViewKeyCmd V 1',0)

The RflyCameraPosAng X'y Z roll pith yaw sets the position and direction of the camera
relative to the center of the body. The default is 0.

Set the position of the front camera to [0.100] here.

ue.sendUE4Cmd('RflyCameraPosAng 0.1 0 0°,0)

R. Setres 720x405 w is the built-in command of UE4, which means to switch the resolution to
720x405

ue.sendUE4Cmd('r.setres 720x405w’,0)

7 esks

14

i ‘ 2. The base interface uses
2.1 UAV Control Interface-Basic Use Example

Send a shortcut command to window 1 to switch focus to aircraft 1
ue.sendUE4Cmd('RflyChangeViewKeyCmd B 1',1)

Send the shortcut key control command to window 1. The N 1 shortcut key means to switch the visual angle to the ground fixed visual
angle 1.
ue.sendUE4Cmd('RflyChangeViewKeyCmd N 1°,1)

Set the current camera field angle to 90 degrees (90 degrees by default in RflySim3D). The field angle range is 0 to 180 degrees.
ue.sendUE4Cmd('RflyCameraFovDegrees 90°,1)

Set the current camera position here to [-20 -9.7]
ue.sendUE4Cmd('RflyCameraPosAng -2 0-9.7',1)

Enable MAVLink to monitor CopterSim data and update it in real time. The data is shown in the lower right figure.

mav.InitMavLoop()
.uavAngtular = [0, 0, 0]

Display location information received from CopterSim .uavAngRate = [6, @, 0]
print(mav.uavPosNED) .uavPosNED = [0, @, 0]
.uavvelNED [6, @, O]

7 esks

15

ni ‘ 2. The base interface uses

2.1 UAV Control Interface-Basic Use Example
Turn on Offboard mode
mav.initOffboard()

Send the desired position signal, fly to the target point 0, 0, -1.7, and the yaw angle is
0

mav.SendPosNED(O, 0, -1.7, 0)
Send unlock command
mav.SendMavArm(True)

Send the expected speed signal, 0.2m/s downward descent, and the z-axis is positive.
mav.SendVeINED(O, 0, 0.2, 0)

Exit Offboard control mode
mav.endOffboard()

Exit MAVLInk data receiving mode
mav.stopRun()

7 esks

16

2. The base Interface uses

Al

2.1 UAV Control Interface-Lab 1: Interface Debugging Lak

* In Windows Explorer, navigate to
the*

10 mav = PXﬂMathr‘l.P)(dMathrled(l)

»folder.
* Double-click the ""PX4MavCtrlAPITest.bat" script to gp¢
SITL simulation system for an aircraft. ue. sendUEACnd (" Rf1yChangeMapbyName Grasslands')
« Use VS Code to open the "PX4MavCtrlAPITestpy" file. As shown i tine. sleep(2)
the right figure, click the breakpoint (red dot) in front of each key
statement. Press the following figure to start the debugging mode.
Click the arrow button in the lower right figure to execute the
statements in turn.

ue.sendUE4Pos(100,30,0,[2.5,0,-8.086],[0,0,math.pi

MNP S0 =S TRV £ ETR KRN BEH)

BT

p— Deblu Corfighrauch - - - n
= ython File 0 PX4MavCtriAPITest.py - Visual Studio Code
EEENE TR, & HEEE—ME Module T
Hfljson

e er ttac
RS, . rocess ID 13 ~ *i-‘ "I‘)]

../6.RflySimExtCtrl/0.ApiExps/e1_PX4MavCtrlAPITest
../6.RflySimExtCtrl/0.ApiExps/e1_PX4MavCtrlAPITest

4

Al

2. The base Interface uses

2.1 UAV Control Interface-Lab 1:
SITLRun Communication Framework

In the SITL software in-loop i

simulation process, the PX4 flight
control runs completelyinthe |
Winl10WSL virtual machine, and the | X |
px4 _sitl firmware is used. | .@m

PX4 communicates with CopterSim

RHUELZARES

H B RAEI TR
directly through the network
MAVLIink protocol, and then
CopterSim sends and receives external
Python messages through the
20100/20101 port.

The Python program communicates
directly with the RflySim3D program
through UDP, and obtains visual
images through shared memory/UDP

&3 5 CopterSimi@it
UDP/TCPE4%i#% CopterSim
1 [B s -
MAVLink 3
FEL L i Bt
TRERIRAS H >
MAVLinkrid UDPJE 4
SRR S i
MAVLink i A
UDPLP‘H%/
MAVLInkE &

UDP/4H 3%

QGround

P

MATLAB
Control IVision

Python/
Vision

DO

=45

RflySim3D RflySimUES

Yy gz
/UDP

LB BB K

30475 1l IR o A)

J FEHTU AL 52N 47/UDP K 3%

SITLRun Software-in-the-Loop Simulation Communication Architecture

sending, etc.

7 esks

18

2. The base Interface uses

Al

2.1 UAV Control
Interface — Experiment 1:

Experimental Results

« The phenomenon of this routine
is that the python program sends
a series of instructions, creates a
new target of a walking person in
the RflySim3D program, sets the
visual angle form, size and
position, and sends control
instructions to the simulated UAV
to make it take off and land.

« Asshown in the figure on the
right, this example will open two
RflySim3D windows, one for the
front-facing camera and the other
for God's perspective observation.

2. The base Interface uses

Al

2.1 UAV Control Interface-Lab 1: End of Simulation

* In the command prompt CMD window opened by the ""PX4MavCtrlAPITest.bat"
script shown in the figure below, press the Enter key ey) to quickly close all
programs such as CopterSim, QGC, and RflySi

* Asshown in the right figure below, In ode, click ""Terminate Terminal' to exit
the script completely. trler(20100)

CAWINDOWS\system32\cmd.exe

ing instances ingeMapbyName Grass]
ce 1 in /mnt/c/PX4PSPFull/Firmware/build/px4 sitl default/instance 1
tart finished
0 exit

1: Python

20

=i
il

2. The base Interface uses

Al

2.1 UAV Control Interface-Lab 2: Pixhawk Hardware-in-the-Loop Simulation with

Data Link

« Connect the computer and Pixhawk flight control with MicroUSB cable. Then double-click
"PX4ComAPITest.bat™ in " " and input
the flight control string number to start the hardware-in-the-loop simulation of an aircratft.

« Connect TELEM1 of Pixhawk to a computer with a digital or TTL serial port cable, and record the serial port
number at this time, such as COM14

 Open "PX4ComAPITest.py" with VS Code, and modify the COM14 of the following code to your own data string
slogan:

 mav = PX4MavCtrl.PX4MavCtrler(1,'127.0.0.1","COM9*,57600)

* Running the PX4ComAPITest.py program in VS Code, you can observe that the unlock message is received in
CopterSim, and Python can output the global positioning data of uavPosGPS.

* print(mav.uavPosGPS) Note: For Linux systems, the format of the
string number is/dev/ttyUSBO or/dev/ttyAMAO

The colon is the baud rate, and the default
baud rate of PX4's TELEML1 is the 57600.

7 esks

../6.RflySimExtCtrl/0.ApiExps/e2_PX4ComAPITest

Al

2.1 UAV Control Interface-Lab 2:

HITL + Data Communication

Framework

* Inthe HITL hardware-in-the-loop
simulation, the PX4 flight control

algorithm runs in Pixhawk hardware using

the px4 _ fmu-v5 firmware.
e PX4 communicates with CopterSim

directly through the MAVLink protocol of
USB serial port, and then CopterSim sends

and receives messages with external
Python programs through the data
transmission serial port.

« The Python program communicates

directly with the RflySim3D program
through UDP, and obtains visual images
through shared memory/UDP sending, etc.

2. The base Interface uses

9 EAEEHE A

B BRI R4

KPR
MAVLink X

MAVLink#i

& 5Pythoni@id
oA & O AR BE

=

H B3 A0 5]

¥ 5 CopterSimiiit
USBE CUHEMIER Contersi
opterSim o
: =494
RS .
MAVLink i3 KM R AS q
F L o B UDP/4H 4%
MAVLInkr BEEDLL RflySim3D RflySimUES
BBl
/UDP
/f S 2, Y
' v B Hdl
+H B S
Control IVision Vision

HITLRun hardware-in-the-loop simulation communication architecture

Al

2. The base Interface uses

2.1 UAV Control Interface-Lab 3: Multi-Machine SITL Control Lab

In the " "* folder, double-click the ""PX4
MultiUavTest. Bat™ "'to open the SITL simulation closed loop of the four aircraft.

Open ""PX4MultiUavTest.py"* with VS Code, and you can see that four new PX4MavCtrler instances are created
in the code, and the connection ports 20100/20102/20104/20106 correspond to aircraft 1 to 4 respectively.

Then, the key simulation command of UE4 is called to simulate the S key (display the aircraft label) and the T key
(display the aircraft trajectory).

Finally, control the aircraft to unlock, take off, fly forward, and then descend.

The experimental effect is shown in the right figure.

@ RflySim3D-0

../6.RflySimExtCtrl/0.ApiExps/e5_PX4MultiUavTest

Note: To make the generated object fit the ground, you can use the
UEMapServe class to calculate the terrain height, or use the

2_ The base inte rface uses sendUE4PosScale2Ground interface to create an object that

automatically fits the ground. See the source code of the routine for

AL

2.2 UE4 Scene Control Interface-Lab 1: Scene Configuration Interface (Importing

Obstacles, etc.)

- " folder,
Double-click UE4CtrlAPITest.bat to open two RflySim3D windows.

« The next step is to control the two windows through the Python interface, import obstacles (targets),
and configure the window display.

* Open "UEACtrlAPITest.py" with VS Code, set a breakpoint in the key statement, and then enter the
debugging operation mode to execute the statement sentence by sentence and check the execution
g

effect] X HEO EES BEEV HIOG BTR RiED #HWEIH) UEACtriAf

UE4CtrlAPITest.py X
v BT rive RflySimSource > RflySimAPIsAdv3 > RflySimAPIs > PythonVisi
E{THIEE
ERE X THIEE,

i FHelE—
NSafjson

IMavCtrler(20100)

mav.sendUE4Cmd (b 'RflyChangeMapbyName Gr 1
time.sleep(2)

mav.sendUE4Pos(1,3,0,[(0,0,-8.086],(0,0,0])

mav.sendUE4Pos(100,30,0,[2.5,0,-8.086],[0,0] | : ~ 24
i \

L Nl

../3.RflySim3DUE/0.ApiExps/e6_RflySim3DCtrlAPI/12.DamageModel

W 9 UDPMode1TestShootBall

il 10 UDPMode0Test

2. The base interface uses 11 UDPMoge st

W 12 UDPMode2DefaultTest

W 13 UDPMode3Test

2.3 Python/CopterSim Data Mode (UDP _ Mode) TR

In the "* folder, you can see six routine folders, which can be run by yourself to see the effect.
The main difference is the statement InitMavLoop

Mav. InitMavLoop (0) # corresponds to the UDP _ Full mode. Python transmits complete UDP data to CopterSim. The
amount of data transmitted is small. After receiving the data, CopterSim converts it into Mavlink and transmits it to PX4
flight control; It is suitable for the simulation of small and medium-sized clusters (the number is less than 10).

Mav. InitMavLoop (1) # corresponds to the UDP _ Simple mode, and the packet size and transmission frequency are smaller
than those of the UDP _ Full mode; it is suitable for large-scale cluster simulation, and the number of UAVs is less than 100.

Mav. InitMavLoop (2) # corresponds to Mavlink _ Full mode (default mode). Python directly sends MAVLink message to
CopterSim, and then forwards it to PX4. It has a large amount of data and is suitable for single machine control. It is suitable
for single machine or a small number of aircraft simulation. The number of UAVs is less than 4;

Mav. InitMavLoop (3) # corresponds to the Mavlink _ Simple mode. It will shield part of the MAVLink message packets and
reduce the data frequency. The amount of data sent is much smaller than the MAVLink _ Full. It is suitable for multi-aircraft
cluster control. It is suitable for small-scale cluster simulation. The number of UAVSs is less than 8.

Mav. InitMavLoop (4) # corresponds to the Mavlink _ NoSend mode. CopterSim will not send MAVLink data to the outside.
This mode needs to cooperate with hardware-in-the-loop simulation + data transmission serial communication. MAVLink is
transmitted through wired mode. The data volume in the LAN of this mode is the smallest. It is suitable for distributed vision

hardware-in-the-loop simulation, and the number of UAVSs is not limited. _—

|UDP_Full v| TR 1

" BT is ot
i ‘ IE*HEE Mavlink NoSend §0 25

../6.RflySimExtCtrl/0.ApiExps

Al

Note: The free version only

2. The base interface uses supports 2 RGB images and

receives images in shared memory

2.4 RfIyS|m3D Mapping Interface-Vision Sensor Profile Conflg JSON.

' can open the Config. JSON
file, which contains two visual sensor structures, defined as follows

SeqID; //Sensor serial number ID, starting from 0 (free version only supports 2 images)
TypelD; //Sensor type ID, 1: RGB map, 2: Depth map, 3: Grayscale map,

4. Segmentation map, 5: Ranging, 20-22: Lidar, 40: Infrared grayscale, 41: Thermal map
TargetCopter; //The ID of the target aircraft loaded by the camera//can be changed

TargetMountType; //Coordinate type, 0: on fixed aircraft (relative to geometric center), 1: on fixed aircraft
(relative to bottom center), 2: on fixed ground (monitoring), 3: on the fixed aircraft, but the camera attitude does
not change with the aircraft (ground coordinate system),

4. Attach a sensor to another sensor, when MountType = 4, TargetCopter = SeqlD in the Config. JSON (because
MountType =4 is to attach a sensor to a sensor, So TargetCopter is used to give the vehicle ID, but it's not used
at this time. It's used to set the ID of the sensor, that is, SeqlD)//variable |E

"VisionSensors":|

Note: TargetMountType determines whether the e
- - eq : k]

value of SensorPosXYZ is relative to the center of "TypeID":1,
the aircraft, the center of the bottom of the aircraft, e N
or the ground. In addition, in order to ensure that "Dataidth":64e,

g "DataHeight":480,
the object can be attached to the ground, the "DataCheckFreq" : 200,
coordinates sent by the sendUE4 * * command are e
the center coordinates of the bottom of the object, "SensorPosXyz":[e.3,0,0],

not the center coordinates, which are separated by r ‘
the height of the object (see XML definition).

"SensorAngEular":[0,0,0],
"otherParams":[0,0,0,0,0,0,0,0] 26

=
£6
¥l
=1
il

~ LL

0.ApiExps/1-UsageAPI/0.VisionSenorAPI/1.CameraImageGet

Al

Note: The free version only

2. The base interface uses supports 2 RGB images and

receives images in shared memory

2.4 RflySIm3D Mapping Interface-Vision Sensor Profile Config. JSON.

DataWidth://data or image width (not available for distance sensor)

DataHeight://data or image height (not available for distance sensor)

DataCheckFreq://Check the data update frequency (the ranging sensor does not have this parameter)
SendProtocol [8]://transmission mode and address, SendProtocol [0] value 0: shared memory (the

free version only supports shared memory), 1: UDP direct PNG compression, 2: UDP direct image
compression, 3: UDP JPG compression; SendProtocol [1-4]: IP address; SendProtocol [5] port

number

EulerOrOuat: 0 means using Euler angles, that is, SensorAngEular, and 1 means using quaternion
SensorAng Quat

CameraFQOV://camera field of view (vision sensors only) in degrees//changeable

SensorPosXYZ [3]://Sensor installation position in meters//changeable Note: TargetMountType determines whether the
SensorAngEular [3]:/sensor installation angle, unit ° ° /changeable value of SensorPosXYZ is relative to the center of ti

SensorAngQuat [4]://sensor mounting angle, expressed in quaternion, areraft, the center of the bottom of the aircraft, or
9Q [] gang P q the ground. In addition, in order to ensure that the

There are also the fOIIOWing parameters for the ranging Sensor: object can be attached to the ground, the coordinat

Distance: The maximum distance that can be detected sent by the sendUE4 * * command are the center

coordinates of the bottom of the object, not the cent

coordinates, which are separated by the height of tf

'4’ BT !E E object (see XML definition).
L‘ _h Cof

4

Al

2. The base Interface uses

2.4 RflySIm3D drawing interface — drawing and distribution principle

The RflySim platform must run on a Windows computer, but its image stream can be
transmitted to the local vision program, other computers (Windows or Linux), and other
embedded computers (Linux + ROS) through shared memory and network communication
for the development and simulation of vision algorithms.

Send the configuration information in the Config. JSON file to RflySim3D to request

T _a.

@ Rfly Sim{jj Bt H M 1/Windows & @E)y

— Y| % P 5L/ Linux+ROS — B e S Lt 5L inuxROS
| Python/CH1L b J8% %0 : | S
Ryl : - Python/CHIL 8% 401
A ST i UDP ™ PR
@ @ D | i
Rﬂys”“3D RflySimUES RflySim3D RflySimUE5 i
HXIEI AT ‘ - . L ;
R L‘i@ LR L2/ inx+ROS %T PN R b1 5L/ inuxrROS
Pythonti | Py thon/CH1L Hit /2 Python#J. E | N
‘ : i - Python/CHIL 38
A R A SR e lyelion | LI 'Lyt o
iic B2 T B AR i

(@) S NAFHUE], TR RIAREL GE R PR, FAESEIR)

(b) RflySim3D 1%57;2 O FH 52 %R,

PV E TSI (i)

7 esks

28

i ‘ 2. The base interface uses

2.4 RflySIm3D Image Acquisition Interface — VisionCaptureApi. Py of Image
Acquisition Interface

* VisionCaptureApi. Py is the interface file of the platform, including JSON loading, image request, image forwarding, etc.

Class VisionSensorReq: # data structure, sent to RflySim3D to fetch image data package

Class imuDataCopter: # data structure, IMU data packet returned by CopterSim

Class SensorReqCopterSim: # data structure packet, send to CopterSim request sensor packet

Class VisionCaptureApi: # The main interface class, which implements the drawing request and receiving

=
£6
[] “].
=i
il

ni ‘ 2. The base interface uses

2.4 RflySim3D Mapping Interface-Mapping Interface Routine File

Open the "VisionCapAPIDemo. Py" "file with VS Code, and you can see the implementation principle of the
routine

e # Image processing algorithms can be added here

7 esks

30

ni ‘ 2. The base interface uses

2.4 RflySim3D Image Acquisition Interface-Experimental Verification
« Open™
" runs
as an administrator and opens. "'.

* In this experiment, Json defines two left and right front RGB cameras and displays
them iIn real time.

31

0.ApiExps/1-UsageAPI/0.VisionSenorAPI/1.CameraImageGet/VisionCapAPIDemo.bat
0.ApiExps/1-UsageAPI/0.VisionSenorAPI/1.CameraImageGet/VisionCapAPIDemo.bat

nl‘ ‘ 2. The base interface uses

2.4 RflySIim3D Image Acquisition Interface-UE5 Multi-camera Experimental
Verification
« Edit"

", You can

see that "% PSP _ PATH% \ RflySImUES" indicates the use of UE5 engine; open the
""Config. JSON" "'to see three cameras including RGB, grayscale and depth;

« Double-click the "VisionCapAPIDemo. Bat" and Run with VS Code ""VisionCapAPIDemo.

Py" to see the following effect [N DS

32

0.ApiExps/1-UsageAPI/0.VisionSenorAPI/2.MutCameraImageGet/VisionCapAPIDemo.bat
0.ApiExps/1-UsageAPI/0.VisionSenorAPI/2.MutCameraImageGet/VisionCapAPIDemo.bat

nl‘ ‘ 2. The base interface uses

2.5 Three modes of PX4 UAYV position + speed control-principle explanation

In visual control, we often need to control the forward speed of the aircraft while controlling the
aircraft to fly to the designated target position, so as to achieve good tracking effect.

Enter the ™ "" directory to see the control
examples of the three methods.

Method 1, see ""ThreeCtrIModes _ PosCtrl. Py" ""for the routine, and use the Offboard location
interface

The second method is to use SendVelNED speed control interface to realize position control on the
basis of SendVelNED speed control interface. See ""ThreeCtrIModes _ VelCtrlEarth. Py' "'for the
routine.

Method 3, see ""ThreeCtriIModes _ VelCtrIBody. Py" "for routine, use SendVelFRD speed control

interface to realize position control on this basis, and the nose of this mode always faces to the target
direction.

AR GERE .

0.ApiExps/1-UsageAPI/2.ThreeCtrlModes

Al

2. The base Interface uses

2.5 PX4 UAV Position + Speed Control Three Modes-Experimental Results

Run the "ThreeCtriIModesSITL. Bat™ or ""ThreeCtrIModesHITL. Bat™" to start a software-in-the-loop
or hardware-in-the-loop simulation of the aircraft.

Run the "ThreeCtriIModes _ PosCtrl. Py" ". It can be seen that the aircraft flies to the specified
position [120, 130, -10]. On the QGC, it can be seen that the speed is the set value of 3m/s. At the same
time, the nose always faces north and the speed direction is inconsistent.

