
Development and Practice of Intelligent

Unmanned Cluster System Full Stack

Development Case Based on RflySim Toolchain

Lesson 8 Visual Perception and Obstacle Avoidance Decision

Outline

1. General introduction

2. The base interface uses

3. Visual control example

4. Visual AI is advanced

5. Distributed visual simulation

2

The video address of this PPT public welfare course is:

Station B:

https://www.bilibili.com/video/BV1t3411K7Nh

Mobile phone

scanning code

to watch

https://www.bilibili.com/video/BV1t3411K7Nh

1. General introduction

1.1 Visual Routine Folder

• The current vision control routines for the

platform are in the directory

PX4PSP\RflySimAPIs\8.RflySimVision As

shown in the figure on the right, it contains

four folders, namely:

• 0. Api Exps: Free Edition Routine

• 1. Basic Exps: Free Edition Routine

• 2. AdvExps: Free Edition Routine

• 3. CustExps: Full Version Routine

• API. PDF: Chapter 8 introduces various

interfaces and some basic knowledge

• Readme. PDF: Introduction to Each Routine

Table of Content

• Intro. PDF: Introduction to Chapter 8

3

Note: It is recommended that you use the Python 38

environment that comes with the platform to run the

routines. If you use another Python environment, be

sure to install the following components:

pip3 install pymavlink pyserial opencv

../8.RflySimVision

1. General introduction

1.2 Python Program Running

• In the "RflySimAPIs \ Python38 Scripts" folder,

create a new txt file and rename it to hello. Py.

• Right click the file, open it with VS Code, and

type the following code in it

print("Hello, RflySim!")

• Run in VS Code, as shown in the figure on the

right.

• Similarly, double-click the Python38Env

desktop shortcut or "RflySimAPIs \

Python38Env.bat" to view the running

results as shown below.

4

1. General introduction

1.3 Python Syntax Learning

• Visit: https://runoob.com/python3 Learn the

basics and programming methods of Python 3

(similar to MATLAB language) Easy to get

started.

• Note: Python2 has stopped updating at

present. It is recommended that you learn

Python3 directly for development.

• Python 3 uses UTF-8 encoding by default, so

Chinese characters are natively supported.

• Python uses indentation to distinguish levels

of code, so write code with care about

indentation. (Guides, indent-rainbow and

other plug-ins can be installed in VS Code for

assistance)

5

https://runoob.com/python3

1. General introduction

1.4 OpenCV Learning

• OpenCV is an open source,

cross-platform computer vision

and machine learning software

library with a wide range of

applications.

• Official tutorial website:

• https://docs.opencv.org/4.0.0/

• Recommended Chinese

translation document website:

• https://github.com/makelove/Op

enCV-Python-Tutorial

6

https://docs.opencv.org/4.0.0/
https://github.com/makelove/OpenCV-Python-Tutorial
https://github.com/makelove/OpenCV-Python-Tutorial

1. General introduction

1.5 MAVLink communication protocol

• Pymavlink is the Python version of MAVLink

communication protocol, which has been pre-installed

in the platform Python environment. Through it, it is

convenient to communicate with Pixhawk real machine

through serial port, UDP, TCP and other ways for top-

level control.

• The official document URL is as follows:

https://mavlink.io/en/mavgen_python

• Learn how to use it on your own

• Note: Pymavlink is just a convenient library function. If

you have higher customization requirements, you need

to learn how to use the MAVLink protocol.

• The MAVLink message protocol can be read at the

following address

https://mavlink.io/en/messages/common.html

7

https://mavlink.io/en/mavgen_python
https://mavlink.io/en/messages/common.html

Outline

1. General introduction

2. The base interface uses

3. Visual control example

4. Visual AI is advanced

5. Distributed visual simulation

8

2. The base interface uses

2.1 UAV Control Interface-PX4MavCtrlV4.py

• Open the PX4MavCtrlV4.py file in the "

RflySimSDK\ctrl " directory, and you can see the

interface file shown in the right figure.

• This interface defines a PX4MavCtrler class used

to implement interfaces such as MAVLink

message sending and receiving, RflySim3D scene

control, and Offboard control of Pixhawk/PX4.

• This interface can send a message to

CopterSim/PX4 to control the aircraft, or send it

to RflySim3D to control the scene or request for

drawing.

• This interface file communicates with RflySim3D

through UDP, controls the aircraft through UDP-

CopterSim-MAVLink-PX4, or controls the

aircraft directly through "Serial-MAVLink-PX4".