Run "* _PosCtrIFRD. Py" """ * _VelCtriBody. Py """ and "* _ VelCtrlEarth. Py" in turn. Please
read the code by yourself and confirm the experimental effect. Note: All three modes can control the

speed of the aircraft and always point to the target.
@ RflySim3D-0 = 0

© % ‘oRalR | 4 % =

= \ \ N =)
. -
[R\ u-\? &% ,‘ . -
g R Rt A - s e
A Ches I
N o oA = R
| “

.

%

B N5 "_;* : -
oy

34

contents in the next chapter.

Note: For the method of obtaining the initial height of
r _ the essential point model and the detailed method of
l 2 The base Inte rface uses multi-machine simulation, please refer to the relevant

2.6 Control Interface in Lightweight UAV Model-Experimental Principles

« In the above example, running the bat script will start the software-in-the-loop or hardware-in-the-loop simulation of
the aircraft, requiring the participation of CopterSim + flight control + QGC, which occupies more resources and may
be limited by performance in multi-aircraft visual simulation.

* Inthe directory " " we
developed a particle based UAV control model in Python.

It can provide UAV dynamic effects similar to hardware and software in-loop simulation, but greatly reduce the

occupancy of computer performance and enhance flight.

Machine stability.

 Open "UAVCtrINoPX4Demo.py" with VS Code. It can be seen that this mode is exactly the same as the MAVLink-
based control interface of SITL or HITL. The difference lies in the following statement.

« After the above statement is executed, a new particle UAV model will be automatically created (set the initial ground
height, XY position and yaw angle), and the position and speed commands will be monitored. (Exactly the same as the
original control method)

« Note: By opening "UAVCtrINoPX4Demo.bat" with VS Code, we can see that only one RflySim3D program is opened,
and there is no need to open other programs such as CopterSim.

7 esks :

0.ApiExps/1-UsageAPI/1.UAVCtrlNoPX4Demo/1.UAVCtrlNoPX4Demo

ni ‘ 2. The base interface uses
2.6 Control interface in a lightweight UAV model — experimental results
« Double-click to run "UAVCtrINoPX4Demo.bat", and you can see that an RflySim3D

window is opened, and no other program is opened.

« Open "UAVCtrINoPX4Demo.py" with VS Code and run it. You can see that the aircraft
takes off and flies according to the position or speed command sent. The flight control effect

Is similar to that of the software/hardware in-loop, but it is smoother.

O nysrap R0 el o _ _ C: > PX4PSP > s > 8.RflySimVision > 0.ApiExps > 1-UsageAPl > 1.UAVCtr

v2
EACtrl1APT
CtrlAPI.UEACtr1API()

import PX4MavCtrlv4a as PX4MavCtrl

mav = PX4MavCtrl.PXaMmavCtrler(1)

ue.sendUEACmd (' Rf1yChangeMapbyName Grasslands'
time.sleep(2)

mav.initPointMassModel(—8.@86,[@,G,O]ﬂ

time.sleep(2)
mav.SendvelNED(@,0,-2,0)

Al

2. The base interface uses

2.6 Control Interface under Lightweight UAV Model-Visual Loop Penetration
Experiment

Open the ™ "" directory, and
you can see the loop threading experiment routine based on the particle model. (For the specific visual
control principle, please refer to the ring-threading experiment in the next section)

Double-click CrossRingNoPX4.bat to open a RflySim3D window

Open ""CrossRingNoPX4.py"* with VS Code and run it, you can see that the scene switches to the

grass ring scene, generatlng a multi-rotor alrcraft whlch passes through three rings in turn after
taking off. 2 < | Wi)

1.BasicExps/1-VisionCtrlDemos/e1_CrossRingNoPX4

Note: The LIDAR sensor is
2. The base interface USes currently limited to the premium

full version, and the free

experience version does not have

2.7 Lidar-Source Code Description this feature.

At present, there are two ways for data interaction: UDP direct transmission and memory sharing. The
following is a description of the source code directory

1. SharedMemory 10Hz: shared memory mode, data transmission frequency 10hz;

2. SharedMemory ClientServer: In the shared memory mode, after the Client receives the shared
memory, UDP is sent and the Server receives the point cloud.

« 3. UDPDirect30Hz: UDP directly transmits 30hz frequency, Python sends the drawing request to
RflySim3D, and the latter directly transmits the point cloud through UDP;

« 4. UDPDirect ClientServer: UDP direct transmission between the client and the server. The Client
sends the request, and the Server receives the point cloud. Note: The Server supports virtual
machines or other computers.

« 5. UDPDirect ClientServerType5: UDP direct client and server transmission mode, using the map
coordinate system (default to use the laser radar coordinate system); 1.SharedMemory10Hz

2.SharedMemoryClientServer

3.UDPDirect30Hz

'1’ BT i8
l ‘ IIEI*HEE 4 UDPDirectClientServer

38

0.ApiExps/4-AdvApiExps/7.LidarAPIDemo

2. The base Interface uses

Note: The value of SendProtqcol [0] —_—
determines whether the shared™gmory
Is used for UDP direct transmission:

Al

2.7 Lidar-Source Code Description 2

i LA TR . iy

"DataCheckFreq":10,

T] When the jsonLoad function is called in rscigprotocor | 1]127,0,0
T T ——— ’%%‘}5 Python, the attached parameter can be “r~m~n- VERY
: o used to forcibly set the value of
SendPr_otgcoI [0] and chang # VisionCaptureApi
transmission mode.

O vis.jsonkoad 1) #
« Although there are five projects in the project directory, there are only two transmission modes. Now,

the code operation of these two modes is described as follows. Take 1.SharedMemory10Hz and

4.UDPDirect ClientServer as examples:

« 1. SharedMemory 10Hz: After running the LidarAPIDemo. Bat script, run the LidarAPIDemo. Py
script directly to see the visual point cloud.

« 4. UDP direct client serv: IP configuration is required for remote communication,
First check the IP of your virtual machine Ubuntu:

Press Ctrl + Alt + T to open the terminal and enter the command "'ifconfig" (without quotation marks) as
shown in the figure:

AR GERE .

2. The base Interface uses

2.7 Lidar-Source Code Description 3

If you want to transmit the point cloud to the remote Linux \
ROS system, you need to modify the JSON configuration file
or client _ued.py to set the IP address.

If the IP of my virtual machine or Linux computer is
192.168.31.88, the JSON configuration file is
Following figure: SRR

I
L
oyt s o u
VisionSensors™:|[

"SeqID":0,

"TypeID":20,

"TargetCopter”:1,

"TargetMountType":0,

"DataWidth™:900,

"DataHeight™”:32,

"DataCheckFreq”:10,
"sendProtocol”:[[[1,192,168,31,88,9999,0,d],
"CameraFov":90,

"SensorPosxXyZ":[0,0,-0.3],
"SensorAngkular":[e,e,0],
"otherParams”:[200,0.05,-45,45,-20,20,0,0]

shown in the

MH(F) REE) EB(V) BER(ES) £in() FEH)

~ ifconfig

ens33: flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 1500

inet 192.168.31.88 netmask 255.255.255.0 broadcast 192.168.31.255
inet6 feB8B::1179:12.0:1a5a:f74f prefixlen 64 scopeid 8x28<link=>

inet6 2001:250:4400:400"c4b2:eaed:5b66:696F prefixlen 64 scopeid 0x0<
inet6 2001:250:4400:400f:5fae:694c:c36c:362a prefixlen 64 scopeid Ox0<

inet6 2001:250:4400:400f:b09%e:76c1:93e2:587e prefixlen 64 scopeild 0x0<

ether 98:0c:29:b6:51:a7 txqueuelen 1000 (Eii(ﬁﬂ)
RX packets 174312209 bytes 135409277765 (135.4 GB)

RX errors © dropped @ overruns @ frame ©
TX packets 7482414 bytes 813732686 (813.7 MB)
TX errors @ dropped ® overruns ® carrier ® collisions 0

o: flags=73<UP,LOOPBACK,RUNNING= mtu 65536
inet 127.0.8.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Z=HIIF[E])
RX packets 39934080 bytes 142917850805 (142.9 GB)
RX errors © dropped @ overruns @ frame 0
TX packets 3993480 bytes 142917850805 (142.9 GB)
TX errors @ dropped © overruns @ carrier @ collisions @

Note: It is also possible to leave the IP
address in SendProtocol in JSON
unchanged and use 127.0.0.1, but
uncomment the vis. RemotSendIP in
client _ue4d.py and set it to the IP
address

19 vis.RemotSendIP = '192.168.31.88"
20 # 7EE, FaifEchRemotSendIPf{E, LU

Note: This method does not modify
the destination IP addresses of all
sensors defined in JSON.

40

i ‘ 2. The base interface uses
2.7 Lidar-Source Code Description 3

« Inaddition, the parameters in the _ SITL. Bat of the script client _ ue4 need to be modified so that
other computers can receive the aircraft data from CopterSim and control the aircraft in real time.

« IS _BROADCAST =1 corresponds to broadcast mode, all computers can receive data, low efficiency,
but convenient

« |IS_BROADCAST =192.168.31.88 (configure according to your own virtual machine), high
efficiency. i -

REM Set broadcast to other computer; @: only this computer, 1

REM e.g., INENONNCAST=0 equals to ISEENOANCAST=127.0.0.1, IS
‘ ISR CAST=192.168.31.88

REM Set UDP data mode; ©: UDP_FULL, 1:UDP Simple, 2: Mavlink_

REM e.g., UDPSIMMODE=1 equals to UDPSIMMODE=UDP_Simple
UDPSIMMODE=2

Set the path of the RflySim tools
PSP_PATH=C: \PX4PSP
PSP_PATH_LINUX=/mnt/c/PX4PSP

7 esks

41

2. The base Interface uses

Al

2.7 Lidar-Source Code Test Summary

« 1. SharedMemoryl0Hz: Run the LidarAPIDemo. Bat script. After RflySim3D prompts Fixed, open
and run the LidarAPIDemo. Py script with VS Code to view the point cloud. Control the aircraft
movement through QGC and observe the change of the point cloud.

« 2. SharedMemory ClientServer: Run the client _ue4 _SITL. Bat script, double click Python
38Run.bat after it is Fixed, enter the python client _ ue4.py, read the point cloud from the shared
memory and send it out with UDP. Open server _ ue4.py with VS Code and run it.

« Note 1: The reason why the client transmits the point cloud through UDP is that the function of the
""vis. StartimgCap (True)" statement (True parameter data is added compared with Routine 1) will
trigger the point cloud forwarding function.

* Note 2: Change the IP address of SendProtocol in the JSON file to the remote address to transmit the
point cloud to the Linux computer. A simpler way is to directly uncomment the following statements
in the client without changing SendProtocol and fill in the target IP address to automatically forward

the point cloud to this IP address. 18 [#]vis.RemotSendIP =|'192.168.3.80'
19 # FE, FahfEtiRemotSendIPHIME, wJ LUK E
20 # WERAMZEOXME, A KIERIIPHAL AT so

AR GERE “

nl‘ ‘ 2. The base interface uses

2.7 Lidar-Source Code Test Summary

3. UDPDirect30Hz: The test method is the same as that of 1. SharedMemory10Hz, run bat first
(administrator mode can be used), then run python script with VS Code, control the aircraft through QGC,
and observe the change of point cloud. Features of this routine: RflySim3D runs at 90 frames, the point
cloud acquisition speed is 30 frames, and UDP is directly transmitted to the local IP.

4. UDPDirect ClientServer: Run the client _ue4 _SITL. Bat (administrator), then run Python 38Run.bat,
and run the Python client _ ue4.py from the command line. VS Code runs server _ ue4.py.

Note: If you want to upload the point cloud to other computers, you need to modify the IS BROADCAST
value of.bat and the IP address corresponding to the vis. RemotSendIP of client _ued.py. Ifitisa ROS
system, you can run server _ ue4ROS.py to publish the point cloud ROS package and preview it.

5. UDPDirect ClientServerType5: The test method is the same as that of the previous routine, except that
the axis of the coordinate system corresponding to Type5 is relative to the earth, and the map point cloud
can be obtained by superimposing the radar position in ImgData. In Type 4 mode, the point cloud is
relative to the radar attitude and needs to be mapped to the ground coordinate system to obtain the map
point cloud.

AR GERE “

nl‘ ‘ 2. The base interface uses

2.7 Lidar-Data Interface:

Vis. VisSensor [I]: The JSON data structure of the ith sensor (corresponding to the SeqlD of the
JSON file and the serial number of the sensor), which can be used to obtain the parameter
configuration information of the current sensor.

Vis. HasData [I]: Whether the ith sensor has updated data. If yes, it will become True.

Vis. Img [I]: Image/point cloud data of the ith sensor, N * 3 dimensional vector array (the value of N
is equal to the vis. ImgData [I] [6]). Refer to the routine for the specific data acquisition method. Point
cloud data in meters (front-left-top coordinate system).

Vis. TimeStmp [1]: timestamp of the ith sensor, in millisecond

Vis. ImgData [I]: 7-dimensional vector, vis. ImgData [I] [0 ~ 2] position XY Z of the i-th sensor (unit:
m, Front-left-top coordinate system), vis. ImgData [I] [3 ~ 5] pose Euler angle roll, pitch, yaw (unit
radian), vis. ImgData [I] [6] total number of point clouds.

Note: In this example, there is only one sensor, so the value of 1 is 0.

Note: The interface for controlling the aircraft and obtaining flight control data is Mav. See Interface
Routine for Aircraft Control.

44

ARt

‘l']
|-|:n

4

Al

2. The base Interface uses

2.7 Laser radar-parameter configuration description

The configuration parameters are in the Config. JSON file in the 8-Lidar APIDemo
directory

The parameters specific to the LIDAR configuration are described here, and other
parameters are described in 2.6 Config. JSON configuration file description:

« TypelD: value 20-22; 20: the output point cloud is the laser radar coordinate system; 21.:
the output point cloud is the world coordinate system; 22: stands for livox lidar;

« DataWidth: the number of point clouds within a ring of the laser radar;

« DataHeight: is the number of laser radar harnesses. Data CheckFreq: Point cloud
publishing frequency (Hz)

« DataHeight: number of laser radar harnesses;

» SendProtocol: transmission mode and IP, where SendProtocol [0] represents the shared
memory output mode, and SendProtocol [1] represents the UDP direct sending mode.

« OtherParams: [maximum laser distance (m), precision (m), lower limit of horizontal
scanning angle (degree), upper limit of horizontal scanning angle (degree), lower limit of
vertical scanning angle (degrees), upper limit of vertical scanning angle [degrees],
reservation, reservation];

Note: The horizontal resolution of the laser radar is represented by DataWidth and the
horizontal scanning angle range, and the vertical resolution is represented by the processing
scannlng angle (as shown in the figure, horizontal resolution = 90/900, vertical resolution =

Note: There is a delay of UE frame rate in
the interface of this point cloud, so
"vis.sendUE4Cmd (B't. Max FPS 30 ', 0)*" in
Python

Statement can speed up the sending
frequency of UE4 and reduce the data
sending delay. For example, if the UE frame
rate is set to 100 frames, the output delay is
only 0.01s.

"VisionSensors™:[

"SeqID":0,

"TypeID":20,

"TargetCopter”:1,

"TargetMountType™:@,

"DataWidth":900,

"DataHeight":32,

"DataCheckFreq":10,
"SendProtocol”:[e,127,0,0,1,9999,0,0],
"CameraFov":90,
"SensorPosXyz":[e,0,-0.3],
"SensorAngEular”:[e,0,0],
"otherParams":[200,0.05,-45,45,-20,20,0,0]

4 : See the routine of 1.
nl ‘ 2. The base interface uses B M s
SendProtocol [0] in the key point -
« 2.7 Lidar-shared memory operation JSON is set to 0.

« Start RFIlySIm3D first, that is, run the LdiarAPIDemo. Bat file, and then run the
LidarAPIDemo. Py script, you can see the following operation

« Note that the current point cloud output is the North-East coordinate system, that is, the Z
axis is downward, so the point cloud is inverted.

RS

RS e
Ry 2L
S lidar ¥

p 1.0 ——— —

0.8 4 o 50 100 150 200 —1ggy
858 o
0.6 1 I —5

0.4 1

(3%

0.2 1

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

46

=
£6
[] “].
=i
il

S€e 4. kRoutine or UDF
DirectClientServer. Set SendProtocol [0]

2 The base interface uses in the key point JSON to 1, and fill in the

IP address of the remote Linux computer.

Al

2.7 Laser radar-UDP direct transmission to remote computer mode

« Configure the parameters of remote communication before operation. See 2.6 Parameter Configuration
Description for details.

* Run RflySim3D, which is the client _ued4 SITL. Bat script (administrator mode), and then run the
data conversion script client _ ue4.py locally with VS Code or Python 38Run.bat command box. Run
server _ ue4.py on the remote side (virtual machine or Linux computer) to see the same running results
as the shared memory mode, but it is recommended to use ROS to display the point cloud, so do not run
server _ ued.py on the remote side, run roscore first, and then use

Run the program python server _ ueROS. Py and open rviz to see the results below.

47

4

o

2. The base Interface uses

~ rostopic list

- - - - Jrflysim/vehicle® pose
2.7 Lidar-UDP direct transmission mode /rflysinfvehicle_8/1idar
- - . . . Jrosout
operation (ROS communication description) Irosout_asg
-3 o~
« After running server _ue4ROS.py, two topics will be
published.
> [rflysim/vehicle 0 _ pose: The number 0 inside is the vehicle S
. ecs: 1655367176
number! Eszzs: 033080102
. T e_id: "rflysi ehicle®”
> [rflysim/vhicle _0/lidar _ 0: The following 0 is the lidar height: 1 o T
- idth: g
number. Note this radar. fretds: o
The number is the unified radar number in the whole RFlySim, "Se;] :63 ' name: "
. . . =g - offset: 0
not the radar number relative to a certain carrier; stamp: datatype: 7
_ . count: 1
View data through rostopic echo topic _ name, such as: secs: © -
— nsecs: 5] name: "y
You can see the pose and point cloud data, and the other data. frame_id: "vehicle@_pose” e -
. g . pose: . i
The value of frame _ ID can be modified according to the needs |FSPSEEpa oot
of your TF tree. X: 52.8860588074 nne e
. . . y: -1.28458702564 datatype: 7
Modify the code yourself. The point cloud coordinates may be z: ©.0112491119653 _ count: 1 _
relative to the lidar. orientation: point stepe 12
] . . ¥: -0.00331560415185 row_step: 273816
Coordinate system can also be relative to the ground, depending : -0.00428877121906 D [l aws 920 Gn 025, 52, A, OF
- - - 4 » » 0 E] y OJ E] . y » 0 »] OJ »] . E) .
on your own configuration. R , 64, 127, 185, 191, 64, 126, 55, 191, 192,

: 0.855524967872 253, 63, 127, 155, 191, 64, 127, 185, 191,

lm',*'aﬁ"'" 48
JioF Fk -

i ‘ 2. The base interface uses
2.7 Lidar-UDP transmission mode operation (RQOS, rviz visualization)
The Rviz tool can easily view the environment point cloud data, which needs to be configured.

If it is the default code, you can directly load the configured files under the source file directory.
Okay, lidar. Rviz the files. File pancls tel

[ﬂ_‘““[Interact | " Move Camera | Select 4539> Focus Camii] iﬁi'i i ii iii iiliii E ii ii i'll i i'li i'ii ﬁ
T Displays | |

Panels Help ~ % Global Options Create visualization
Fixed Frame map
Dpen Confi Ctri+0O <= Focus Camera Background Color [l ;48 Bydisplaytype | By topic
- Frame Rate 30 ¥ Jelicked_point
Sawve Config Ctri+5S Defammght 7 @ Fointstamped
save Config As Ctri+Shift+s T @ ClobatSatus e v Jinitialpose
- ,ﬁ_’ﬁ‘} %ﬁ %‘éﬁ%ﬁ?#gﬁ;‘g Fr(¥ PoseWithCovariance
Recent Conﬁgs [L :‘:ﬁ'ﬁ IVl - _.fmollrve_tl:ase_simple
v Jgoa
Save Image # Pose
¥ [rflysim
Preferences Ctri+pP v .fvem/clen_pose
Pose
Quit Ctrl+Q ¥ [vehicle_0
» Jlid
) Fixed Frame Mo tf data. Actual error: Fix--
b <& Grid v 4
Show unvisualizable topics
Description:
BINREERINER, AaSSEHaIE
Display Name
i _l= AT !ﬂ i
o oJill «
L I‘I » Fem wu Xgancel &
Add 1

ni . 2. The base interface uses

2.8 Depth Camera-Json Profile

The JSON file configuration method for depth
cameras is basically the same as that for RGB and
grayscale cameras.

The TypelD of the depth camera needs to be set to
2. See Section 2.3 for other parameters. Includes
resolution DataWidth and DataHeight, binding
aircraft TargetCopter, binding type
TargetMountType, refresh rate
DataCheckFrequently, angle of view CameraFOV,
Mounting position SensorPosXYZ in meters and
mounting attitude SensorPosEular. (Unit degree)

Other parameters are stored in the OtherParams
vector, including minimum range, maximum
range, and pixel precision.

7 esks

{

}

"SeqID":1, . .

"TypelID":2, ;kczﬁtngjgz
"TargetCopter":1,

"TargetMountType":0,

"DataWidth" :640, s -
"DataHeight":480, ﬁﬂ:ﬁ}ﬁi%ﬂﬁ]u;ﬁg
"DataCheckFreq":30,
"SendProtocol":[0,127,0,0,1,10000,0,0],
"CameraFOV":90, .
"SensorPosXYz":[0.3,0,0], {1/ By
"SensorAngEular":[0,0,0],
"otherParams":[0.3,12,0.001,0,0,0,0,0]

Hib22 (N eEHE)

nl‘ ' 2. The base interface uses

2.8 Depth Camera-Unique Parameters

Note: The output data of depth camera is stored and transmitted in uinitl6, and its data
range is 0 ~ 65535. By default, one unit represents 1mm (controlled by otherParams [2]),
which means that the maximum range is 0 to 65.535 meters. However, the data range does
not represent the actual detection distance of the camera, and otherParams [0] is required
to set the minimum detection distance and otherParams [1] is required to set the maximum
detection distance.

OtherParams [0]: The minimum recognition distance of the depth camera (unit: m). If the
depth distance is less than this value, the 65535 corresponding to NaN will be output.

OtherParams [1]: The maximum recognition distance of the depth camera (unit: m). If the
depth distance is greater than this value, the 65535 corresponding to NaN will be output.

OtherParams [2]: The scale unit (in meters) of the output value of the depth camera uint16.
By default, the depth value is in milliseconds, so 0.001 is required. Note: If the default value
1s O, it will be replaced by otherParams [2] = 0.001.

Actual depth value (in meters) = depth picture value (uintl6 range) * otherParams [2]

n‘ _lILIJ- E

51

nl‘ ‘ 2. The base interface uses

2.8 Depth Camera-Experimental Procedure

For the routine of the depth camera, see '

", First run the DepthCameraDemo. Bat script to
start the simulation. After CopterSim displays 3DFixed, turn on control and visual recognition in the
run DepthCameraDemo. Py.

This example contains two depth cameras, both of which are included in the Config. JSON.

In the first visual structure of the Config. JSON, otherParams is all 0, indicating that the default
configuration is used. The unit is mm, the minimum distance is 0 m, and the maximum distance is
65.535 m.

In the second visual structure of the Config. JSON, otherParams [0] = 0.3, otherParams [1] = 12, and
otherParam [0] = 0.001. Indicates that the nearest recognition distance is 0.3 meters, the farthest
distance is 12 meters, and the scale unit is millimeter.

In the Python routine, the depth image matrix can be read directly from the vis. Img [I]. The vis.
HasData [I] is used to judge whether the data is updated.

During the movement, the camera parameters can be dynamically adjusted by the vis.
SendUpdateUEImage (vs).

AR GERE :

0.ApiExps/1-UsageAPI/0.VisionSenorAPI/5.DepthCameraDemo
0.ApiExps/1-UsageAPI/0.VisionSenorAPI/5.DepthCameraDemo

nl‘ ' 2. The base interface uses

2.8 Depth Camera-Test Results

» The test result is shown in the figure below. The aircraft takes off from the ground,
and then opens the visual detection window, which can output two depth pictures.
The image on the left uses the default configuration, and remote buildings can be
seen without range constraints; the depth image on the right has a maximum
detection distance of 12 meters, so distant buildings cannot be seen.

- 4 3 *%
o 2 ' G-y
K.

No
v

4

o

2.9 Timestamp-Structure

Definition
The structure definition codm/

timestamp is shown in the right figure.

When receiving, you need to receive data
from the UDP port of the 20005, check
whether the packet length is equal to 32
bytes, check whether checksum is the prese
123456789, and judge whether copte '
the ID of your aircraft. The Python routine
code is shown in the right figure.

The specific code can be seen in the
ReadTimeS TMP. Py of "

~ LL

t

2. The base Interface uses

=
EE

struct RflyTimeStmp{
int checksum: //&:3&46r, EN123456789
int copterID; /281 CHHNIDE
long long SysStartTime; //Windows FEIFAHEMBIMIERE (B, IEMEatEER)
long long SysCurrentTime;//Windows FEIZSBTETERE (U=, IEMEEERER)
long long HeartCount; //pkEATHERS
RflyTimeStmp(){
reset();

}

void reset(){
checksum=123456789;
copterlD=-1;
SysStartTime=-1;
SysCurrentTime=-1;
HeartCount=0;

}

def StartTimeStmplisten(self,cplD=0):
"""Start to listen to 20005 port to get RflyTimeStmp of CopteriD
if cplD == 0 then only current CopterlD will be listened.
if cplD >0 then timestmp of desired CopterlD will be listened.

self.udp_time = socket.socket(socket. AF_INET, socket.SOCK_DGRAM) # gliEEi==
self.udp_time.bind((*0.0.0.0°,20005)) # #ExE20005%x[]
self.tTimeStmp = threading.Thread(target=self.TimeStmploop, args=() //[Ea31— N EIFLERE
self.cplD=cpID
if cpID==0:

self.cplD=self.CopteriD
self tTimeStmp.start() # FFSLEE

def TimeStmploop(self):
print("Start lisening to timeStmp Msg™)|
while True: # JE/EFR
try:
buf,addr = self.udp_time.recvfrom(65500) # M 20005[1i=—1
if len(buf)==32: # FIHTERSETI2KE
#print(len(buf[0:12]))
TimeData=struct.unpack('2i3q’,buf) # BRRS AESTA{K
if TimeData[0]==123456789: # &0{izchecksumE7&123456789

cpIDTmp = TimeData[1]

if cpIDTmp == self.cpID: # &5 1{zcopter DEFEHEZE CHLAY
self.RflyTime.checksum=TimeData[0] #£5551a{ARE{E
self.RflyTime.copterID=TimeData[1]
self.RflyTime.SysStartTime=TimeData[2]
self.RflyTime.SysCurrentTime=TimeData[3]
self.RflyTime.HeartCount=TimeData[4]

except:

print("Error to listen to Time Msg!”)
sys.exit(0)

54

0.ApiExps/1-UsageAPI/6.ReadTimeStmp
0.ApiExps/1-UsageAPI/6.ReadTimeStmp

nl‘ ‘ 2. The base interface uses

2.9 Timestamp-Lab Flow

See

ReadTimeStmp. Py for the timestamp routine. Run the
ReadTimeS TMP. Ba t the simulation. After
CopterSim shows 3DFixed, the running Read T
subscribe to get the timestamp.

Key code: The PX4MavCtrlVV4 and VisionCaptureApi interfaces
both implement the timestamp listener function. First, call
StartTimeStmplisten () in jsonLoad to enable the timestamp
listener. The vis. RflyStartStmp is the time (system time or ROS
time) of the computer where py is located when CopterSim is
started (the aircraft corresponding to TargetCopter), and the vis.
TimeStmp is the time from the start of CopterSim to the current
data generation. The vis. IMG Stmp is that true timestamp of the
image

7 esks

K

f s

Config.json

* Readme.pdf
| ReadTimeStmp.bat

#+ ReadTimeStmp.py

55

0.ApiExps/1-UsageAPI/6.ReadTimeStmp

nl‘ ‘ 2. The base interface uses
2.9 Timestamp — Experimental Effect

The result of the test is shown in the following figure. Open the Read TimeStmp. Bat
and start the software in-loop simulation of an aircraft.

Python runs ReadTimeS TMP. Py subscriptions to get timestamps.

Got 1 vision sensors from json
Start lisening to timeS M

imu.timestmp 184.47

56

nl‘ ‘ 2. The base interface uses

2.10 Obtaining the UE Interface — Interface Introduction

This interface file is an interface for Python to obtain the positions and collision
data of all dynamically created objects in UE.

Ue.sendUE4Cmd ('RflyReqgVehicleData 1') This interface is used to request
UEA4 to return the received data of all aircraft (obstacles). Note: In order to
reduce the bandwidth consumption, only when the aircraft data changes, the
data will be returned. This means that objects created by obstacles sent before
this command will not be sent out. Therefore, this command needs to be sent
before the aircraft is created.

Ue.initUE4MsgRec () is a function for python to monitor all aircraft status data
sent by UEA4. After calling this function, aircraft data can be received.

=
«| GetUE4PosAPLbat
+ GetUE4PosAPlLpy

" Readme.pdf

At

rﬁ
‘l']
=
i

57

2. The base Interface uses

7

2.10 Obtaining the UE Interface — Interface
Introduction

« The aircraft data is stored in the list inReqUpdateVect :
(Boolean, update flag or not) and the inReqgVect list j
(reqVeCrashData structure, store collision data). The # .
length of this list is variable, and each bit of data is a : ?,2ﬁf'ﬁejﬁg?.ej’,TQ;j{ﬁ?;ﬂW

struct reqVeCrashData, as shown in the right figure: $ foat Posf[ai;//gammé

=

#

#

#

#

#

struct reqVeCrashData {
int checksum; //ZfiREAEIR1234567897
int copterlD; //Z8T KHAIDE
int vehicleType; //81 ¥HA0R
int CrashType;//MIBMHAE, -ZFmtE, -IFARESIE, (RTRME, I RmRRHRIDS

« The ue.getUE4Pos (TargetCopterlID) interface will search I:g:{f;fg:g%i@l//%&;%ﬁm
whether there is a copterID aircraft in the list and output float AngEuler3); /4T CANEREL S
the location. The output format is a 4-dimensional vector, ﬂ0;1°r1‘y[“2]°5‘;§;1“£§]£m§gm
the first three dimensions are the position XYZ vector of char CrashedName[6]/ gRiAMAG %7
the aircraft, and the last dimension is the bool variable of ~ #41ds
whether there is an aircraft in the list.

« Ue.getUE4Data (TargetCopterlID) can obtain the data
structure regVeCrashData of the current aircraft.

AR GERE .

i ‘ 2. The base interface uses

2.10 Acquiring the UE Interface —
Experimental Process and Effect
* Referto"

"* for the routine to get the UE
interface. Run the GetUE4PosAPI.bat
script to start the simulation. After
CopterSim displays 3DFixed, use
VSCold to run GetUE4PosAPI.py by
debugging single-step execution

* The running effect is shown in the right
figure. Different interfaces can be
obtained in each step, including all
interfaces for dynamically creating

object positions and collision data.

T >1ECp [

time.sleep(sleepTime}
glse:
lastTime = time.time()

for i in range{len(ue.inRegVect)):

if ue.inRegUpdateVect[i]:
print({ue.inRegqVect[i].copterlD,us.inReqWect[i
ue. inRegUpdateVect[i]=

59

0.ApiExps/1-UsageAPI/4.RflySim3DAPI/1.RflySim3DPosGet
0.ApiExps/1-UsageAPI/4.RflySim3DAPI/1.RflySim3DPosGet
0.ApiExps/1-UsageAPI/4.RflySim3DAPI/1.RflySim3DPosGet

!,7‘_‘ Outline

1.

A A

General introduction
The base interface uses
Visual control example
Visual Al is advanced

Distributed visual simulation

At

=
¥l
|-|:n

60

nl“ 3. Visual control example

3.1 UAV Impact on Small Ball Experiment-Routine Introduction

* In Windows Explorer, open and enter the '
""folder, as shown below.

« "ShootBall 3.py" is the main Python program of this routine, ""ShootBall 3HITL.bat" is the
script to quickly start hardware-in-the-loop simulation, and "*ShootBall3 SITL. Bat' "is the
script to quickly start software-in-the-loop simulation. As shown in the lower right figure, the
difference between the latter two relative to the S/HITLRun shortcut of the desktop is that
the "UE4 _ MAP" map scene variable selects the flat grass scene ""VisionRingBlank™ for
vision; Next, ""UDP SIMMOde" communication UDP mode selects ""Mavlink _ Full'* mode
""for easy communication with Python; finally, 1 RflySim3D window is opened.

=+ BRflySimVision > 1BasicExps > 1-VisionCtriDemos > e3_ShootBall

UE4 MAP=VisionRingBlank

T HEF - Q &5 -

e ShootBall ShootBall ShootBall
E] 3HITL 3SITL

UDPSIMMODE=2

2024/7/25 "na' ‘ _ll ﬁ ; !ﬁ E 61

1.BasicExps/1-VisionCtrlDemos/e3_ShootBall
1.BasicExps/1-VisionCtrlDemos/e3_ShootBall

4

l 3. Visual control example

3.1 Experiment of UAV impacting small ball — code analysis

« Open the ""ShootBall 3.py" file with VS Code and view the source code and
comments below.

import time ue.sendUE4Cmd('r.setres 720x485w’,0)
import numpy as np ue.sendUE4Cmd(' t.MaxFPS 3@8',0)

import cv2 time.sleep(2)

import sys

mav = PX4MavCtrl.PX4MavCtrler(1)

import PX4MavCtrlV4 as PX4MavCtrl mav.InitMavLoop()
import VisionCaptureApi
import UE4CtrlAPI

ue = UE4CtI“1QPI .UE4Ctr\1API () ue. SendUE4POS(199,152,9, [3,9, '2], [8,9,9])

time.sleep(@.5)

vis = VisionCaptureApi.VisionCaptureApi()

calc_centroid(img):
"""Get the centroid and area of Red in the image"""
vis.jsonLoad() low_range = np.array([@,e,80])
high_range = np.array([1©©,1ee,255])
th = cv2.inRange(img, low_range, high_range)
dilated = cv2.dilate(th, cv2.getStructuringElement(
cv2.MORPH_ELLIPSE, (3, 3)), iterations=2)
sys.exit(@) cv2.imshow("dilated”, dilated)
vis.startImgCap() cv2.waitKey(1)

isSuss = vis.sendReqToUE4()
if isSuss:

4

l 3. Visual control example

3.1 Experiment of UAV impacting small ball — code analysis

procssImage():
ctrl_last
if vis.hasData[@]:
img_bgr=vis.Img[@]
p_i = calc_centroid(img_bgr)
ctrl = controller(p_i)
else:
ctrl=[e,0,0,0]
return ctrl

controller(p_i):

if p_i[e] < e p_i[1] < e:
return [0, ©, ©, 1]

ex p_i[@] - width / 2
ey = p_i[1] - height / 2

: . E
vx = 2 if p_i[2] < max_prop*width*height else © sat(inPwm,thres=1):

i e outPwm= inPwm

T4 K_z * ey
yawrate = K_yawrate * ex

for i in range(len(inPwm)):
if inPwm[i]>thres:
outPwm[i] = thres
elif inPwm[i]<-thres:
outPwm[i] = -thres
return [vx, vy, vz, yawrate] return outPwm

4

l 3. Visual control example

3.1 Experiment of UAV impacting small ball — code analysis

lastTime = time.time() . : :
ctrlLast = [@,0,0,0
startTime = time.time() while

lastTime = lastTime + timeInterval

. sleepTime = lastTime - time.time()
timeInterval = 1/30.0 . .)
if sleepTime > O:

'Flag = 8 time.sleep(sleepTime)
else:
lastTime = time.time()

width = 649
- num=num+1
h91ght = 480 if num%1ee==0:

channel = 4 tiem=time.time()
= rint('MainThreadFPS: '+str(1@e/(tiem-lastClock))
min_prop = ©.00ee01 2 =

lastClock=tiem
max_prop = ©.3
Kz =0.003 * 640 / height if time.time() - startTime > 5 flag == @:

K_yawrate = ©.085 * 480 / width print("5s, Arm the drone")
mav.initOffboard()
flag = 1

num=0 mav . SendMavArm()

laStC]_OCk:'time.‘time() print("Arm the drone!, and fly to NED @,0,-5")
mav.SendPosNED(@, @, -5, ©)

l ‘ 3. Visual control example

« 3.1 Experiment of UAV impacting small ball — code analysis

if time.time() - startTime > 15 and flag == 1: if time.time() - startTime > 25 flag == 3:
flag = 2 ctrlNow = procssImage()

ctrl = sat(ctrlNow,5)

mav.SendPosNED(-30,-5, -5, @) ly to target position [-3€
print("15s, fly to pos: -30,-5, -5") if ctrl[@]-ctrllLast[@] > @.5:

ctrl[@]=ctrlLast[@]+0.05
if time.time() - startTime > 25 and flag == 2: elif ctrl[@]-ctrllLast[@] < -@.5:
flag = 3 ctrl[@]=ctrllLast[@]-0.85
Show CV image and set the positic if ctrl[1]-ctrlLast[1] > @.5:
if vis.hasData[@]: ctrl[1]=ctrlLast[1]+0.05
img_bgr=vis.Img[@] elif ctrl[1]-ctrllLast[1] < -0.5:
cv2.imshow("dilated", img_bgr) ctrl[1]=ctrllLast[1]-0.85

cv2.waitKey(1) ctrllast = ctrl

mav.SendVelFRD(ctrl[@], ctrl[1], ctrl[2], ctrl[3])

print("25s, start to shoot the ball.")

nl" 3. Visual control example

3.1 UAV Impact on Small Ball
Experiment — Experimental
Effect

 Double-click to run the
"'ShootBall3SITL.bat" file to start
the software in-the-loop simulation
system. You can also plug in the
flight control, run the HILS script
"'ShootBall3HITL.bat", and enter
the serial number to start the HITL
simulation.

* Run the "ShootBall 3.py"* program
again. Generate a red sphere in
front, let the aircraft fly to the left
rear for some distance, and turn on
visual tracking, fly to the front of

At FA :

b o)
=
i

RflySim. Visual Navigation Control of Multi-rotor Unmanned Aerial
Vehicle — — Experiment of Impacting Small Ball

This video can be viewed at:

Youku:
YouTube:

Station B:

CrossRing3 ManDetect ManDetect anDetect NightCityS Ni r;h tCityS
SITLbat 3.py 3HITLbat SITL bat warmd bat m4.py

) 2

PX4MavCtrl PX4MavCtri PX4Ma (H Python38Ru Sho tB 13. ShootBall3
PIT st.bat APITest.py V4.py n.bat py HITLbat

E’@U

ShootBall3 VSCode Use mf‘ﬂ?’fﬁ
SITLbat rSetup-x
145.1.¢

X B FE $e {1 T bat fil A m] AR IE J5 20 8K AE 20 B A 2 X0 e 1) = 4EAE

11:49 PM .
ENG [

am N Bm = o R e A G

https://v.youku.com/v_show/id_XNDcwNjA4NTYwNA==.html
https://youtu.be/PvxEfY7oMq4
https://www.bilibili.com/video/BV13a411i7sH?p=13

nl“ 3. Visual control example

3.2 UAV Loop Penetration Experiment-Routine Introduction

In Windows Explorer, open and enter the "
""folder, as shown below.

Where "CrossRing3.py" is the main Python program for this routine; The difference
between ""ShootBall3HITL.bat" and ""ShootBall3SITL.bat" relative to the previous
example of hitting a small ball is that the "UE4 _ MAP" map scene variable has been
selected for the visual ring-piercing scene ""VisionRing". Note: Mavlink _ Full ""Mode is
also selected for the UDPSIMMOde communication UDP mode.

The subdirectories "TwoUAVDemo" and "ThreeUAVDemo' are two examples of
distributed vision control, generating two or three UAVSs to independently process their
own vision and complete independent ring crossing tasks in the same scene.