9

../RflySimSDK/ctrl

2. The base interface uses

2.1 UAV Control Interface-Internal Principle of PX4 MavCtrlV4

Class PX4 _ CUSTOM _ MAIN _ MODE: # PX4 Main Module Enumeration Variables to set the mode

Class PX4 _ CUSTOM _ SUB _ MODE _ AUTO: # PX4 Submodule Enumeration Variables

Class PX4MavCtrler: # The main communication interface class of RflySim, which can be connected by

UDP or serial port.

Def InitMavLoop: # Enable the MAVLink receiving thread to receive and update MAVLink messages at

any time

Def sat: # A saturation function that controls the clipping of a variable

Def SendMavCmdLong: # Send COMMAND _ LONG message for MAVLink message

Def sendMavOffboard Cmd: # Send the Offboard command to the flight control to make it enter the

Offboard mode

Def sendMavOffboard API: # Update the data of the offboard message (the data will be sent at a certain

frequency)

Def SendVelNED: # Send Earth coordinate system velocity commands

10

2. The base interface uses

2.1 UAV Control Interface-Internal Principle of PX4 MavCtrlV4
Def SendVelFRD: # Send body speed

Def SendPosNED: # Send the NED position to let the aircraft fly to the specified position (relative to the

unlocking point)

Def initOffboard: # Initialize Offboard mode

Def endOffboard: # End Offboard mode

Def sendMavSetParam: # Send a MAVLink message to change the Pixhawk parameter

Def SendHILCtrlMsg: # Send the rfly _ MSG message to the flight control (see Section 4.3 of Lesson 3)

Def SendMavArm: # Send unlock command

Def SendRcOverride: # Send and simulate remote control signals

Def sendMavManualCtrl: # Send and simulate the normalized remote control signal

Def SendSetMode: # Send and set Pixhawk mode

Def stopRun: # Stop running MAVLink data receiving thread

Def getMavMsg: # Update the data received by MAVLink

11

For the detailed definition of each

function, you can read the internal

source code implementation of

PX4MavCtrlV4.py.

2. The base interface uses

2.1 UAV Control Interface-Basic Use Example

“PX4PSP\RflySimAPIs\6.RflySimExtCtrl\0.ApiExps\

e1_PX4MavCtrlAPITest\PX4MavCtrlAPITest.py ”

Is a Python example used by the interface. The specific code is parsed as follows:

Create a new MAVLink communication instance. The CopterSim interface is the 20100.

mav = PX4MavCtrl.PX4MavCtrler(1)

RflySim3D style adjustment API: sendUE4Cmd function belongs to UE4CtrlAPI interface

style ue.sendUE4Cmd (cmd, windowID = -1), where cmd should enter a string

Send the window adjustment command to RflySim3D, cmd is the specific command string,

windowID is the received window number (assuming that multiple RflySim3D windows are open at

the same time), -1 means send to all windows

The # RflyChangeMapbyName command switches the map, followed by the map name, which

switches all open windows to the Grasslands map

ue.sendUE4Cmd(b'RflyChangeMapbyName Grasslands ')

12

../6.RflySimExtCtrl/0.ApiExps/e1_PX4MavCtrlAPITest/PX4MavCtrlAPITest.py
../6.RflySimExtCtrl/0.ApiExps/e1_PX4MavCtrlAPITest/PX4MavCtrlAPITest.py

2. The base interface uses

2.1 UAV Control Interface-Basic Use Example

RflySim3D generates 3D objects and controls the pose and attitude API: sendUE4Pos function, belonging

to UE4CtrlAPI interface

Style ue.sendUE4Pos (CopterID, VehicleType, RotorSpeed, PosM, AngEulerRad, windowsID)

ue.sendUE4Pos(100,30,0,[2.5,0,-8.086],[0,0,math.pi])

Send to RflySim3D and generate a 3D object, where: object ID is CopterID = 100;

Aircraft Type VehicleType = 30 (person); Rotor Speed RotorS peed = 0 RPM; Position Coordinates PosM

= [2.5,0, -8.086] m

Aircraft attitude angle AngEulerRad = [0, 0, math. Pi] rad (rotate 180 degrees to face the aircraft),

default receiving window ID = -1 (send to all opened RflySim3D programs)

VehicleType: 3 Quadrotor, 5/6 Hexacopter, 30 Figure, 40 Calibrated Checkerboard, 50/51 Vehicle, 60

Ball Light, 100 Flying Wing Fixed Wing, 150/152 Ring Square Target

RflyChange3D Model command followed by Airplane ID + Desired Style, where the style of Desired 12 is

a walking person

ue.sendUE4Cmd(b'RflyChange3DModel 100 12’)

Send a message to make CopterID = 100 (the character just created) in all scenes become the style of a

walking person.