> == 1BasicExps > 1-VisionCtrlDemos > ed4_CrossRin >

N HEF ~ Q &#& -

Th eUAV | TwoUAVD Config Cro Rg CrossRing CrossRing Rdme
3HITL 3SITL

68

1.BasicExps/1-VisionCtrlDemos/e4_CrossRing
1.BasicExps/1-VisionCtrlDemos/e4_CrossRing

4

l 3. Visual control example

3.2 UAV Ring Penetration Experiment — Key Code Analysis

saturationYawRate(yaw_rate):

yr_bound = 20.0 objectDetect(task):
if yaw_rate > yr_bound: """According task to detect objects"""
yaw_rate = yr_bound if vis.hasData[@]:
if yaw_rate < -yr_bound: img_bgr=vis.Img[@]
yaw_rate = -yr_bound else:
return yaw_rate return -1,-1,-1
b,g,r = cv2.split(img_bgr)
taskChange(pos_x): img_edge = cv2.Canny(b, 50, 1e@)
if pos_x < 4@: if task == "rangel” task == "range2":
task = "rangel™ return circleDetect(img_bgr, img_edge, b)
elif pos_x <70: else:
task = "range2" return squareDetect(img_bgr, img_edge)

elif pos_x < 130@:

task = "r-uanges" """Detect Square with PolyDP and diagonal length"""

squareDetect(img_bgr, img_edge):

elif pos_Xx < 140: squares = []
- " cnts, hierarchy = cv2.findContours(img_edge, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
taSk land for cnt in cnts:
else: cnt_len = cv2.arcLength(cnt,)
cnt = cv2.approxPolyDP(cnt, ©.85 * cnt_len,)
taSk 'T.Fin iS h " if len(cnt) == 4 cv2.contourArea(cnt) > 2000 cv2.isContourConvex(cnt):
cnt = cnt.reshape(-1, 2)
return task diag_delta = diagonal_check(cnt)
if diag_delta < @.2:
squares.append(cnt)
cv2.drawContours(img_bgr, squares, -1, (@, 255, @), 3)
cv2.imshow("img_bgr", img_bgr)

cv2.waitKey (1)
height. width. channel = ime ber shape

4

l 3. Visual control example

3.2 UAV Ring Penetration Experiment — Key Code Analysis

circleDetect(img_bgr, img edge, img_b):
"""Hough Circle detect"""
circles = cv2.HoughCircles(img_b, cv2.HOUGH_GRADIENT, 1, 2@, pal
if circles :
circles = np.uintl6(np.around(circles))
obj = circles[e, @]
cv2.circle(img_bgr, (obj[e], obj[1]), obj[2], (©,255,8), 2)
cv2.circle(img_bgr, (obj[e], obj[1]), 2, (®,255,255), 3)
cv2.imshow("img_bgr", img_bgr)
cv2.waitKey(1)
height, width, channel = img_bgr.shape
return obj[@]-width/2, obj[1]-height/2, obj[2]
else:

return -1,-1,-1

~ LL

approachObjective():

Kz = ©.004 * 640 / height
K_yawrate = ©.005 * 480 / width
task = "rangel"

startAppTime= time.time()
lastTime = time.time()

timeInterval = 1/30.0

num=0
lastClock=time.time()
while (task != "finish") & (task != "land"):
lastTime = lastTime + timeInterval
sleepTime = lastTime - time.time()
if sleepTime > ©:
time.sleep(sleepTime)
else:
lastTime = time.time()

3. Visual control example

3.2 UAV Ring Penetration Experiment — Key Code Analysis

if __name__ == '_main__':
mav = PX4MavCtrl.PX4MavCtrler(1l)
mav.InitMavLoop()

print("Simulation Start.")

print("Enter Offboard mode.")
time.sleep(5)
mav.initOffboard()
time.sleep(©.5)

mav . SendMavArm()
mav.SendPosNED(@, ©, -5, @)

if vis.hasData[@]:
img_bgr=vis.Img[@]
cv2.imshow("img_bgr", img_bgr)
cv2.waitKey(1)

time.sleep(5)

approachObjective()

3. Visual control example

Al

3.2 UAV Ring Penetration
Test-Operation Effect

« Double-click to run the — Iage
"CrossRing3SITL.bat" file to start Processing
the software in-the-loop simulation
system, and then run the
""CrossRing3.py'* program.

« After taking off, the plane passes
through three rings in order, and
finally lands automatically.

* To use the hardware-in-the-loop
simulation, after setting the flight
control, run the
""CrossRing3HITL.bat" script and
input the flight control serial
number to start the hardware-in-
the-loop simulation system.

RflySim3D (64-bit Development PCD3D_SMS) N

RflySim. Visual Navigation Control of Multi-rotor Unmanned Aerial
i Vehicle — — Multi-rotor Loop Penetration Experiment

This video can be viewed at:
Youku:

YouTube:

Station B:

SP/RflySimAPIs/P

i e T

> 11:52 PM
3 8@ ' 7 ; W o ENG 5/30/2020

https://v.youku.com/v_show/id_XNDcwNjA4NTYwNA==.html
https://youtu.be/PvxEfY7oMq4
https://www.bilibili.com/video/BV13a411i7sH?p=13&t=53.8

3. Visual control example

Al

3.3 Dual UAV Distributed Control- "' 1BasicExps > 1-VisionCtriDemos

Routine Introduction N e

B b D D
e R

. iS Shown in the I’Ight ﬁgure. Config1 Config2 CrossRing CrossRing

. 3 vehiclel 3 vehicle2
* In contrast to the stand-alone routines, there
are two Json files and two Python control

{} Config1json X

main programs, which correspond to the T
images and controls of the two aircraft. e
* The main differences between the camera e e
parameters corresponding to the two Json o
files are: e,
« 1) SeqlD is different, which is used to rcanararcyioe, BRI

"SensorPosXYZ":[@.3,0,0],
"SensorAngEular":[@,0,8],
"otherParams":[©,0,0,0,08,0,0,8]

distinguish image memory blocks; 2)
TargetCopter is bound to different aircraft,
which are bound to aircraft 1 and 2
respectively.

{} Config2json X

e4_CrossRing > TwoUAVDemo

CrossRing Python38 readme
3SITL Run

C: > PX4PSP > RflySimAPIs > 8.RflySimVision > 1.BasicExps > 1-VisionCtriDe| C: > PX4PSP > RflySimAPIs > 8 RflySimVision > 1.BasicExps > 1-VisionCtrlDem
"VisionSensors™:[

"SeqID":1,

"TypeID":1,

"TargetCopter":2,
"TargetMountType":@,
"DataWidth":72e,
"DataHeight":405,
"DataCheckFreq":3e,
"SendProtocol":[0,127,0,0,1,10000,0,0],
"CameraFOVv":9@,
"SensorPosXYZ":[©.3,0,8],
"SensorAngEular”:[@,0,0],
"otherParams":[e,e,0,0,0,0,0,0]

74

1.BasicExps/1-VisionCtrlDemos/e4_CrossRing/TwoUAVDemo
1.BasicExps/1-VisionCtrlDemos/e4_CrossRing/TwoUAVDemo
1.BasicExps/1-VisionCtrlDemos/e4_CrossRing/TwoUAVDemo

3. Visual control example

7

3.3 Dual UAYV Distributed Control-Key Code Analysis

« The Python control program for aircraft 1 is ""CrossRing3 _ vehicle 1.py"", while that for aircraft 2 is
""CrossRing3 _ vehicle 2.py"". The two programs are basically the same as the threading routine in the
previous section.

« The main difference between the two is that the jsonLoad function of VisionCaptureApi calls different
Json file paths; secondly, the UAV control interface PX4MavCtrler configures different CopterSim
communication ports (corresponding to different aircraft). Both take the first camera image in the JSON
definition camera list, so both use Img [0] to read the image.

vis = VisionCaptureApi.VisionCaptureApi() vis = VisionCaptureApi.VisionCaptureApi()

vis.jsonLoad(®, 'Configl.json'}) vis.jsonLoad!®@, 'Config2.json')
mav = PX4MavCtrl.PX4MavCtrler(1) mav_= PX4MavCtrl.PX4MavCtrler{2)

objectDetect(task): objectDetect(task):

I un - TH 0T 0N

According task to detect objects """According task to detect objects™™"
if vis.hasDatal@]: if 'vis.hasData[@]:

img_bgr:vis.Img[@] img_bgr=vis.Img[@]
e: e:

return -1,-1,-1 return -1,-1,-1

4

L'

3. Visual control example

3.3 Dual UAV Distributed Control-Experimental Results

Enter "'8.RflySimVision \ 1.Basic Exps \ 1-VisionCtrIDemos \ E4 _ CrossRing \ TwoUAVDemo"", Double-
click to run the script ""CrossRing3SITL.bat™ or ""CrossRing3HITL.bat" to start the software/hardware
in-the-loop simulation of two aircrafts.

After the two aircraft are initialized (RflySim3D will prompt), double-click ""Python38Run.bat" twice to
open the two Python environments; enter ""python CrossRing3 _ vehicle 1.py"" in the first Python window
(do not press Enter first); Type ""python CrossRing3 _ vehicle2.py" in the second Python environment
(without pressing Enter first).

Go back to the first Python window and press the Enter key to run the visual loop threading program for
aircraft 1. After a few seconds, switch to the Python window 2 and press the Enter key to start the visual
loop threading program for aircraft 2. It can be seen that the aircraft take off in turn and penetrate the

- 7] c:\Windows\system32\cmd.e: X + v | X
ring.

Python3.8 environment has been set with openCV+pymavlink+numpy+pyulog etc.

You can use pip or pip3 command to install other libraries

Put your python scripts 'XXX.py' into the folder 'C:\PXUPSP\RflySimAPIs\8.RflySimVision\1l.BasicExps\1-VisionCtrlDemos\ed
_CrossRing\TwoUAVDemo'

Use the command: 'python XXX.py' to run the script with Python

C:\PXUPSP\RflySimAPIs\8.RflySimVision\1l.BasicExps\1-VisionCtrlDemos\eld_CrossRing\TwoUAVDemo>python CrossRing3_vehiclel.p

y
= C\Windows\system32\cmd.er X + v

Python3.8 environment has been set with openCV+pymavlink+numpy+pyulog etc.

You can use pip or pip3 command to install other libraries

Put your python scripts 'XXX.py' into the folder 'C:\PX4PSP\RflySimAPIs\8.RflySimVision\1l.BasicExps\1-VisionCtrlDemos\el 76
_CrossRing\TwoUAVDemo"

Use the command: 'pvthon XXX.pv' to run the script with Python

of RflySim3D, Wit
grcrait LU

- = 2

-

' cessed by the front cargera of No.1
= ERe

)

L 3
T CI
L L2

mage processed by the front cgmera of
af 2 (aircraft 1 is visible ir§ the field

4
<

QGroundControl

Q) o WRUR | XS
b

(¥]

Offboard = Ve

O#% @ E4 kHl

Fligl Time
00:00:26

LOOFASE

Al

3. Visual control example

3.3 Dual UAV Distributed Control —
Scaled to 3 Aircraft

With the example of distributed control of two UAVS,
we can easily expand the number of UAVs to more,
such as three aircraft. Note: The free version only
supports up to two image outputs, so it can only be - e -
used for dual vision. ’

Enter the directory **

Main interface of
RflySing3D{ fafiquing
p_erSC 3 ’:‘)ﬁf,}‘#NlﬂL:

and follow the same method.

You can turn on the visual control of three aircraft, as
shown in the lower right picture.

Three planes can be seen taking off in turn, and the
plane behind can see the plane in front in view.

Visually prodessed
aircraft 1|

- g0
- -

.
=

Because the front aircraft will block the ring, there 9 a

will be fluctuations in the ring recognition of this Visually i ;

mode, which will reduce the control effect. Bccd imalich ge of aircrraft 3
of aircraft2 = i

) weses 78

1.BasicExps/1-VisionCtrlDemos/e4_CrossRing/ThreeUAVDemo
1.BasicExps/1-VisionCtrlDemos/e4_CrossRing/ThreeUAVDemo

nl“ 3. Visual control example

3.4 Binocular Vision Face Recognition Experiment-Routine Introduction

* In Windows Explorer, open and enter the "
""folder, as shown below.

* Where, "ManDetect3.py"" is the main Python program of this routine; the folder
""cascades’ contains some feature files in XML format for face recognition; The
difference between ""ManDetect3HITL.bat" and ""ManDetect3SITL.bat" relative
to the desktop shortcut is that the communication UDP mode of "UDPSIMMOde"
also selects ""Mavlink _ Full'* mode; The folder ""MultiCameraDemo™ contains an
advanced example of two aircraft each with a binocular camera, a total of four
camera images (full version only).

= 1BasicExps > 1-VisionCtrlIDemos > e7_ManDetect >

N -

3 MultiCam Config Ma Dtec ManDetec ManDetec
eraDemo t3HITL t3SITL

1.BasicExps/1-VisionCtrlDemos/e7_ManDetect
1.BasicExps/1-VisionCtrlDemos/e7_ManDetect

4

o

3.4 Binocular Vision Face Recognition Experiment — Key Source Code Analysis

timeInterval = 1/3@.0
face_cascade=cv2.CascadeClassifier(.path[@]+'\cascades\haarcascade frontalface default.xml')

3. Visual control example

num=0
lastClock=time.time()
while

if vis.hasData[@]:
picl=cv2.cvtColor(vis.Img[@], cv2.COLOR_BGR2GRAY)
facesl=face_cascade.detectMultiScale(pic1,1.3,5)
for (x,y,w,h) in faces1i:
picl=cv2.rectangle(picl, (x,y), (x+w,y+h), (255,0,0),1)
cv2.imshow("picl",picl)

if vis.hasData[1]:

pic2=cv2.cvtColor(vis.Img[1], cv2.COLOR_BGR2GRAY)

faces2=face_cascade.detectMultiScale(pic2,1.3,5)

for (x,y,w,h) in faces2:
pic2=cv2.rectangle(pic2, (x,y), (x+w,y+h), (255,0,0),1)

cv2.imshow("pic2",pic2)

Al

3. Visual control example

3.4 Binocular vision face recognition

0 RflySim3D-0 (m] QGroundControl

experiment — running effect % PR | - £ o
. 7 N
n e . N h
* Run "ManDetect3SITL.bat" or — B
"ManDetect3HITL.bat" to start the HW/SW . e
in-the-loop simulation, and then run the main e &

control program ""ManDetect 3.py"’.

In RflySim3D, a walking person is generated
and set to face the plane. After the plane takes
off, the face recognition algorithm is turned on,
and the binocular frame selects the face.

Assignment 1: Update the location of people in
real time, realize the simulation of people
walking, and write the aircraft tracking
controller.

Job 2: Change to the forward-looking +
downward-looking camera, and verify the
tracking + optical flow algorithm.

7 eske ;

—

. RflySim: Obtain binocular camera images and perform face recognition

2 This video can be viewed at:
Youku:

YouTube:
Station B:

https://v.youku.com/v_show/id_XNDcwNjA4NzgxMg==.html
https://youtu.be/hm6i6UCQjCI
https://www.bilibili.com/video/BV13a411i7sH?p=14

3. Visual control example

3.4 Binocular Vision Face Recognition Experiment — Extended Binocular

« Enter the directory ™
"". You can view the key source code analysis of the
Config. JSON file (lower left two figures) and the MultiCameraDemo. Py file. (Bottom right)

"VisionSensors":[

"SeqID":@,

"TypeID":1,

“TargetCopter":1,
"TargetMountType":@,
"DatalWidth":640,
"DataHeight":480,
"DataCheckFreq™:3e,
"SendProtocol":[@,127,08,0,1/9999,0,0],
"CameraFOVv":9@,
"SensorPosXYz":{[@.3,-0.15,8],
"SensorAngEular”:[0,0,08],
"otherParams":[@,0,0,0,0,0,0,0]

"SeqID":1

"TypeID":1,

"TargetCopter":1,
"TargetMountType":@,
"DatalWidth":640,
"DataHeight":480,
"DataCheckFreq™:3e,
"SendProtocol":[@,127,0,0,1,16000,0,0],
"CameraFOV":90,
"SensorPosXYzZ":[©.3,0.15,0]),
"SensorAngEular":[0,0,08],
"otherParams":[©,0,0,0,0,0,0,0]

"SeqiD":2,

“TypeID":1,

“"TargetCopter™:2,
"TargetMountType":8,
"DataWidth™:64@,
"DataHeight":480,
"DataCheckFreq":3e,
"SendProtocol”:[0,127,0,0,1,10001,0,0],
"CameraFOV":90,
"SensorPosXYZ":[@.3,-0.15,0],
"SensorAngEular":[e,0,8],
"otherParams":[0,0,0,0,0,0,0,0]

"SeqID":3,

STypelD™:1,

"TargetCopter”:2
"TargetMountType":@,
"Datawidth":64e,
"DataHeight":480,
"DataCheckFreq":30,
"SendProtocol”:[@,127,0,0,1/10002,0,0],
"CameraFOV":90,
"SensorPosXYzZ":[@.3,0.15,0],
"SensorAngEular”:19,0,8],
"otherParams":[0,0,0,0,0,0,0,08]

ue.sendUE4Pos(1ee,3e,0,[1,0,-8.086],[0,8,math_pi])
time.sleep(1)

ue.sendUE4Cmd('RflyChange3DModel 100 16')
time.sleep(©.5)

ue.sendUE4Cmd(‘RflyChangeViewKeyCmd B 1°,@)
time.sleep(@.5)

ue.sendUE4Cmd('r.setres 720x485w’',0)
time.sleep(2)

ue.sendUE4Cmd('RflyChangeViewKeyCmd B 2',1)
time.sleep(8.5)

ue.sendUE4Cmd('r.setres 720x485w',1)
time.sleep(2)

1.BasicExps/1-VisionCtrlDemos/e7_ManDetect/MultiCameraDemo
1.BasicExps/1-VisionCtrlDemos/e7_ManDetect/MultiCameraDemo

3. Visual control example

Al

3.4 Binocular Vision Face
Recognition Experiment —
Extended Binocular

* First double click the
"MultiCameraDemoSITL. Bat"
or "MultiCameraDemoHITL.
Bat" to open the dual computer
software/hardware in the loop
simulation of two CopterSim and |-
two RflySim3D.

 Then run the
"MultiCameraDemo. Py"" "'to see
the aircraft take off and get the
right.

'.. ' : ame

Note: It is recommended that you use the Python 38 environment
that comes with the platform to run the routines. If you use
4 ‘ 3. Visual control examp|e another Python environment, be sure to install the following
L components:

pip3 install d3dshot pywin32
3.5 Screen Capture Interface-Routine Introduction

* In Windows Explorer, open and enter the ™
""folder, as shown in the following figure, which contains
examples of hitting balls and piercing rings. The interface used is the way to take screenshots.

« UE4 internal shared memory image transmission: high efficiency, one window can achieve multi-
channel transmission, the image is not the final effect.

» Screen screenshot: low efficiency, a window can only be an image, the image is the final rendering
effect.

« Tosum up, the screen mapping mode image is the final best effect, while the shared memory mode
Image is not the best intermediate rendering result, but the screen mapping mode is inefficient, so it is
used as an alternative scheme.

« Note: Screen mapping can also be used for any other 3D engine (such as FlightGear, Unity).

J > -+ 1BasicExps > 1-VisionCtrlDemos > e5_ScreenCapAPl >

N HEF - Q BE -

-
PDF

I
1-ShootBall 2-CrossRing Readme

85

=
0
¢ n].
=
i}

1.BasicExps/1-VisionCtrlDemos/e5_ScreenCapAPI
1.BasicExps/1-VisionCtrlDemos/e5_ScreenCapAPI

Note: When running this routine, please double click
to open the SITL. Bat or HITL. Bat script file directly,
and do not run it in the administrator mode.

3. Visual control example

Al

3.5 Screen capture interface-impact ball
experiment
* Openthe

folder. Double-clicking ShootBall3SITL.bat or
ShootBall3HITL.bat will open a simulation closed
loop of CopterSim aircraft, and open two RflySim3D
windows at the same time, one for displaying the front . Viewingan
camera and the other for global observation. RilySim3D

_ ~ camera
« Run "ShootBall 3.py" to see the effect on the right.

« Because of the way the screen takes pictures, the
front-facing camera image on the left side must
always be kept at the forefront, otherwise there will
be occlusion.

« Python images will be smaller than the window,
which is affected by the DPI setting.

a1 dilated

7 eske .

1.BasicExps/1-VisionCtrlDemos/e5_ScreenCapAPI/1-ShootBall
1.BasicExps/1-VisionCtrlDemos/e5_ScreenCapAPI/1-ShootBall

ni. 3. Visual control example

3.5 Screenshot Interface — Comparison of Experimental Effects of Binocular Face
Recognition

« The lower left is the drawing of UE4 shared memory, and the lower right is the screenshot
mode. It can be seen that the change of light and shadow in the way of screen drawing is
consistent with the actual window display effect, and there is a certain display limitation in

the backlighting of UE4 internal drawing.
;'k; *v

.’

® QGroundControl

a - o X
% '\O % E | X5 ma B ©® [Ef##8i -] [0ffboard
Ty = S

[h

2]
Il

>
At

!,7‘_‘ Outline

1.

A A

General introduction
The base interface uses
Visual control example
Visual Al is advanced

Distributed visual simulation

At

=
¥l
|-|:n

88

nl“ 4. Visual Al I1s advanced

4.1 Binocular Camera Calibration Experiment-Routine Introduction
* In Windows Explorer, open and enter the "

"" folder, as shown below.
Where "Binocular CameraCalib4.py" is the main Python program for this routine;
""Binocular CameraCalib4.bat" iIs a batch startup script, double-clicking it will

automatically open three RflySim3D windows (left and right cameras + trailing
global viewing angle).

- 0.ApiExps > 3-VisionAlAPI > 0.BinocularCameraCalib

N O BE -

BDD 2N
PDF
[

BinocularC BinocularC Config
ameraCali ameraCali
b4 b4

readme readme

89

0.ApiExps/3-VisionAIAPI/0.BinocularCameraCalib
0.ApiExps/3-VisionAIAPI/0.BinocularCameraCalib

7

4.1 Binocular Camera Calibration Experiment —

Core Code Analysis

Open the ""Binocular CameraCalib4.py'" file

with VS Code.

The key code lines are shown in the right figure.

4. Visual Al 1s advanced

This script can obtain images of multiple

windows at the same time.

Please read and learn the rest of the code

according to the previous explanation.

At

f'E
‘I-]

startTime = time.time()
lastTime = time.time()
timeInterval = 9.1

num=e
while

lastTime = lastTime + timelInterval
sleepTime = lastTime - time.time()
if sleepTime > ©:

time.sleep(sleepTime)

else:

lastTime = time.time()

num=num+1

if

num%38==0:
TargePos = [InitTargePos[@]+random.randint(e,100)/
TargeAng = [InitTargeAng[@]+random.randint(-58,50)

ue.sendUE4Pos(160,40,e,TargePos, TargeAng,-1)
time.sleep(©.5)

if vis.hasData[e]:
imgl=vis.Img[e]

picl=cv2.cvtColor(imgl, cv2.COLOR_BGR2GRAY)
cv2.imshow("picl"”,picl)

if vis.hasData[1]:
img2=vis.Img[1]

pic2=cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)

cv2.imshow("pic2",pic2)

cv2.waitKey(1)

90

4. Visual Al 1s advanced

Al

4.1 Binocular Camera Calibration
Experiment — Experimental Effect

« After running "Binocular
CameraCalib4.bat", run "Binocular
CameraCa lib4.py".

« Open multiple RflySim3D scenes, create a
new aircraft, configure binocular position
information, create a new target, and place
the targets according to random rules.

« Job 1: After obtaining the images of the
left and right cameras, implement the
online calibration algorithm.

« Homework 2: Store the images of the left
and right cameras locally in the form of
pictures, and then use the calibration
toolbox of MATLAB to calculate the

arameters.

AR GERE .

RflySim: Obtain binocular camera images and use for camera calibration
This video can be viewed at:

Youku:

YouTube:

Station B:

RflySim3D (64-bit Development PCD3D_SM5)

A T o WA S e e) JIUAaTCES. S5 TTIT ™0 AN AY N | T™VIT

Y
» A ~vth SO T COS$~INTC U UTTTTTTYY OSEINTLY

https://v.youku.com/v_show/id_XNDcwNjA4NzgxMg==.html
https://youtu.be/hm6i6UCQjCI
https://www.bilibili.com/video/BV13a411i7sH?p=14&t=39.8

nl“ 4. Visual Al I1s advanced

4.2 Virtual Camera Calibration Principle-Introduction

Camera calibration concept: In the process of image measurement and computer
vision, in order to determine the relationship between the three-dimensional
geometric position of a point in a space object and its corresponding point in the
Image, it is necessary to establish a geometric model of camera imaging, and the
parameters of the model are the parameters of the camera. The process of solving
the parameters is called camera calibration.

93

=
0
¢ n.].
=
i}

nl“ 4. Visual Al I1s advanced

4.2 Principle of virtual camera calibration — camera model

The process of digital camera image shooting is actually a process of optical imaging. The
Imaging process of the camera involves four coordinate systems: the world coordinate
system, the camera coordinate system, the image coordinate system and the pixel
coordinate system.

Ideal perspective model-pinhole imaging model: The camera model is a simplification of the
optical imaging model. At present, there are two kinds of models: linear model and

nonlinear model. The actual imaging system is a nonlinear madel of lens imaging. The most
basic lens imaging principle is shown in the figure:

- u >at—F—>
- V >
Where U isthe object distance, f is the focal length, and V is the distance. The three
satisfy the relation 1 _ 1 1

7 esks

94

Al

4. Visual Al 1s advanced

4.2 Principle of virtual camera calibration — camera model

S

™~

~

The lens of a camera is a group of lenses. When light rays parallel to the main optical axis pass
through the lens, they converge on a point. This point is called the focus. The distance from the focus
to the center of the lens is called the focal length. The lens of a digital camera is equivalent to a convex
lens, and the photosensitive element is located near the focus of the convex lens. When the focal length

Is approximated by the distance from the center of the convex lens to the photosensitive element, it
becomes a pinhole imaging model. The pinhole imaging model is

W figure.

-

~
~
~Y

il
The pinhole imaging model is the most widely used model for camera imaging. In this model, the
relationship between the spatial coordinates of the object and the image coordinates is linear, so the
solution of the camera parameters comes down to the solution of linear equations.

7 esks

95

ni‘ 4. Visual Al Is advanced

4.2 Principle of virtual camera calibration — definition of coordinate system

« The camera imaging system consists of four coordinate systems: world coordinate
system, camera coordinate system, image coordinate system and pixel coordinate

system. B
& LN E1% &=

Rl 25 2 PR

At

=
¥l
|-|:|

96

nl“ 4. Visual Al I1s advanced

4.2 Principle of virtual camera calibration — definition of coordinate system
« The transformation relationship between these four coordinate systems is:

1 coté !
— = U
u) | 9X dX f 0 0 0
1 R TV
Z|V|= : v, |0 f 0 O
1 dY sin@ 00 1 0 O 1/)|W
0 0 1 1
e # B IR TS #
N J
%
S IS FERE

« Where, (U,+V,+W)is the physical coordinate of a point in the world coordinate

system, (u,v) is the pixel coordinate of the point in the pixel coordinate system, and
Z is the scale factor.

97

nl“ 4. Visual Al I1s advanced

4.2 Principle of virtual camera calibration — definition of coordinate system

« The relationship diagram of the four coordimate systems is showmin te following figure,
where is the three-dimensional space point, and is the image point projected on the image

plane.
YC
><C
AL
FEALAAFR 22

M (X, Y Zw)

FE AL bR 5

« (D World coordinate system: It is the absolute coordinate system of the objective three-
dimensional world, also called objective coordinate system. Because the dt%ta ca21 rais

placed in the three-dimensional space, we need the world coordinate syste

%6 Yéséribe the

position of the digital camera, and use it to describe the position of any other object placed
In the three-dimensional environment to express its coordinate value.

'7'-luﬂ*%'

98

Al

4. Visual Al 1s advanced

4.2 Principle of virtual camera calibration — definition of coordinate system

@ Camera coordinate system (optical center coordinate system): The optical center of the camera is
taken as the coordinate origin, the X axis and Y axis are parallel to the X axis and Y axis of the image
coordinate system respectively, and the optical axis of the camera is taken as the axis to represent its
coordinate value.

@ Image coordinate system: the center of the CCD image plane is taken as the coordinate origin, the
axis and the axis are respectively parallel to the two vertical sides of the image plane, and the
coordinate values are represented by. The image coordinate system represents the position of a pixel
In an image in physical units, such as millimeters.

@ Pixel coordinate system: take the vertex of the upper left corner of the CCD image plane as the
origin, axis and axis are parallel to the axis and axis of the image coordinate system respectively, and
their coordinate values are represented by. The images captured by digital cameras are first formed
into standard electrical signals, and then converted into digital images through analog-to-digital
conversion. Each image is stored as an array, and the value of each element in the row and column of
the image represents the gray level of the image point. Each such element is called a pixel, and the
pixel coordinate system is the image coordinate system in pixels.

AR GERE "

nl“ 4. Visual Al I1s advanced

4.2 Calibration principle of virtual camera — calibration principle

« Why do you want to calibrate the camera? For example, when we get a picture and
recognize it, the distance between the two parts is 1 pixel, but how many meters does this
pixel correspond to in the real world? This requires the use of camera calibration results to
convert pixel coordinates to physical coordinates to calculate the distance.

« If we want to model an imaging system and then calculate the corresponding parameters,

the necessary parameters are the camera.

Internal parameter matrix:

R T
camera.| o 1),Therefore,t

ke camera is calibrated.

f f cot@
dX dX
f
dY sin@
0 0

Uy

v, O

1 O

and the external parameter matrix of the

The first purpose is to obtain the intrinsic and extrinsic parameter matrices of the camera.

7 esks

nl“ 4. Visual Al I1s advanced

4.2 Virtual camera calibration principle — internal parameter matrix and external

parameter matrix
1 cotd f fcotd

v — Y% Uo
dX ix ¢ 0 0 o) |dX ?x
: 0 : V, |0 £ 0 0]= : A
* We put the matrix: dY siné 0 0 1 0 dY siné
0 0 1 0 0 1 0

« Itis called the intrinsic parameter matrix of the camera, which depends on the
intrinsic parameters of the camera. Where, T is the image distance, dX ,dY
respectively represents the physical length of a pixel on the camera plate in the
direction of X ,Y | (that is, how many millimeters is a pixel on the plate), and u, v,
respectively represents the coordinates of the center of the camera plate in the
pixel coordinate system.

7 esks

101

nl“ 4. Visual Al I1s advanced

4.2 Virtual camera calibration principle — internal parameter matrix and external
parameter matrix

 When the camera is an ideal camera, the relationship between the focal length, the
resolution, and the field angle is: f =—=

2tan0
2 f 0 u, O
« A simplified internal reference matrix can be derived: |0 f v, 0
0O 0 1 O
 Where f is the focal length, ois the width of the resolution, and ¢ is the angle of
View.
* For example, when the field angle is 90 and the resolution is (640 480), the internal
reference matrix is; (320 0 320
0 320 240
0 0 1

7 esks

4. Visual Al 1s advanced

Al
4.2 Virtual camera calibration principle — internal parameter matrix and external

parameter matrix

« For the same camera, the internal parameter matrix of the camera depends on the internal parameters of the
camera. No matter what the position relationship between the calibration board and the camera is, the internal
parameter matrix of the camera does not change. This is also the reason why we can use the matrix H obtained
from different pictures (the calibration board and the camera have different positions) to solve the camera
internal parameter matrix A. However, the extrinsic parameter matrix reflects the positional relationship
between the calibration board and the camera. For different pictures, the position relationship between the
calibration board and the camera has changed, and the extrinsic parameter matrix corresponding to each picture

Is different. R T
« We call the matrix: 0 1 the extrinsic parameter matrix of the camera, which depends on the relative

position of the camera coordinate system and the world coordinate system, R represents the rotation matrix, and

T represents the translation vector. f fcotd 40
g | dX X
R T
- Thatis, the camera imaging model without distortion at a single point is as follows: Z| v [=| 0 v f_ 7 v, O (O)
sin
YUlo 0o 10

) vRInE

- s < C

Al

4. Visual Al 1s advanced

4.2 Virtual camera calibration principle — internal parameter matrix and external
parameter matrix

Each column vector of represents the orientation of each coordinate axis of the world coordinate
system in the camera coordinate system; rather, the origin of the world coordinate system is
represented in the camera coordinate system. So we need to do a coordinate transformation to
convert the internal coordinates of the camera to the world coordinate system.

The rotation matrix for this model is as follows:

(1 0 0 | cosp 0 —sinp] [cosa sina 0]
Ry(7)=|0 cosy siny|R,(f)=| 0 1 0 |[R,(a)=|-sina cosa O
0 -siny cos sing 0 cosp 0 0 1
Since the known condition is the Euler angles of the camera, it is eaSier to derive the world B

coordinate system from the camera coordinate system. So we use another model: assume that the
point P is a point in three-dimensional space with a position of P. in the camera coordinate system
and a position of in the world coordinate system. And may be interconvert by a transformation
matrix p and p, which may be subdivided into a rotation matrix R and a translation matrix t.
Its matheémafical expression is: P, = R'P. +t

7 esks

nl" 4. Visual Al I1s advanced

4.2 Virtual camera calibration principle — internal parameter matrix and external

parameter matrix

« The relationship between the rotation direction and the corresponding matrix transformation: left
multiplication and right multiplication

« Left Multiplication — Transforms with respect to a fixed coordinate system. (For example, the world

coordinate system, for example, First Z, then Y, then X, rotate around the world coordinate system,
and then multiply the rotation matrixR = R, R, R, to the left in order.)

« Right multiplication-transform with respect to its own coordinate system, and each time it changes,
the next time it needs to be transformed with the new coordinate system as the standard. For example,
after the first transformation, the position of the original axis changes to the axis, then the next
transformation around the axis will transform around the previous axis. For example, rotate
according to the body coordinate system, for example, around the body coordinate system, First Z,
then Y, then X, multiply to the right in order R = R,R,R, ,multiply to the right in order.

. Representatlon of the rotatlon matrix rotated according to the coordinate axis of the body:
1 0 0 cosa —sina 0

0 cosé R,(a)=|sina cosa O
|0 sing

—sin@
cosé |

nl“ 4. Visual Al I1s advanced

4.2 Virtual camera calibration principle — internal parameter matrix and external
parameter matrix) N B
cosae -sSina 0| cosy O siny|ll O 0

. R' —a3 X 3rotation matrix = |$"® ¢csa 0 0 1 0 |0 cosd, &N

: O .. 0. 1] =siny 0 co sin &
(6,7,a) s the rotation angle of the calibration ptate dround t‘We three axes ofsthe
camera coordinate system, which is called the rotation vector;

e t - (tx,ty,tz) IS the translation vector. The combination with rR' and tis called

. . (R' t
camera external reference. The complete external parameter matrix |s(0 1]

106

At

rﬁ
‘l']
=
i

Routines see: RflySimAPIs \ 8. RflySimVision \

ni‘ 4, ViSU8.| Al iS advanCEd 0.ApiExps\3-VisionAIAPI\2.CameraCalcDemo

4.2 Virtual Camera Calibration Experiment-Routine Introduction
« Task 1: Calibration of Matlab calibration board

- 1. Storage of monocular camera image: start the OneCameraCal. Bat to obtain the
following image: °

107

4. Visual Al 1s advanced

Al

4.2 Virtual Camera Calibration Experiment-Routine Introduction
« Task 1: Calibration of Matlab calibration board

« 2. Run the One CameraCal. Py in VS Code, and the calibration board and the

calibration board image shot by the camera will appear in the interface:
® siman- . ' = = | A oic —

-

nl“ 4. Visual Al I1s advanced

4.2 Virtual Camera Calibration Experiment-Routine Introduction
« Task 1: Calibration of Matlab calibration board
« 3. The captured picture is saved in a folder under the working path, for example, ™

 |f the distance between the calibration board and the camera is too far or too close,
It will affect the test results. You can modify the first value in InitTargePos to
change the distance. After getting about thirty pictures, the program can be
stopped.

109

=
0
N&]
=
i}

0.ApiExps/3-VisionAIAPI/2.CameraCalcDemo/20220207_220418

4. Visual Al 1s advanced

Al

4.2 Virtual Camera Calibration Experiment-Routine Introduction
« Task 1: Calibration of Matlab calibration board
« 4, Open MATLAB and click on the app bar above.

4 _)
=@ om APP o) B p
3 Db e M Hrass » & SIFRE © B2 >

2 B af O eee o8 Od oo Lie S a & o o

E FE = ﬁ'ﬁ' i bz eN B © TR == BT Simulink %3 & 2 EIEE &

BE =aEs - ZE ITHER BEsTeR ~ -~ [gERes - ~ i parallel ~

v
L wm =8 R SIMULINK g
G EE T » D RiySImEEE > RlySimAdv3Full » ~ 2
® | #eFED ® IR ®
fx>» = &

HEEE v
R R E
- R

110

rﬁ
\H
=
i

4.2 Virtual Camera Calibration Experiment-Routine Introduction
Task 1: Calibration of Matlab calibration board
5. Pull down the toolbar and select the Camera Calibrator toolbox.

ER

WEUEZ App & App
App 118

pedi3
» C» Use

APP

i

™

Curve Fitting Optimization

#eE, St

Classification
Learner

PR

Curve Fitting

PID Tuner

2

Distribution
Fitter

Analog Input
Recorder

MBC Model
Fitting

System
Identification

MBC
Optimization

Signal
Analyzer

&

Neural Net
Clustering

@

Image
Acquisition

&
Neural Net
Fitting

4. Visual Al 1s advanced

Instrument SimBiology
Control
s s

1Y

weJ
MATLAB Application
Coder Compiler
*

&

Neural Net Neural Net Optimization PDE Modeler

Pattern Reco.. Time Series

* *

2@l 4

Regression
Learner

Control Control Fuzzy Logic Linear System Model MPC Designer Neuro-Fuzzy PID Tuner System

System Desi.. System Tuner Designer Analyzer Reducer Designer Identification
> & > o @3
2 O E & w s B
Antenna Bit Error Rate Eye Diagram Filter Builder Filter Designer LTE Downlink LTE Test LTE LTE Uplink Radar Radar RF Budget
Designer Analysis Scope RMC Genera.. Model Gener.. Throughput.. RMC Genera.. Equation Cal.. Waveform A.. Analyzer
i
a e O

Sensor Array Signal Sonar Wavelet Wavelet Window

Analyzer Analyzer Equation Cal... Analyzer Signal Denoi... Designer

*
8 & 8 B8 @ a & & &6 -
Camera Color DICOM Ground Truth Image Image Image Batch Image Labeler Image Region Image Image Viewer Map Viewer
Calibrator Thresholder Browser Labeler Browser Acquisition Processor Analyzer Segmenter
c?) B @
OCR Trainer Registration Stereo Video Viewer Volume
Estimator Camera Cali... Viewer
»
. 1 e N 111
l L]
Tk A
I‘ » Fum

ni‘ 4. Visual Al Is advanced
4.2 Virtual Camera Calibration Experiment-Routine Introduction
« Task 1: Calibration of Matlab calibration board

« 6. After opening the toolbox, click Add Images, open to the location where we
grabbed the picture, and select the plcture C|ICk the Open button when the
selection i1s complete.

G4 ol 9ec@e

112

Al

4. Visual Al 1s advanced

4.2 Virtual Camera Calibration Experiment-Routine Introduction
« Task 1: Calibration of Matlab calibration board

« 7. In the pop-up window below, enter the size of the checkerboard. 60mm is

provided in the scene. Click OK.

‘W—Hé%m@@@@
=

2
1 E:j,:l ;':'] ﬁ @ imﬂm Ic: E Camera Model: Show Undistorted
New Open Save Add com Qut popayre | © SEndard opdons Calibrate B Fiheye sesle|TZ] Export Camera
Session Session Sessionw Imagesw Pan layout Fisheye =2 arameters
FILE ZOOM LAYOUT CAMERA MODEL | CALIBRATE VIEW EXPORT |
Data Bron Imag |
[lick the 4
r acquir o
ation pal Pattern Selection
e or e |
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
b Custom Pattern o
== 60 | millimeters v |
] a
nnnnnnnnnnnnnn o) High |

113

nl“ 4. Visual Al I1s advanced

4.2 Virtual Camera Calibration Experiment-Routine Introduction
« Task 1: Calibration of Matlab calibration board
« 8. After a few seconds, the toolbox will tell you the accepted picture. Click OK

directly. -
Total images processed: 259
Added images: 184
Partially detected patterns: 50
Rejected images: 75

view images

114

=
0
¢ n].
=
i}

4. Visual Al Is advanced

Al

4.2 Virtual Camera Calibration Experiment-Routine Introduction
« Task 1: Calibration of Matlab calibration board

* 9. You can roughly browse the checkerboard extraction quality, which should be
all on the image. Click the Calibrate button to start the calibration.

| 5
|
CALIBRATION

lar O H B @ Zoomin | P CameraModel: &) [> | @ show Undistorted
New Open Save Add S\Zoons Qut Default O standerd Options | Calibrate E Fisheve Scale| 12 Export Camera
’ Session Session Sessionw Imagesw J Pan Layout @ Fisheye b2t = Pparameters v
FILE ZOOM LAYOUT CAMERA MODEL CALIBRATE VIEW EXPORT

Data Browser | Image

. |

—— *
o
o
2
o
)
3
E %
2 S oo
k=3 =3
] w

115

4. Visual Al 1s advanced

Al

4.2 Virtual Camera Calibration Experiment-Routine Introduction
« Task 1: Calibration of Matlab calibration board

« 10. You can drag the red line to select the pictures with large backprojection error,
and press Delete to delete these pictures and recalibrate them.

CALIBRATION B ECSeRPRe

|

LLP j E E"ﬁ \:{ ;ocm Icr; E C;mera Model: @ @ Show Undistorted W
New Open Save Add ~Z20omOU pep OStandard oogon: calibrate B Fiheye Scale| 75| Export Camera
ion Session Sessionw Imagesv <JPan Layout = @ Fisheye il < Parameters ¥
| FILE ZOOM LAYOUT CAMERA MODEL CALIBRATE VIEW EXPORT
| | Data Browser Image | Reprojection Errors |
[(Detected points

Checkerboard origin
+ Reprojected points

'-T:-:l

-—':ﬂ

g 49
@
= ‘
e [= — —Overall Mean Error: 0.27 pixels]
5 8 T T i EIILE
50 100 150
Tmages
- e
| Camera-centric
=3

::_::‘l

116

i ‘ 4. Visual Al is advanced
4.2 Virtual Camera Calibration Experiment-Routine Introduction
« Task 1: Calibration of Matlab calibration board

« 11. After the results are satisfactory, click Export to export the calibration results.