13

2. The base interface uses

2.1 UAV Control Interface-Basic Use Example

The command RflyChangeViewKeyCmd means to simulate the shortcut key operation of

RflySim3D, and the B 1 shortcut key means to switch the focus to the object with CopterID = 1

It is set here to send to window 0, and other windows do not send.

ue.sendUE4Cmd('RflyChangeViewKeyCmd B 1',0)

The # V 1 shortcut key switches the field of view to the first onboard field of view.

ue.sendUE4Cmd('RflyChangeViewKeyCmd V 1',0)

The RflyCameraPosAng X y Z roll pith yaw sets the position and direction of the camera

relative to the center of the body. The default is 0.

Set the position of the front camera to [0.100] here.

ue.sendUE4Cmd('RflyCameraPosAng 0.1 0 0',0)

R. Setres 720x405 w is the built-in command of UE4, which means to switch the resolution to

720x405

ue.sendUE4Cmd('r.setres 720x405w',0)

14

2. The base interface uses

2.1 UAV Control Interface-Basic Use Example

Send a shortcut command to window 1 to switch focus to aircraft 1

ue.sendUE4Cmd('RflyChangeViewKeyCmd B 1',1)

Send the shortcut key control command to window 1. The N 1 shortcut key means to switch the visual angle to the ground fixed visual

angle 1.

ue.sendUE4Cmd('RflyChangeViewKeyCmd N 1’,1)

Set the current camera field angle to 90 degrees (90 degrees by default in RflySim3D). The field angle range is 0 to 180 degrees.

ue.sendUE4Cmd('RflyCameraFovDegrees 90',1)

Set the current camera position here to [-20 -9.7]

ue.sendUE4Cmd('RflyCameraPosAng -2 0 -9.7',1)

Enable MAVLink to monitor CopterSim data and update it in real time. The data is shown in the lower right figure.

mav.InitMavLoop()

Display location information received from CopterSim

print(mav.uavPosNED)

15

2. The base interface uses

2.1 UAV Control Interface-Basic Use Example

Turn on Offboard mode

mav.initOffboard()

Send the desired position signal, fly to the target point 0, 0, -1.7, and the yaw angle is

0.

mav.SendPosNED(0, 0, -1.7, 0)

Send unlock command

mav.SendMavArm(True)

Send the expected speed signal, 0.2m/s downward descent, and the z-axis is positive.

mav.SendVelNED(0, 0, 0.2, 0)

Exit Offboard control mode

mav.endOffboard()

Exit MAVLink data receiving mode

mav.stopRun()

16

2. The base interface uses

2.1 UAV Control Interface-Lab 1: Interface Debugging Lab

• In Windows Explorer, navigate to

the“ PX4PSP\RflySimAPIs\6.RflySimExtCtrl\0.ApiExps\e1_PX4Mav

CtrlAPITest ”folder.

• Double-click the "PX4MavCtrlAPITest.bat" script to open the PX4

SITL simulation system for an aircraft.

• Use VS Code to open the "PX4MavCtrlAPITest.py" file. As shown in

the right figure, click the breakpoint (red dot) in front of each key

statement. Press the following figure to start the debugging mode.

Click the arrow button in the lower right figure to execute the

statements in turn.

17

../6.RflySimExtCtrl/0.ApiExps/e1_PX4MavCtrlAPITest
../6.RflySimExtCtrl/0.ApiExps/e1_PX4MavCtrlAPITest

2. The base interface uses

2.1 UAV Control Interface-Lab 1:

SITLRun Communication Framework

• In the SITL software in-loop

simulation process, the PX4 flight

control runs completely in the

Win10WSL virtual machine, and the

px4 _ sitl firmware is used.

• PX4 communicates with CopterSim

directly through the network

MAVLink protocol, and then

CopterSim sends and receives external

Python messages through the

20100/20101 port.