CALIBRATION

CLP ‘_j Q g:ﬁ & Zoom In E Camera Model: @ @ Show Undistorted V
New Open Save Add (—} IR Default O standard Options Calibrate 3 ~ r x| |Export Camera |
Session Session Sessionw Imagesw JPan Layout @ Fisheye Wricherescele] 12 Parameters v
FILE ZOOM LAYOUT CAMERA MODEL CALIBRATE VIEW EXPORT =
| Data Browser | Image |
" j) Detected points

Checkerboard origin
+ Reprojected points

Ljpg

~

w

n

|oMow oM M = HE

117

4

FEETEEe Bl pﬁ

4.2 Virtual Camera Calibration
. :) @ 6 B8 v ~ ® @ @ B 8 @ .
Experiment-Routine Introduction) o e e o gl el owses gun :

4. Visual Al 1s advanced

. . J<a B T Em:> C: + PX4PSP » RflySimAPls » OtherVehicleTypes » DLLModelTemp - M
« Task 1: Calibration of Matlab = o=
. £ cameraParameters - @l = =

[E] Exp1_MinModelTemp.bat |®] ans Tx1 cal

- -
Cal I b rat I O n boa rd B Exp1_MinModelTemp.dll Camera Intrinsics |&| cameraParams TxT ca
"4 Exp1_MinModelTemp.slx

Intrinsics: [1X1 cameralntrinsics] I estimaionforars o
[3] Exp2 MaxModelTemp.dll

"4 Exp2_MaxModelTemp.slx

- .
» 12. Back in the Matlab workspace g || S—
" p] [E] Exp2_MaxModelTempSITL.bat RotationMatrices: [3X3%180 double]

£ GenerateModelDLLFile.p TranslationVectors: [180%3 double]
'] “| Init.m
ou'll see a structure called s T
y 8 MulticopterModel zip MeanReprojectionError: 0. 2186
& readme.tt ReprojectionBrrors: [96X2X180 double]
cameraParams, and you can double- ;
] y)
- - Calibration Settings L&
NumPatterns: 180
click to see the member variables. You
WorldPoints: [96X2 double] -
WorldUnits: "millimeters’ | |
can also enter the cameraParams. e)
NumRadialDistortionCeefficients: 2 -

EstimateTangentialDistortion: 0

Intrinsics below to view the camera
Information and enter the
cameraParams. IntrinsicM atrix to ot 4 e
view the internal reference matrix. | e —

i =EEE v | fe®s T

AR N =S

estimationBrrors =

cameraCalibrationBrrors - Eff

IntrinsicsErrors: [1¥1 intrinsicsEstimationBrrors]

— R

ni‘ 4. Visual Al Is advanced

4.2 Virtual Camera Calibration Experiment-Routine Introduction
« Task 2: Python Calibration

« 1. Start the Camera CalcDemo. Bat, run the Camera CalcDemo. Py for some time,
and a folder with captured pictures will be obtained under the working path. For
example, "

« 2. Inthe bord-Calibration. Py file, change the path in line 19 to the photo path to
be calibrated and run it

images = glob.glob(“.\20220207_220418\img1*.jpg”).
« 3. The resulting internal reference matrix is as follows.
318.71025401]

235.49389293]

—_

1]

119

0.ApiExps/3-VisionAIAPI/2.CameraCalcDemo/20220207_220418
0.ApiExps/3-VisionAIAPI/2.CameraCalcDemo/20220207_220418

nl" 4. Visual Al I1s advanced

4.2 Virtual Camera Calibration Experiment-Routine Introduction
« Task 3: Calibration Process of Python Double Small Ball

« 1. Principle: Two small balls are generated, and their distance is fixed at one meter under the
world coordinates. The proportional relationship between the world coordinate system and
the image coordinate system is judged according to the distance between the two small balls on
the image. The translation of the coordinate origin is then measured by the distance from the
midpoint of the ball line to the camera. The focal length can be obtain from that distance L
between the two small balls, the width w of the small ball on the image and the distance s

from the middle point of the line connecting the small balls to the camera

.Formula: ¢ - W"5

L
e ik
LK KL
e L ik
i IE P

>

120

ni‘ 4. Visual Al iIs advanced

4.2 Virtual Camera Calibration Experiment-Routine Introduction
« Task 3: Calibration Process of Python Double Small Ball

« 2. Run ball2-Calibration. Py in VS Code, and the result is as shown in the following
figure.

121

4. Visual Al 1s advanced

4.2 Virtual Camera Calibration Experiment-Routine Introduction
« Task 3: Calibration Process of Python Double Small Ball

ball2-Calibration.py X

t time
sys
cv2 cv
random
numpy

current - i)0 powershell
current Python
current
current gth_: . Python
current focallength x he di i . 8000 Python
current focallength x i

current

current

current

current

current

current » . -
current focallength_x ; The dis i -6250
current focallength_: . i 15600
current focallen : 8 = dis i 09250
current) i i

current gth_;

current focallength_x

current focallength x

current »

current focallength_x

current focallength

current focaller

current -
current » . 2 he dis i 9250
current focallength x 9000
current focallength_: 7250
current focallen »

current focallength x

current focallength

current focaller

current

current »

mean focal length of the camera

6.43 KiB 175, P14 =R UTF-8 CRLF Python &'

w

(OS]

" oa e

wu

N

Al

Routines see: RflySimAPIs \ Python

. - VisionAPI \ 3-VisionAlID \ 3-
4. Visual Al isadvanced comemtiverosbem

4.3 Camera coordinate conversion —
Introduction to the principle

The camera is based on the pinhole principle for imaging, a
shown in the right figure, which is a schematic diagram of
the pinhole principle. The pinhole model corresponds to the
Imaging process, the object in the real world is the imaging
target in the three-dimensional space, the pinhole is the
center of the camera, and the reflection imaging plane is a
two-dimensional image plane.

One of the characteristics of pinhole imaging is that any
point in the real world, its projection point on the imaging
plane and the center of the camera are in a straight line,
which is called central projection or perspective projection,
and is also the basis of imaging analysis. Perspective
projection is a reduced-rank spatial transmission
transformation, which projects a three-dimensional space
onto a two-dimensional plane.

7 eske

nl“ 4. Visual Al I1s advanced

4.3 Camera coordinate conversion — introduction to the principle

* In order to make complex 3D measurements with pictures, we must rely on a series
of complex calculations, which are based on the Cartesian coordinate system.
Generally, the coordinate systems related to the visual image of the UAV are as

follows:
— Image pixel coordinate system;
— Image physical coordinate system;
— Camera coordinate system;
— Body coordinate system;
— World coordinate system;

124

=
0
¢ n].
=
i}

Al

4. Visual Al 1s advanced

4.3 Camera coordinate conversion — introduction to the
principle

Image pixel coordinate system: It is a two-dimensional rectangular coordinate
system, which reflects the arrangement of pixels in the camera. Its origin O is
located in the upper left corner of the image, and the u and V coordinate axes
coincide with the two sides of the image respectively. Pixel coordinates are
discrete values (0, 1, 2, ...) , in pixels.

Image physical coordinate system: In order to relate the image to the physical
space, the image needs to be transformed into the physical coordinate system.
The origin O is located at the center of the image (ideally) and is the
intersection of the camera's optical axis and the image plane (called the
principal point). The X and y axes are parallel to the u and V axes,
respectively. The two coordinate systems are actually translation relations,
and the translation quantity is (u0, v0).

The above two can be collectively referred to as the image coordinate system,
and both coordinate systems are two-dimensional coordinate systems.

0

{iig, v

YV

\U

Al

=1
il

125

Al

4. Visual Al 1s advanced

4.3 Camera coordinate conversion — introduction to the
principle

The right figure shows two different expressions of the image
coordinate system. If we know the conversion relationship from
pixel to physical size, that is, the physical size of a pixel, that is, the
pixel size is DX DX #* dy (the size in the X direction is DX, and the
size in the y direction is dy), we can convert between the two
coordinate systems: ¢y, = 2/d,

v — v = Y/dy
In order to facilitate matrix operations, it can be written in
matrix form. The three-dimensional vector on both sides of the
formula is a homogeneous expression, that is, the third
dimension is set to 1 to represent the two-dimensional vector
with the three-dimensional vector. The advantage of this is
that the transformation from three-dimensional to two-
dimensional can be completed by matrix operation.

T e

A4

V0

126

Al

4. Visual Al 1s advanced

4.3 Camera coordinate conversion — introduction to the principle

The camera coordinate system, the body coordinate system and the world coordinate system are
all three-dimensional coordinate systems, and in the quad-rotor unmanned aerial vehicle, the
relative position between the camera coordinate system and the body coordinate system is fixed,
so that after the relative position is measured at the beginning, the camera coordinate systems
and the body coordinate systems can be considered as a whole to be discussed together, Both of
them can be regarded as a coordinate system in which the direction of the origin and coordinate
axis is bound to the initial state of the UAV, and it is a coordinate system that will move relative
to the ground;

The world coordinate system is an absolute coordinate system with a fixed position on the
ground as the origin. Its function is to unify all points in space into the same coordinate system.

The conversion between 3D coordinate systems is more convenient to be expressed by rotation
and translation, and the key and difficult point is the conversion between 3D coordinate systems
such as camera coordinate system and 2D coordinate systems such as image coordinate system.

7 esks

nl“ 4. Visual Al I1s advanced

4.3 Camera coordinate conversion — introduction to the principle

» The origin of the camera coordinate system is at the center of the camera. The XY
axis of the camera coordinate system is parallel to the XY axis of the image
coordinate system. The Z axis Is perpendicular to the image plane and faces the
Image plane. The intersection point of the Z axis and the image plane is the origin
of the image XY coordinate system (image principal point), as shown in the

following figure:
XcYcZc: A AAFR (42 mm)

T R Ep ARBLEARR LR (x,p,))

128

nl“ 4. Visual Al I1s advanced

4.3 Camera coordinate conversion — introduction to the principle

In this scheme, the Z coordinates of all pixel points on the image plane in the
camera coordinate system are equal to the focal length f, and the values in the
camera XY coordinate system and the image XY coordinate system are equal, that
IS, If the coordinates of the pixel point p in the image XY coordinate system is (X, y),

then its coordinates in the camera XY coordinate system is (X, y,).
XcYcZc: A FRR (£45: mm)
of
/ ---------- s 5 FE p MALAAR R AR (LY,)

T g alL s P AL AR A A4 (Xe, Ye, Zo)

129

4. Visual Al 1s advanced

7

4.3 Camera coordinate conversion — introduction to the principle

« Assume that the coordinates of the space point corresponding to the pixel p in the
camera coordinate system are (Xc, Yc, Zc). If two points lieonthe: = ¥ _ /tline
from the origin of the coordinate system, their coordinates are in a
relationship. That is

X, Y. Z

= v~ ~-~—-

XcYcZc: mALEIRR (4L mm)

P
-
/ ------- - g FEp AR R R L, 0

T A LG P ARALAAR R 4R (X, Ye, Zo)

TRFLE -

nl“ 4. Visual Al I1s advanced

4.3 Camera coordinate conversion — introduction to the principle

Assume that the coordinates of the space point corresponding to the pixel p in the
camera coordinate system are (Xc, Yc, Zc). If two points lie on the same straight line
from the origin of the coordinate system, their coordinates are in a proportional

relationship, Thatis —-*-2 _
In order to facilitate matrix‘opérations, it is written in matrix form:

T 7 0 0| [X,
=0 £ 0| |Y.
1 Z.

0o 0 L
You can also convert XY coordinates to UV coordinates:

Zr

U H,L 0 oy Z'—f 0 0 X. % 0 1w X,

vl = [j L Yo D I 0 Y. — i [} L v Y,
' t!y Z(- 1 ¢ Z {f_;j- 0 c

1 0O 0 1 0 0 Z Z; {0 0 1 Ze

Zc is usually called the scale factor A, and the 3x3 matrix in the middle is called the
Internal reference matrix K. Obviously, the internal reference matrix K describes the
conversion relationship from the camera coordinate system to the UV coordinate

system. e v AR
7 esks

nl“ 4. Visual Al I1s advanced

4.3 Camera coordinate conversion — introduction to the principle

The internal reference matrix K is one of the key parameters of the camera,

f

™ and L = Is actually used to convert the focal Iength f in the unit of physical size into

the focal length value in the unit of pixel, where fx = fy— fx and fy are

respectively the pixel unit values of the focal Iengths In the two pixel directions.
Finally, the matrix expression of the internal reference is obtained:

J- 0 u
K=10 f, w
o Y

132

=
0
N&]
=
i}

nl“ 4. Visual Al I1s advanced

4.3 Camera coordinate conversion —
Introduction to the principle Y1 .

» Due to the deviation of the manufacturing
process, the pixel in reality is not an absolute
rectangle, but a parallelogram, as shown in
the right figure. At this time, the vertical
boundary of the pixel is not parallel to the y-
axis but is tilted at a certain angle, so a tilt X e
factor s is introduced into the K matrix, and ¢ —

the K matrix is expressed as non-rectangular pixel @ | \a

f 8 up
K=10 [, v
0 0 1

rectangular pixel &

dx "X

A

7 esks

4. Visual Al 1s advanced

Al
4.3 Camera coordinate conversion — introduction to
the principle

« For aworld coordinate system, a fixed absolute coordinate system.

« The world coordinate system and the camera coordinate system are both
three-dimensional coordinate systems, and they can be transformed by
rotation and translation.

« Assuming that the coordinates of the space point P in the world
coordinate system are (Xw, Yw, Zw), it can be converted into the camera
coordinate system coordinates (Xc, Yc, Zc) through a 3x3 unit
orthogonal rotation matrix R and a ?v1 tranclatinn vartar t-

Yol =R3us | Yu | +83410 or |Ye| = H3xz 3.4 Z“:
Ze Ly L 1“

« The rotation matrix R and the translation vector t are called the
extrinsic parameter matrix of the camera.

134

=
£6
¥l
=1
il

Al

nl“ 4. Visual Al I1s advanced

4.3 Camera Coordinate Conversion-Routine
Introduction

Open the «
»folder.

Double-click to start the Get RelativePosDemo.
Bat file.

Open the GetRelative PosDemo. Py script, set
breakpoints for key statements, and execute
the statements one by one in debug mode.

This script shows several ways to set and
obtain coordinate position information in the
software, both in the ground coordinate
system and in the UAV coordinate system.

7 esks

£y

1]

'Ef__i

«| GetRelativePosDemo.bat

2 GetRelativePosDemo.py

| method of application.bxt

" readme.pdf

hhhhhh

135

0.ApiExps/3-VisionAIAPI/4.GetRelativePosDemo
0.ApiExps/3-VisionAIAPI/4.GetRelativePosDemo

ni‘ 4. Visual Al is advanced

4.4 Methods for Generating Data Sets —
Introduction to Routines

* Open the «

pict —~ O X

»folder.

 Double-click the launch One CameraCal. Bat
file to launch RflySim3D.

* Run the get _dateset. Py, and the aircraft will
appear in a random position on the screen and
be marked with a red box. A folder named by ,,
timestamp is added to the directory, in which o

= =5

the images directory stores the collected aircraft 5 ’
Images, and the labels directory stores the labels images
(YOLO format) correspondina to each imaae. labels

20231226_144402

7 eske

0.ApiExps/3-VisionAIAPI/5.GenVisionDataSet
0.ApiExps/3-VisionAIAPI/5.GenVisionDataSet

nl“ 4. Visual Al I1s advanced

4.4 Methods for Generating Data Sets — Introduction to Routines

« Modify the ROOT path in the maketxt. Py to the generated folder path. Be careful
to change ""\"" to "'/*" to prevent escaping.

ROOT = 'C:/PX4PSP/RflySimAPIs/PythonVisionAPI/3-VisionAIDemos/4-GenVisionDataSet/202206729 104555/

« Running the program will generate a data directory and an ImageSets directory in
the folder. The data directory is the data set directory read during training. By

default, the training set and the test set are randomly divided according to the ratio
of 9:1.

» 3-VisionAlDemos » 4-GenVisionDataSet » 20220729 104555 » ~ G It 20220729 104555 FEE
=
= i HER -] Foh
data 2022/7/29 10:54 s
images 20227729 1046 g
ImageSets 20227729 10n54 Mg
labels 202277729 10:46 TS

TBERE o
el 7% Il

Al

4. Visual Al 1s advanced

4.4 Methods for Generating Data Sets — Introduction to Routines

At present, the model of No.3 quadrotor UAV is used. If you want to change it to
another model, you need to know the coordinates of all convex points of the model,
and change the coordinates corresponding to each point of the function shown in

the following figure. Note that the following parameters

center +

center +

center +

center +

center +

center +

center +

center +

center +

np.transpose(np.dot(np.linalg.inv(eul2rot(uavAng)),
np-transpose(np.array([-0.835, -©.035,

np.transpose(np.dot(np.linalg.inv(eul2rot(uavAng)),
np-transpose(np.array([©0.245, -0.245,
np.transpose(np.dot(np.linalg.inv(eul2rot(uavAng)),

np-transpose(np.array([©.245, ©.245, -

np.transpose(np.dot(np.linalg.inv(eul2rot(uavAng)),
np-transpose(np.array([-0.245, -©.245,
np.transpose(np.dot(np.linalg.inv(eul2rot(uavAng)),

np-transpose(np.array([-0.245, ©.245,

np.transpose(np.dot(np.linalg.inv(eul2rot(uavAng)),

include the wing,.

-9.135-0.0151)))),

-0.8357)))),
©.8351)))).,
-8.8351)))),

-0.0351)))),

np-transpose(np.array([©.13, -0.13, ©.17]1)))),

np.transpose(np.dot(np.linalg.inv(eul2rot(uavAng)),

np.transpose(np.array([©.13, ©.13, ©.17]1)))),

np.transpose(np.dot(np.linalg.inv(eul2rot(uavAng)),

np-transpose(np.array([-©.13, -©8.13, ©.17])) jJ

np.transpose(np.dot(np.linalg.inv(eul2rot(uavAng)),

np.transpose(np.array([-0.13, ©.13, ©.17]))))

7 esks

138

Al

4. Visual Al 1s advanced

4.4 Methods for Generating Data Sets — Introduction to Routines

When increasing or decreasing the number of raise points of the function in the figure above, you also
need to change the number of columns in the position array shown in the figure below.

When changing the automatically generated model, you also need to change the number of the model
in the data set, that is, the "'0"" below here. Here is the name corresponding to the number 0 in the
class during training. If you want to change it to another model, please change the number, and

change the corresponding number position in the corresponding class to the required name during

training.
file.writelines(['@"', " ', str(y1), ' '

y2), ' ', str(y3), ' ', str(y4)])

Finally, if the data sets of different models need to be generated and put together to form a data set, it
Is also necessary to change the CNT starting parameter as shown in the figure, which corresponds to
the starting number of the image and txt document name when generating the data set.

7 esks

Al

4. Visual Al 1s advanced

4.5 Visual Object Recognition Experiment-Environment Configuration

For this lab, you need to first install PyTorch in the python environment, which is divided
Into a CPU version and a GPU version. If the computer's graphics card is an AMD graphics
card, only the CPU version can be installed; if it is an NVIDIA graphics card, it is
recommended to install the GPU version, which is faster.

To install the GPU version, you need to install the CUDA Toolkit and cuDNN. You can find
the installation method of the corresponding version of the graphics card in the link
and
respectively.

After the installation is completed, start to install PyTorch, enter the link
and select the corresponding installation command. If the CPU version

IS installed, select CPU in Compute Platform.

PyTorch Build Stable (1.12.0) review (Nightly) LTS (1.82)

Package Conda ip LibTorch

Python C++ [Java
CUDA CUDA CuDA o o
102 » SIS CPU

140

CUDA-18.2 PyTorch builds are no longer available for Windows, please use C
Run this Command UDA-11.6

https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/rdp/cudnn-archive
https://pytorch.org/

ni‘ 4. Visual Al Is advanced

4.5 Visual Object Recognition Experiment-Routine Introduction
This routine is located in the

* Double-click the Launch ShootBall3SITL.bat file to launch RflySim3D.

« Run the ShootBall 3.py program, and you can see the effect of the plane hitting the
ball. * [@ e —

2.AdvExps/e7_ObjDetectYolo/ShootBallBaseOnYolo
2.AdvExps/e7_ObjDetectYolo/ShootBallBaseOnYolo

ni. 4. Visual Al Is advanced

4.6 Visual Al Training Experiment-Routine Introduction
Target tracking experiment

Open the " "folder.
Right click the Tracking. Bat and select Run as Administrator to start RflySim3D.

Run the tracking. Py to see that another aircraft is generated on the right side of
the aircraft. After the two aircraft take off, the aircraft on the right side will fly to
the front and move. At the same time, a window is generated to display the
coincidence effect of the target alrcraft Identification detection frame and the
tracking detection frame.

2.AdvExps/e8_SingleObjTracking

4

Al

4. Visual Al 1s advanced

4.6 Visual Al Training Experiment-Routine Introduction
Target following experiment

This routine is located in the ™ "" folder.
Run the target _ follow. Bat as an administrator.

Run the target _ follow. Py, it can be seen that two planes take off, the right plane flies to
the front, at the same time, a window is generated to display the front plane, it can be seen
that the target plane identification detection frame, the target plane starts to move, and the

main plane follows the target plane to move. coptrias 1
v o dis_err [1.,-96.]

width_ 31.709096677631123
VX,Vy,vZ,yawrate 0.9512729003289336
copter_id: 1
center: [316, 375]
dis_err [4. -135.]
VX,Vy,VZ,yawrate ©
copter_id: 1
center: [316, 363]
dis_err [4. -123.]
VX,Vy,VZ,yawrate ©
copter_id: 1
center: [317, 344]
dis_err [3. -104.]
VX,Vy,VZ,yawrate ©
copter_id: 1
center: [317, 338]
dis_err [3. -98.]
VX,Vy,VZ,yawrate ©
copter_id: 1
center: [315, 373]
dis_err [5. -133.]
VX,Vy,VZ,yawrate ©
copter_id: 1

2.AdvExps/e9_Object-Follow

!,7‘_‘ Outline

1.

a M~ W0 D

General introduction
The base interface uses
Visual control example
Visual Al is advanced

Distributed visual simulation

At

=
¥l
|-|:n

144

nl“ 5. Distributed visual simulation

5.1 General introduction to routines

In the actual UAV top-level development and testing process, there are often the following
two requirements.

1) On-board computers (Raspberry Pi, NVIDIA Jetson Xavier NX, NANO, etc.) Running
Linux/ROS environment for visual perception algorithm (recognition, SLAM, obstacle
avoidance, etc.) Development.

2) Multiple UAV clusters perform distributed perception and control, that is, to simulate
multiple UAV clusters, each UAV needs to have its own independent vision to complete the
exploration and cooperation tasks of a specific scene.

This section builds a series of solutions for these two requirements and provides routines
and documentation. As shown in the figure below, the *
"* folder contains the remote connection debugging

methods for Raspberry Pi, NX and other hardware, which is convenient for the experiment.

RaspberryPl_connection method

" NX-T¥2Method of enabling remote access...

7 esks

145

0.ApiExps/2-DistributedSimAPI/0.Preparation
0.ApiExps/2-DistributedSimAPI/0.Preparation

nl" 5. Distributed visual simulation

5.1 General introduction to routines

and "'

" Introduces
the routines of different image transmission interfaces; "

" directory, "E1 _
OneVehilceCtrls™ introduces the routines of single unmanned vision; ""E2
Introduces the multi-UAYV routine _ MultipleVehicles'; "E3 introduces the vision-
controlled routine for an arbitrary number of UAVs _ AnyVehilces™.

Il 1 OneVehilceCtrls 2024/1/26 18:40 prgi=a

Il 2 MultipleVehicles 2024/1/26 18:40 prg =

Bl e3 AnyVehilces 2024/1/26 18:40 g s

% Readme.pdf 2024/1/22 18:33 Microsoft Edge PD...

146

0.ApiExps/4-AdvApiExps/9.VisionAPIsTest
3.CustExps/2-DistributedSimDemos
0.ApiExps/2-DistributedSimAPI/1.VisionAPIsTest
3.CustExps/2-DistributedSimDemos

4

o

)

5. Distributed visual simulation

5.2 Access to the ROS system for simulation — from algorithm development to
deployment

For ease of development and ease of use, the RflySim platform runs only on the Windows platform, but supports
the transfer of images to other computers (embedded hosts, virtual machines, desktops, etc.) via media such as

network cables.

Figure (a) below shows the implementation architecture of the previous routine. This architecture is suitable for
the rapid development and verification of a single perception algorithm. After completion, it is transplanted to the
on-board Linux/ROS system shown in Figure (B) for deployment and hardware-in-the-loop testing.

As an intermediate transition, the Python-aware algorithm module in Figure (a) can be replaced by a Linux/ROS
virtual machine environment, so that the deployment and preliminary test of the algorithm can be realized on a
sinale computer to achieve the purpose of improvina efficiencv and savina costs.

@ %l THEH/Windows £ 4t

HAH
W&

‘ RflySim3D 3 i =4

m B H A

| @ THEHL/Windows £ 5t M ekidfs ——ZeZnid s
o
i \ \
CopterSimFEANL || pxca ek fAeER
e IJ Ay =} Q
PR 2% W’ HARS

e
fiit S
R b

Python/CHLL it /8 i1 5

KA FEHIRE
=L

¥ Pixhawk/Nuttx % ¢

RflySim3 D=L i = 4

@ B HoAs

— Bl |
| ‘ PX4 KR AE3R
CopterSim7E AL iHR%

By TR

e T
. i AL
;%i o ﬂﬁiﬁi T@z%@

R 420t 5 HULinux+ROS

‘ Python/CAIL bt B i

&

P HiEHREy

l‘ ‘ 5. Distributed visual simulation
5.2 Access to the ROS system for simulation — hardware-in-the-loop simulation to

the real machine experiment

« After the airborne computer receives the image from the network (currently using UDP protocol), it can directly
process the image, or forward it to other sensing modules through ROS nodes.

« Pixhawk is directly connected to the onboard computer through a serial port cable, which is the same as the
hardware connection on the real machine.

« Directly insert the output of Pixhawk/PX4 flight control into the electric controller, and connect the image
acquisition interface to the camera to complete the migration from the hardware-in-the-loop simulation shown in
Figure (B) to the real machine system shown in Figure (C).

Q f HEHL/Windows £ 4; we Pixhawk/Nuttx & i : P Pixhawk/Nuttx & 4t
peb ‘ P4 T L ‘ N
CopterSimJt A#L n (E RS PX4 CIE M RS
, L i I1X'
B LA e Xt I
A€
: i flitt PR
ﬁﬁi ﬁil T%%U - W‘f‘i T;v‘z%u
‘ ﬁ HLEEH E H/Linux+ROS po: | ML AL/ Linux+ROS
. ‘ RflySim3DsE i =4k N L2850 L X B Rk
TR ()] 252 python‘/_’cyl‘l_l‘gl‘@@%n WLEEN J31kEA 5 Pyth—OnLCT)u;Luu H
ag | @ SRR SR @ SRR
ARHL

5. Distributed visual simulation

7

5.3 Distributed Cluster Networking Simulation — R FR T il e
UAV Quantity Expansion Scheme

« Whether from the perspective of multi-machine
simulation or from the perspective of UAV real clustel
control, communication bandwidth and computing
performance are always important bottlenecks
restricting the increase of the number of clusters.

* Due to the performance bottleneck of the simulation
computer, the number of hardware-in-the-loop
simulations that a single computer can connect to
Pixhawk is limited, so it is necessary to realize the
arbitrary expansion of the number of UAVs by
networking multiple computers.

« Asthe number of UAVs increases, the amount of data
that aircraft communicate with each other increases
dramatically until the communication bandwidth
reaches saturation. Therefore, it is necessary to divide
the whole UAV cluster into several subgroups, and ust
the network hierarchical approach to achieve a larger

scale of cluster simulation.
|
AR

PSS H

o

4

5.3 Distributed Cluster Network
Simulation-Communication
Optimization Scheme

_ heco of .

The communication between each program
inside the computer adopts the shared
memory or UDP communication mode, and
the transmission of large data such as
images is directly operated on the memory,
with the lowest delay and the fastest speed.

Each computer can open multiple
hardware/software in-loop simulation
systems to simulate multiple UAVSs, and the
flight control and airborne computers are
connected through wired data transmission
to reduce latency.

The data sent and received by each
computer is collected, compressed and

synchronized by a specific module, and then

sent out to ensure smooth communication
within the network.

(DDS protocol), support large-scale cluster
simulation.

5. Distributed visual simulation

S g Pixhawk/Nuttx 5 4t

| PX4 T

ey Ui AL

.\‘

3

& Pixhawk/Nuttx £ 4t

glilﬁﬁﬁﬁffﬂllwmdows HLER AL/ Linux
| |Rf| SmaDIH = Python/C 1L /& A1
CopterSi ySIm3DILIN = SR
Tk i;;g%mjﬁt gL [A -

Z A
/UDPIE(Z

[

UJ‘ﬁf?:?fEN

| PX4 KRR | A7

| CopterSim7t A #HL
RERLT AN

RflySim3D s} = L ECHLN/Linux
@ [

Python/CHIL i J& Al

QE!@E#%MZ/Windows

A

A SEHIREN

‘ﬁﬁig\ﬁﬁ\
A R LR
A

LA

s, ma,
A fh AL

-l
-

4/,‘ GRHE S SHL
‘\ -

QE! {7 FLL SH13/Windows glﬁwﬁﬁﬁmwwmdows

ZH W 3 A

| s s, g,
A HER. AR

‘ﬁ%i%\ﬁﬁ\
a R P

Al

5. Distributed visual simulation

5.3 Distributed Cluster Network Simulation — Image Transmission Network Optimization

» Inorder to avoid transmitting a large number of images in the LAN, in this simulation framework, the visual
images of the RflySim simulation computer are directly sent to the embedded host under the underlying switch
in the form of a specified IP, and are not transmitted to the upper layer.

» In the upper router (switch), the state data of UAV is mainly transmitted, and the subscription and publication

mechanism is adopted to avoid useless communication.

psddi | -
SEREARIEMT AL

>

E R AR A

\

N7

HbTH] =1 -

- N =

Y \-ﬁ

JRJEAE He 1L JIREAZHALN

X 2 T FET EE

RflySimiz) Wl | EI& N L T e | B
Jey s RflySimiz 3/ BLE AR B PLE AL 5
=t F =2 B 10 38 HEED B

o]

EEZI

-

Pixhawk

EEEIG

151

O JeisemEs
‘L“ 5. Distributed visual simulation .

5.4 Remote access method of embedded host

« Because the distributed experiment involves many computers or embedded small hosts, in order to facilitate the
observation of the results of subsequent experiments, it is recommended to use the ""'remote desktop connection™
tool to connect other hosts under the Windows computer running on the RflySim platform. Note: Of course, you
can also use a remote access tool dedicated to the embedded host (with a graphical interface, not a single
command line).

« If the remote host is a Windows system, then after upgrading the professional version platform and enabling
remote access, you can directly access the remote through the host name and enter the account password.

« If the remote host is a Raspberry Pi (or an Ubuntu system), You can go to the directory 8. RflySimVision \ 0.
Api Exps \ 2-Distributed SImAPI \ 0. Preparation \" RaspberryPl _ connection method ",

« And follow that steps in the document to configure the Raspberry Pi and get the 1P address from the rni it
Graphical access is available through the Remote Desktop Connection tool. T
Note: Our hardware is ready for direct connection.

« Ifitis TX2or NX, it can be configured through the document ""RflySimAPI
Distributed SimAPI \ 0.Preparation', and then through the IP address .

Address and login password to connect. The effect is shown in the right figure.

AR R

; ‘ 5. Distributed visual simulation
L "DataCheckFreq™:200,

"SendProtocol”: ©,127,0,06,1,9999,0,0
5.5 Interface Test Lab-Introduction to Routine "CameraFOV" :90,
« See the directory " "* for the experiment routines
« The key configuration item is the SendProtocol [8] vector in the Config. JSON configuration file in section 2.4 of this lecture.
« Where, SendProtocol [0] represents four graph transfer protocols.
« 0: UE4 writes the image into the shared memory. Other programs of this computer can read the image through the memory.
If the remote computer needs the image, it can forward the image again. Features: The shared memory mode allows the local

machine to read pictures at a high speed, but when the remote computer reads pictures, it needs additional transfer, and the
amount of calculation and delay are large.

« 1: UDP is directly transmitted to the remote computer (through the IP specified by SendProtocol [1-4]), and PNG
compression is used for sending compression and receiving decompression. Features: Low latency, PNG lossless compression,
low compression ratio but good quality.

« 2: UDP is directly transmitted to the remote computer, and the picture is not compressed. Features: minimum delay, small
amount of calculation, high network pressure.

« 3: UDP is directly transmitted to the remote computer, and JPG compression is used. Features: Low network pressure,
moderate delay and computation, but the image is lossy compression, with a slight loss of accuracy, but it meets the real-time
visual control requirements of UAV.

« Note: The free version can only use the 0 mode, and the full version is recommended to use the 3 mode (default for
subsequent routines).

7 esks

0.ApiExps/2-DistributedSimAPI/1.VisionAPIsTest

nl“ 5. Distributed visual simulation

5.5 Interface Test Experiment-Routine File Structure

See " " for the
experiment routine.

It can be seen from the right figure that the six routines correspond to four
Image transmission modes, namely, shared memory, PNG direct transmission,
uncompressed direct transmission, JPEG direct transmission, IMU data
acquisition, image acquisition and transmission limit delay experiment.

The following types of files are included in the routine:

Client _ * *.bat file: enable the software/hardware in-loop simulation, and set
the number of aircraft to 1 in this routine.

Config. JSON file: configure camera parameters, including several cameras,
camera position, camera type (RGB, depth, etc.)

File client _ ued.py: start the script for image transmission
File server _ued.py: Enable image reception and control
Python 38Run.bat: Platform Python shortcut

** ROS. Py files: ROS-enabled routines and interfaces

7 esks

FS

1-VisionCapAPI-UE4Dire
2-VisionCapAPI-UE4Dir
3-VisionCapAPI-UE4Dire

4-VisionCapAPI-UE4Dire:

ctUDP-PNGConpre.

ectUDP-NoComprass

ctUDP-JPEGCompr...

ctUDP-JPEGCompr.

5-VisionCapAPI-IMUDataGet

6-VisionCapAPI-UE4Dire

Config.json

Y readme.pdf

| readme.txt

ctUDP-DelayTest

& client_ued.py
« | client_ued HITL.bat

= | client_ued SITL.bat

= | Python38Run.bat

® server RosTrans.py

® server_ued poy

& server_ usdROS. py

154

0.ApiExps/4-AdvApiExps/9.VisionAPIsTest

5. Distributed visual simulation

5.6 Interface test experiment — single computer

experiment
« Four modes of test routines, on a computer, can be tested in the following
way

« Double-click to run the ""client _ue4" _SITL. Bat "'to open the software in-
the-loop simulation of an aircraft

« Double-click to run ""Python 38Run.bat" to start the platform Python
environment, and enter the command "*python client _ ue4.py" to start the
Image request and image forwarding. (VS Code can only run one program,
which is reserved for server)

 Open "server _ued.py" with VS Code, read the code and run the routine.

« The motion of the four experimental aircraft is the same. They all take off
to 10 meters and begin to fly in circles.

« After all server programs are run, three image data are obtained, which
are RGB, depth, and grayscale.

« Inmode 0, the client can preview three images. In other modes, there is no
image without python transfer.

close objects. In the experiment, it is whlten)tagﬁoﬁ = F E 155
| of

nl" 5. Distributed visual simulation

5.6 Interface test experiment — dual computer experiment

The process is basically the same as that of a single computer, except that the client needs to add the IP of a
remote computer (Windows computer, Linux computer or Raspberry Pi), and the server program needs to
run on the remote computer. The steps are as follows:

Observe the local IP address (for example, 192.168.3.80) and the IP address of the remote computer (for
example, 192.168.3.81) through the router, and record the IP address.

Double-click to run the *'client _ue4' _SITL. Bat ""to open the software in-the-loop simulation of an aircraft.
Note: The routine uses the broadcast mode for MAVLIink data transmission by default. In order to improve
the efficiency, the "SET IS _ BROADCAST = 1" statement can be changed into ""'SET IS _ BROADCAST =
192.168.3.81", where the IP address of the remote computer needs to be filled in.

Open ""client _ ued.py' with VS Code, uncomment the following statement "'# vis. RemotSendIP =", and set
the IP address to the IP address of the remote computer, for example, "vis. RemotSendIP ='192.168.3.81""

Copy all the files in the folder to another computer, open "'server _ ue4.py" through Python environment or
VS Code and run it to receive and display the pictures. Note: In order to improve the communication
efficiency, the ""255.255.255.255" broadcast address can be changed to the ""192.168.3.80"" host address.

Note: Uncomment "# print (' Img |dx) in the ""VisionCaptureApi. Py" "'to observe the category and

=N ll 1mestamn of each o (114 (A1) [)E E() 1() Alld =z1flomI= ()£ OCHrOLUSH) AN DACKEe

loss rate. n‘ _l||_|J'!“| 156

5. Distributed visual simulation

Al
5.7 Single Aircraft Visual Control Experiment

 Enter the" ""directory, and
you can see the previous visual API, ball impact, ring piercing, and binocular face recognition
routines. It is reproduced here in a distributed way.

« The experimental process is basically the same as the previous one, and the experimental effect is the
same as Section 3.

« For stand-alone experiments, run bat first, then Python client, and finally server.

« For online experiment, first record the IP addresses of the two hosts, then run bat, open the client
with VS Code and set the IP address of the host, finally copy all files to the remote host, and then run
server.

1-P¥ACtIT 2-ShootBa 3-CrossRi 4-ManDet
est Il ng ect

« Note: If there are not many computers in the LAN, you can directly modify the client and set the IP
address of the remote host to the broadcast address of "'255.255.255.255"" without going to the router
to check the IP address of the computer.

* Note: It is recommended to set the IP address of the computer or embedded host as static IP in the
router, so that the IP address will not change after each restart, and there is no need to query the IP
address frequently.

3.CustExps/2-DistributedSimDemos/e1_OneVehilceCtrls

4

Al

5. Distributed visual simulation

5.8 Multi-Aircraft Visual Control Experiment-General Introduction

Enter the directory of "
"', and you can see several experiment routines.
The file names have the following meanings:

TransMode indicates the transfer mode, 0 is the shared memory, and 3 is the JPEG direct
transfer.

SITL indicates the use of PX4 software in-loop simulation, which requires running SITL *
*.bat to start the simulation closed loop; HITL indicates hardware in-loop simulation.

UDP indicates that the communication between the flight control and the Server is in UDP
mode, while Serial indicates that the data transmission module needs to be used to
communicate between the flight control and the Server through the serial port.

Local indicates that the lab can be run on a single computer; Remote indicates that the lab
requires at least two computers and requires an IP address.

The suffix of **_" indicates the number of aircraft. If there is no suffix, the default is 1
aircraft with 3 cameras. 2V4C indicates 2 aircraft with 4 cameras, that is, 2 cameras for each
aircraft.

The AllSourceFile folder is the template source file for all routines.

1-SITLUdpDemo TransModel Local
2-5ITLUdpDemo TransMode3 Local
3-HITLUdpDemo TransMode3 Local
4-HITLSerialDemo _TransMode3 Local
5-5ITLUdpDemo TransMode3 Remote
6-HITLUdpDemo TransMode3 Remote
7-HITLSerialDemo TransMode3 Remote
8-5ITLUdpDemo_TransMode3_Local_2Vehi...
8-5ITLUdpDemo Transhode3 Remote 2V...
10-HITLSerialD'emo TransMode3 Remote ...

AllSourceFile

" Readme.pdf

7 esks

158

3.CustExps/2-DistributedSimDemos/e2_MultipleVehicles
3.CustExps/2-DistributedSimDemos/e2_MultipleVehicles

4

Al

5. Distributed visual simulation

5.8 Multi-Aircraft Visual Control Experiment-Routine Introduction {}] re ﬁ +

Entering the ""1-SITLUdpDemo _ TransModeO _ Local" directory, you can see several files Configjso Config.pdf Configxls ~ ConfigWri
used to generate the required aircraft and camera routines with one click. " * te.m

The Config. JSON is the same as the previous profile, defining parameters for multiple
cameras. Note: The maximum number of cameras supported by each aircraft should be
defined here, and the first few of them can be selected and enabled in the config. XIsx.

The config. Xlsx defines Windows host data, the number of Linux hosts (the same as the
number of aircraft) and IP addresses, the location of each aircraft, the number of cameras
on each aircraft, and so on.

According to the distributed simulation framework defined in the Config. Xlsx, the
ConfigWrite. M can automatically generate distributed simulation routines of any number
of aircraft, and can select a variety of simulation modes. The template file for the routine

« 1-SITLUdpDemo _TransMo... > VisionDemol >

comes from the ""All Source File' folder in the upper directory. = e
The experimental process is also very simple: 1) Use MATLAB to locate the directory where e el
the ""ConfigWrite. M™ file ""is located, and then right click to run it to generate the folder of WindowsPCT 2ozl

Vision Demo *, where * represents the total number of aircraft; 2) Run the bat Qidong
script of Windows PC * on the simulation computer, and then run the client image transfer
program; 3) Copy LinuxNXX * to the remote host, and run the server. Note: Support multi-

7 esks

5. Distributed visual simulation

Al

5.8 Multi-Aircraft Visual Control Experiment-Introduction to Config. Xlsx Usage

Hardware or software in the loop (HIL/SIL), UDP or serial
HIL or SIL, UDP or Serial, communication (UDP/Serial), serial port number (HIL only), baud

COM Name ,Baud Num rate (HIL only) SIL UDP
WindowsPCIPLIist IP address of the Windows computer 127.0.0.1
VehicleNumOnPC Number of aircraft on each Windows PC 1
IP list for each embedded computer NXX, the number of which
NXXIPList shall be the same as the number of aircraft 127.0.0.1
CameraNumL.ist Number of cameras per aircraft 3
VehicleXPosList(m) List of X coordinates of the aircraft in m 0
\ehicleYPosList(m) List of Y coordinates of the aircraft in m 0
VehicleYawL.ist(degree) List of yaw angles of the aircraft in radians 0
UE4 MAP Map name or serial number GrassLands
When the software is in the loop, set the PX4 internal rack Airframe
PX4SitIFrame type iris
The name or serial number of the DLL model. By default, select 0
DLLModel for multi-rotor, and select DLL for fixed-wing, etc. 0

Whether to enable synchronous startup 0: Do not enable

synchronous startup 1: Enable synchronous startup, and trigger the
- preceding aircraft after the last aircraft command is executed 2:
Trigger the preceding aircraft in turn after the last aircraft script runs;
the second column of this option can set the delay time (s) for

5. Distributed visual simulation

Al

5.8 Multi-Aircraft Visual Control Experiment-Introduction to Config. Xlsx Usage
« Take HITLUdpDemo _Local 1V3C as an example.