• The Python program communicates

directly with the RflySim3D program

through UDP, and obtains visual

images through shared memory/UDP

sending, etc.
18

飞控 CopterSim

自驾仪软件在环仿真

PX4 SITL Win10WSL

传感器数据

MAVLink协议

电机控制数据

MAVLink协议

外部控制指令

MAVLink协议

飞控状态数据

MAVLink协议

QGround
Control

UDP压缩

中转

运动模型DLL

Python/

Vision

 RflySimUE5

三维引擎

飞机位姿状态

UDP/组播

MATLAB

/Vision

自动控制/视觉控制

UDP中转/
MAVLink直发

视觉图像数据

屏幕抓取/共享内存/UDP发送

 RflySim3D

场景控制

/UDP

飞控与CopterSim通过

UDP/TCP传输数据

SITLRun Software-in-the-Loop Simulation Communication Architecture

2. The base interface uses

2.1 UAV Control

Interface — Experiment 1:

Experimental Results
• The phenomenon of this routine

is that the python program sends

a series of instructions, creates a

new target of a walking person in

the RflySim3D program, sets the

visual angle form, size and

position, and sends control

instructions to the simulated UAV

to make it take off and land.

• As shown in the figure on the

right, this example will open two

RflySim3D windows, one for the

front-facing camera and the other

for God's perspective observation.

19

2. The base interface uses

2.1 UAV Control Interface-Lab 1: End of Simulation

• In the command prompt CMD window opened by the "PX4MavCtrlAPITest.bat"

script shown in the figure below, press the Enter key (any key) to quickly close all

programs such as CopterSim, QGC, and RflySim3D.

• As shown in the right figure below, in VS Code, click "Terminate Terminal" to exit

the script completely.

20

2. The base interface uses

2.1 UAV Control Interface-Lab 2: Pixhawk Hardware-in-the-Loop Simulation with

Data Link
• Connect the computer and Pixhawk flight control with MicroUSB cable. Then double-click

"PX4ComAPITest.bat" in " PX4PSP\RflySimAPIs\6.RflySimExtCtrl\0.ApiExps\e2_PX4ComAPITest " and input

the flight control string number to start the hardware-in-the-loop simulation of an aircraft.

• Connect TELEM1 of Pixhawk to a computer with a digital or TTL serial port cable, and record the serial port

number at this time, such as COM14

• Open "PX4ComAPITest.py" with VS Code, and modify the COM14 of the following code to your own data string

slogan:

• mav = PX4MavCtrl.PX4MavCtrler(1,'127.0.0.1','COM9',57600)

• Running the PX4ComAPITest.py program in VS Code, you can observe that the unlock message is received in

CopterSim, and Python can output the global positioning data of uavPosGPS.

• print(mav.uavPosGPS)

21

Note: For Linux systems, the format of the

string number is/dev/ttyUSB0 or/dev/ttyAMA0

The colon is the baud rate, and the default

baud rate of PX4's TELEM1 is the 57600.

../6.RflySimExtCtrl/0.ApiExps/e2_PX4ComAPITest

2. The base interface uses

2.1 UAV Control Interface-Lab 2:

HITL + Data Communication

Framework
• In the HITL hardware-in-the-loop

simulation, the PX4 flight control

algorithm runs in Pixhawk hardware using

the px4 _ fmu-v5 firmware.

• PX4 communicates with CopterSim

directly through the MAVLink protocol of

USB serial port, and then CopterSim sends

and receives messages with external

Python programs through the data

transmission serial port.

• The Python program communicates

directly with the RflySim3D program

through UDP, and obtains visual images

through shared memory/UDP sending, etc.

22

飞控 CopterSim

传感器数据

MAVLink协议

电机控制数据

MAVLink协议

外部控制指令

MAVLink协议

飞控状态数据
MAVLink协议

QGround
Control

运动模型DLL

Python/

Vision

 RflySimUE5

三维引擎

飞机位姿状态

UDP/组播

MATLAB

/Vision

自动控制/视觉控制

视觉图像数据

屏幕抓取/共享内存/UDP发送

 RflySim3D

场景控制

/UDP

飞控与CopterSim通过

USB串口传输数据

自驾仪硬件在环仿真

Pixhawk/PX4

飞控与Python通过

数传串口传输数据

HITLRun hardware-in-the-loop simulation communication architecture

2. The base interface uses

2.1 UAV Control Interface-Lab 3: Multi-Machine SITL Control Lab
• In the " PX4PSP\RflySimAPIs\6.RflySimExtCtrl\0.ApiExps\e5_PX4MultiUavTest " folder, double-click the "PX4

MultiUavTest. Bat" "to open the SITL simulation closed loop of the four aircraft.