* You need to use HITL hardware in the loop, so you need to prepare a Pixhawk and connect it to your
computer.

* In Local mode, both the computer and the remote host IP address are set to 127.0.0.1

» One computer, one plane, so the Windows PC IP List has only one column, and each plane has three
cameras.

« Experimental steps: Run the bat and client of Windows PC1, and then run the server under Linux

NXX1. HiLorSIL UDP or
Serial, COM Name

,Baud Num HIL UDP
WindowsPCIPList 127.0.0.1
VehicleNumOnPC

NXXIPList 127.0.0.1
CameraNumList

VehicleXPosList(m)
VehicleYPosList(m)
VehicleYawlList(degree)

161

Al

5. Distributed visual simulation

5.8 Multi-Aircraft Visual Control Experiment-Introduction to Config. Xlsx Usage

Taking the HITLSerialDemo _ Local _1V3C as an example, it is necessary to prepare a data
transmission connection between the flight control TELEM1 and the computer USB port, that is to
say, the computer needs to occupy two USB ports, one for HITL simulation and the other for server
and PX4 communication.

In the following table, COM14 is the serial port number of data transmission, and the 57600 is the
baud rate of data transmission, which can be set in QGC.

HIL or SIL, UDP or
Serial, COM Name
.Baud Num HIL Serial COM14 57600

WindowsPCIPList 127.0.0.1
VehicleNumOnPC 1
NXXIPList 127.0.0.1
CameraNumlList
VehicleXPosList(m)
VehicleYPosList(m)
VehicleYawList(degree)

O O O Ww

162

=
£6
¢ n].
=i
il

5. Distributed visual simulation

Al

5.8 Multi-Aircraft Visual Control Experiment-Introduction to Config. Xlsx Usage
« Taking the SITLUdpDemo _ Remote _ 1V3C as an example, it is necessary to prepare: 1 computer, 1
host, 1 router (or switch), power supply, and several network cables.

* Inthe table below, 192.168.3.80 is the computer IP, and 192.168.3.55 is the remote host IP, which
needs to be modified according to the personal network configuration.

» During the experiment, the files in the Windows PC1 directory were run on the computer, and the
files in the Linux NXX1 directory were copied to the host computer to run.

HIL or SIL, UDP or \
Serial, COM Name
,Baud Num SIL UDP

WindowsPCIPList 192.168.3.80
VehicleNumOnPC 1
NXXIPList 192.168.3.55
CameraNumList
VehicleXPosList(m)
VehicleYPosList(m)
VehicleYawList(degree)

O O O w

163

ni. 5. Distributed visual simulation

5.8 Multi-Aircraft Visual Control Experiment-Introduction to Config. Xlsx Usage

« Taking the HITLUdpDemo _ Remote 1V3C as an example, it Is necessary to
prepare: 1 computer, 1 host, 1 flight control, 1 router (or switch), power supply
and several network cables.

HIL or SIL, UDP or
Serial, COM Name

,Baud Num HIL UDP
WindowsPCIPList 192.168.3.80
VehicleNumOnPC 1
NXXIPList 192.168.3.82

CameraNumlList
VehicleXPosList(m)
VehicleYPosList(m)
VehicleYawlist(degree)

o O o w

164

=
£6
¢ n].
=i
il

ni‘ 5. Distributed visual simulation

5.8 Multi-Aircraft Visual Control Experiment-Introduction to Config. Xlsx Usage

« Taking the HITLSerial Demo _Remote _1V3C as an example, it is necessary to
prepare: 1 computer, 1 host, 1 flight control, 1 data transmission, 1 router (or
switch), power supply and several network cables.

HIL or SIL, UDP or
Serial, COM Name
.Baud Num HIL Serial /dev/ttyUSBO 57600

WindowsPCIPList 192.168.3.80
VehicleNumOnPC 1
NXXIPList 192.168.3.82
CameraNumlList
VehicleXPosList(m)
VehicleYPosList(m)
VehicleYawList(degree)

o O O w

165

=
£6
¢ n].
=i
il

ni‘ 5. Distributed visual simulation

5.8 Multi-Aircraft Visual Control Experiment-Introduction to Config. Xlsx Usage

« Take SITLUdpDemo _Remote 2V4C as an example, it is required to prepare: 1
computer, 2 hosts, 1 router (or switch), power supply and several network cables.

HIL or SIL, UDP or
Serial, COM Name
Baud Num SIL UDP

WindowsPCIPList 192.168.3.80
VehicleNumOnPC 2

NXXIPList 192.168.3.81 192.168.3.82
CameraNumlList

VehicleXPosList(m)
VehicleYPosList(m)
VehicleYawList(degree)

, -8 |
d 4 - '/_ \ = K '

O O O N
O O N

166

@
=
411
¥
ﬁlﬁ

5. Distributed visual simulation

Al

5.8 Multi-Aircraft Visual Control Experiment-Introduction to Config. Xlsx Usage

« Take the HITLSerial Demo _Remote _2V4C as an example, it Is necessary to
prepare: 1 computer, 2 hosts, 2 flight controllers, 2 data transmitters, 1 router (or
switch), power supply and several network cables.

HIL or SIL, UDP or
Serial, COM Name

,Baud Num HIL Serial /dev/ttyUSBO
WindowsPCIPList 192.168.3.80

VehicleNumOnPC 2

NXXIPList 192.168.3.81 192.168.3.82

CameraNumlList 2 2
VehicleXPosList(m) 0 1
VehicleYPosList(m) 0 0
VehicleYawList(degree) 0 0

167

=
£6
¢ n].
=i
il

5. Distributed visual simulation

Al

5.9 Multi-Computer Multi-Aircraft Vision Control Experiment-General Introduction

 Enter the ™
""directory, and you can see the routines of multi-computer and multi-aircraft. The

theory class supports the networking of any number of computers and hosts in the
LAN, but the architecture shown in the following figure must be adopted. Ensure
that the image is only propagated within the underlying switch using the specified

_ « 4-DistributedSimAPI > 4-AnyVehilces
- L SN R R 2R ~ .
N2 =
z -
LT FRIE/ MJ.JJC 1-SITLUdpDemo _local 2v2C
i T 35 O _
—= e " 2-SITLUdpDemo_Remote 2V2C
| SRS] | EESIN -
25 x| 28 Xx] 248 .
o s e | R e | R (24 RET EEY 3-HITLSerialDemo_Remote 2V2C
RilySim =2 DL | DL B | RflySimiz) b s | PR puag i | &
S — e e + S HE R, 4-SITLUdpDemo_local_4V4C

KbFE

5-SITLUdpDemo_Remote 4V4C

‘ =) ﬁ
Ptk
o s 41-’ ?
P =

LA

o Pixhawk

| sp

6-HITLSerialDemo_Remote 4V4C

o Plxhawk .
2 4% 4 AllSourceFile

USB/ME &g | H X 2

168

U SB/% /g &3 USB/{k /% &3]
— R s

3.CustExps/2-DistributedSimDemos/e3_AnyVehilces

4

Al

5. Distributed visual simulation

5.9 Multi-Computer Multi-Aircraft Visual Control Experiment-Introduction to
Config. Xlsx Usage

Take the SITLUdpDemo _ Remote _ 4V4C (each computer is equipped with two airplanes, and each
airplane is equipped with one camera) as an example. It is necessary to prepare two computers, four
hosts, two routers (or switches), a power supply, and several network cables.

Six IP addresses need to be filled in, and the experimental phenomenon is that the aircraft penetrate
the ring in turn and are visible to each other (occlusion may lead to the failure of penetrating the ring).

HIL or SIL, UDP or
Serial, COM Name
,Baud Num

WindowsPCIPList
VehicleNumOnPC
NXXIPList
CameraNumlList
VehicleXPosList(m)
VehicleYPosList(m)

VehicleYawList(degree)
UE4_MAP
PX4SitlIFrame

DLLModel

isEnableSyncStart
iIsEnableIMUSend

ﬁETfFESHﬂtFEH(H'US'L)
OS({XHIUES), #iF
WindowsH f A9 1PHh i
B WindowsEs fx_E 8 k2
FBMARBRNXXEIPT R, HENIZS WIEHEE
g6 Wl LEYIHE

TKALBIXAFRTIFR, BAIm

KB YARFRT SR, BAIm

LB RAT A E TSR, RAEE

HWERFHFS

BRI, R EPXAAEBHLERAIrframeZE FY

DLLERAMNHFHFS, RINDEER0, BEEFFR
DLL

EaTERT B

0: RIFBREFEF

11 FFRREL RS, &E— N WiaMiTEMARTE Wl
2: BRE—NWIHAEZTRE, RRKBAIE W, AL
F25 T IREERARRHIRS[E) (s)

BR=IT BIMUEIR & 3£

UDP=} & O 1B15(UDP/Serial), &
E(RHILES)

5 Bk

SIL UDP
192.168.3.80 192.168.3.79
2 2
192.168.3.81 192.168.3.82 192.168.3.83 192.168.3.84
1 1 1 1
-0.5 -0.5 0.5 0.5
-0.5 0.5 -0.5 0.5
0 0 0 0
VisionRing

iris

169

4

Al

5. Distributed visual simulation

5.9 Multi-Computer Multi-Aircraft Visual Control Experiment-Introduction to
Config. Xlsx Usage
Taking the HITLSerial Demo _ Remote _ 4V4C (each computer is equipped with two airplanes, and

each airplane is equipped with one camera) as an example, it is necessary to prepare two computers,
four hosts, four flight controllers, four data transmitters, two routers (or switches), a power supply,

and several network cables.

The synchronous start simulation function can be enabled. When the last host runs the server, the
server program blocked in front will be triggered in turn to realize the phenomenon that the aircraft
passes through the ring at the same time or in turn.

HIL or SIL, UDP or
Serial, COM Name
,Baud Num
WindowsPCIPList
VehicleNumOnPC
NXXIPList
CameraNumList
VehicleXPosList(m)
VehicleYPosList(m)
VehicleYawList(degree)
UE4_MAP
PX4SitIFrame

DLLModel

isEnableSyncStart
isEnableIMUSend

SR EIRHIUSIL), UDPEL & MiB15(UDP/Serial), &
AS{XHUES), EHFR(IXHUES)
WindowsEs fxfdIPH 3
£ BWindowsH fiz E Ak E
FHARBRNXXHIPFIFR, FENIZS WIHERR
FE W LEYEE
TKHLAIXERTIZR, BAIm
kALY ARARTIFR, EfIm
MR A SR, BAEIE
WEZFHFS
RUGERE, REBPX4RIFHLERAIrframeZk R
DLLEEIMZFHFS, RIAZHERE0, BERERER
DLL
A ERY R
0. AFAREDEH
1. FREZE, RE—N MeSiTEMERTE Wl
2. BE— N WIHAETE, fORMERTE W, RED]
F25 % B IR & AIRTE) (s)
EEFBIMUEHRER %

——_

HIL Serial /dev/ttyUSBO
192.168.3.80 192.168.3.79
2 2
192.168.3.81 192.168.3.82 192.168.3.83
1 1 1
-0.5 -0.5 0.5
-0.5 0.5 -05
0 0 0
VisionRing

iris

57600

192.168.3.84

1

05
0.5
0

170

i ' Brief summary
» This lecture mainly explains the development course of flight control algorithm, which is divided into two parts: basic
experiment and advanced experiment, so that students can familiarize themselves with the development process of
multi-rotor theoretical design, RflySim platform simulation and physical real machine control as soon as possible.
» The basic experiment is based on the RflySim platform software-in-the-loop and hardware-in-the-loop simulation
process learning, and the advanced experiment is based on the learning route of multi-rotor theoretical design and

modeling experiment — estimation experiment — control experiment — decision-making experiment.

If you have any questions, please go to the for more information.

RflySim More Scanning code Freescale RflySim
ttoriars ecnnology Excnange

; mliftion Group 171

https://doc.rflysim.com/
https://space.bilibili.com/3493283546269949?spm_id_from=333.1007.0.0

Thank you!

7 esks

	幻灯片 1
	幻灯片 2: Outline
	幻灯片 3: 1. General introduction
	幻灯片 4: 1. General introduction
	幻灯片 5: 1. General introduction
	幻灯片 6: 1. General introduction
	幻灯片 7: 1. General introduction
	幻灯片 8: Outline
	幻灯片 9: 2. The base interface uses
	幻灯片 10: 2. The base interface uses
	幻灯片 11: 2. The base interface uses
	幻灯片 12: 2. The base interface uses
	幻灯片 13: 2. The base interface uses
	幻灯片 14: 2. The base interface uses
	幻灯片 15: 2. The base interface uses
	幻灯片 16: 2. The base interface uses
	幻灯片 17: 2. The base interface uses
	幻灯片 18: 2. The base interface uses
	幻灯片 19: 2. The base interface uses
	幻灯片 20: 2. The base interface uses
	幻灯片 21: 2. The base interface uses
	幻灯片 22: 2. The base interface uses
	幻灯片 23: 2. The base interface uses
	幻灯片 24: 2. The base interface uses
	幻灯片 25: 2. The base interface uses
	幻灯片 26: 2. The base interface uses
	幻灯片 27: 2. The base interface uses
	幻灯片 28: 2. The base interface uses
	幻灯片 29: 2. The base interface uses
	幻灯片 30: 2. The base interface uses
	幻灯片 31: 2. The base interface uses
	幻灯片 32: 2. The base interface uses
	幻灯片 33: 2. The base interface uses
	幻灯片 34: 2. The base interface uses
	幻灯片 35: 2. The base interface uses
	幻灯片 36: 2. The base interface uses
	幻灯片 37: 2. The base interface uses
	幻灯片 38: 2. The base interface uses
	幻灯片 39: 2. The base interface uses
	幻灯片 40: 2. The base interface uses
	幻灯片 41: 2. The base interface uses
	幻灯片 42: 2. The base interface uses
	幻灯片 43: 2. The base interface uses
	幻灯片 44: 2. The base interface uses
	幻灯片 45: 2. The base interface uses
	幻灯片 46: 2. The base interface uses
	幻灯片 47: 2. The base interface uses
	幻灯片 48: 2. The base interface uses
	幻灯片 49: 2. The base interface uses
	幻灯片 50: 2. The base interface uses
	幻灯片 51: 2. The base interface uses
	幻灯片 52: 2. The base interface uses
	幻灯片 53: 2. The base interface uses
	幻灯片 54: 2. The base interface uses
	幻灯片 55: 2. The base interface uses
	幻灯片 56: 2. The base interface uses
	幻灯片 57: 2. The base interface uses
	幻灯片 58: 2. The base interface uses
	幻灯片 59: 2. The base interface uses
	幻灯片 60: Outline
	幻灯片 61: 3. Visual control example
	幻灯片 62: 3. Visual control example
	幻灯片 63: 3. Visual control example
	幻灯片 64: 3. Visual control example
	幻灯片 65: 3. Visual control example
	幻灯片 66: 3. Visual control example
	幻灯片 67
	幻灯片 68: 3. Visual control example
	幻灯片 69: 3. Visual control example
	幻灯片 70: 3. Visual control example
	幻灯片 71: 3. Visual control example
	幻灯片 72: 3. Visual control example
	幻灯片 73
	幻灯片 74: 3. Visual control example
	幻灯片 75: 3. Visual control example
	幻灯片 76: 3. Visual control example
	幻灯片 77
	幻灯片 78: 3. Visual control example
	幻灯片 79: 3. Visual control example
	幻灯片 80: 3. Visual control example
	幻灯片 81: 3. Visual control example
	幻灯片 82
	幻灯片 83: 3. Visual control example
	幻灯片 84: 3. Visual control example
	幻灯片 85: 3. Visual control example
	幻灯片 86: 3. Visual control example
	幻灯片 87: 3. Visual control example
	幻灯片 88: Outline
	幻灯片 89: 4. Visual AI is advanced
	幻灯片 90: 4. Visual AI is advanced
	幻灯片 91: 4. Visual AI is advanced
	幻灯片 92
	幻灯片 93: 4. Visual AI is advanced
	幻灯片 94: 4. Visual AI is advanced
	幻灯片 95: 4. Visual AI is advanced
	幻灯片 96: 4. Visual AI is advanced
	幻灯片 97: 4. Visual AI is advanced
	幻灯片 98: 4. Visual AI is advanced
	幻灯片 99: 4. Visual AI is advanced
	幻灯片 100: 4. Visual AI is advanced
	幻灯片 101: 4. Visual AI is advanced
	幻灯片 102: 4. Visual AI is advanced
	幻灯片 103: 4. Visual AI is advanced
	幻灯片 104: 4. Visual AI is advanced
	幻灯片 105: 4. Visual AI is advanced
	幻灯片 106: 4. Visual AI is advanced
	幻灯片 107: 4. Visual AI is advanced
	幻灯片 108: 4. Visual AI is advanced
	幻灯片 109: 4. Visual AI is advanced
	幻灯片 110: 4. Visual AI is advanced
	幻灯片 111: 4. Visual AI is advanced
	幻灯片 112: 4. Visual AI is advanced
	幻灯片 113: 4. Visual AI is advanced
	幻灯片 114: 4. Visual AI is advanced
	幻灯片 115: 4. Visual AI is advanced
	幻灯片 116: 4. Visual AI is advanced
	幻灯片 117: 4. Visual AI is advanced
	幻灯片 118: 4. Visual AI is advanced
	幻灯片 119: 4. Visual AI is advanced
	幻灯片 120: 4. Visual AI is advanced
	幻灯片 121: 4. Visual AI is advanced
	幻灯片 122: 4. Visual AI is advanced
	幻灯片 123: 4. Visual AI is advanced
	幻灯片 124: 4. Visual AI is advanced
	幻灯片 125: 4. Visual AI is advanced
	幻灯片 126: 4. Visual AI is advanced
	幻灯片 127: 4. Visual AI is advanced
	幻灯片 128: 4. Visual AI is advanced
	幻灯片 129: 4. Visual AI is advanced
	幻灯片 130: 4. Visual AI is advanced
	幻灯片 131: 4. Visual AI is advanced
	幻灯片 132: 4. Visual AI is advanced
	幻灯片 133: 4. Visual AI is advanced
	幻灯片 134: 4. Visual AI is advanced
	幻灯片 135: 4. Visual AI is advanced
	幻灯片 136: 4. Visual AI is advanced
	幻灯片 137: 4. Visual AI is advanced
	幻灯片 138: 4. Visual AI is advanced
	幻灯片 139: 4. Visual AI is advanced
	幻灯片 140: 4. Visual AI is advanced
	幻灯片 141: 4. Visual AI is advanced
	幻灯片 142: 4. Visual AI is advanced
	幻灯片 143: 4. Visual AI is advanced
	幻灯片 144: Outline
	幻灯片 145: 5. Distributed visual simulation
	幻灯片 146: 5. Distributed visual simulation
	幻灯片 147: 5. Distributed visual simulation
	幻灯片 148: 5. Distributed visual simulation
	幻灯片 149: 5. Distributed visual simulation
	幻灯片 150: 5. Distributed visual simulation
	幻灯片 151: 5. Distributed visual simulation
	幻灯片 152: 5. Distributed visual simulation
	幻灯片 153: 5. Distributed visual simulation
	幻灯片 154: 5. Distributed visual simulation
	幻灯片 155: 5. Distributed visual simulation
	幻灯片 156: 5. Distributed visual simulation
	幻灯片 157: 5. Distributed visual simulation
	幻灯片 158: 5. Distributed visual simulation
	幻灯片 159: 5. Distributed visual simulation
	幻灯片 160: 5. Distributed visual simulation
	幻灯片 161: 5. Distributed visual simulation
	幻灯片 162: 5. Distributed visual simulation
	幻灯片 163: 5. Distributed visual simulation
	幻灯片 164: 5. Distributed visual simulation
	幻灯片 165: 5. Distributed visual simulation
	幻灯片 166: 5. Distributed visual simulation
	幻灯片 167: 5. Distributed visual simulation
	幻灯片 168: 5. Distributed visual simulation
	幻灯片 169: 5. Distributed visual simulation
	幻灯片 170: 5. Distributed visual simulation
	幻灯片 171: Brief summary
	幻灯片 172