• Open "PX4MultiUavTest.py" with VS Code, and you can see that four new PX4MavCtrler instances are created

in the code, and the connection ports 20100/20102/20104/20106 correspond to aircraft 1 to 4 respectively.

• Then, the key simulation command of UE4 is called to simulate the S key (display the aircraft label) and the T key

(display the aircraft trajectory).

• Finally, control the aircraft to unlock, take off, fly forward, and then descend.

• The experimental effect is shown in the right figure.

23

../6.RflySimExtCtrl/0.ApiExps/e5_PX4MultiUavTest

2. The base interface uses

2.2 UE4 Scene Control Interface-Lab 1: Scene Configuration Interface (Importing

Obstacles, etc.)

• " PX4PSP\RflySimAPIs\3.RflySim3DUE\0.ApiExps\e6_RflySim3DCtrlAPI\12.DamageModel " folder,

Double-click UE4CtrlAPITest.bat to open two RflySim3D windows.

• The next step is to control the two windows through the Python interface, import obstacles (targets),

and configure the window display.

• Open "UE4CtrlAPITest.py" with VS Code, set a breakpoint in the key statement, and then enter the

debugging operation mode to execute the statement sentence by sentence and check the execution

effect.

24

Note: To make the generated object fit the ground, you can use the

UEMapServe class to calculate the terrain height, or use the

sendUE4PosScale2Ground interface to create an object that

automatically fits the ground. See the source code of the routine for

details.

../3.RflySim3DUE/0.ApiExps/e6_RflySim3DCtrlAPI/12.DamageModel

2. The base interface uses

2.3 Python/CopterSim Data Mode (UDP _ Mode)

• In the " 6.RflySimExtCtrl\0.ApiExps " folder, you can see six routine folders, which can be run by yourself to see the effect.

The main difference is the statement InitMavLoop

• Mav. InitMavLoop (0) # corresponds to the UDP _ Full mode. Python transmits complete UDP data to CopterSim. The

amount of data transmitted is small. After receiving the data, CopterSim converts it into Mavlink and transmits it to PX4

flight control; It is suitable for the simulation of small and medium-sized clusters (the number is less than 10).

• Mav. InitMavLoop (1) # corresponds to the UDP _ Simple mode, and the packet size and transmission frequency are smaller

than those of the UDP _ Full mode; it is suitable for large-scale cluster simulation, and the number of UAVs is less than 100.

• Mav. InitMavLoop (2) # corresponds to Mavlink _ Full mode (default mode). Python directly sends MAVLink message to

CopterSim, and then forwards it to PX4. It has a large amount of data and is suitable for single machine control. It is suitable

for single machine or a small number of aircraft simulation. The number of UAVs is less than 4;

• Mav. InitMavLoop (3) # corresponds to the Mavlink _ Simple mode. It will shield part of the MAVLink message packets and

reduce the data frequency. The amount of data sent is much smaller than the MAVLink _ Full. It is suitable for multi-aircraft

cluster control. It is suitable for small-scale cluster simulation. The number of UAVs is less than 8.

• Mav. InitMavLoop (4) # corresponds to the Mavlink _ NoSend mode. CopterSim will not send MAVLink data to the outside.

This mode needs to cooperate with hardware-in-the-loop simulation + data transmission serial communication. MAVLink is

transmitted through wired mode. The data volume in the LAN of this mode is the smallest. It is suitable for distributed vision

hardware-in-the-loop simulation, and the number of UAVs is not limited.

25

../6.RflySimExtCtrl/0.ApiExps

2. The base interface uses

2.4 RflySim3D Mapping Interface-Vision Sensor Profile Config. JSON.
• " 8.RflySimVision\0.ApiExps\1-UsageAPI\0.VisionSenorAPI\1.CameraImageGet " can open the Config. JSON

file, which contains two visual sensor structures, defined as follows

• SeqID; //Sensor serial number ID, starting from 0 (free version only supports 2 images)

• TypeID; //Sensor type ID, 1: RGB map, 2: Depth map, 3: Grayscale map,

• 4: Segmentation map, 5: Ranging, 20-22: Lidar, 40: Infrared grayscale, 41: Thermal map

• TargetCopter; //The ID of the target aircraft loaded by the camera//can be changed

• TargetMountType; //Coordinate type, 0: on fixed aircraft (relative to geometric center), 1: on fixed aircraft

(relative to bottom center), 2: on fixed ground (monitoring), 3: on the fixed aircraft, but the camera attitude does

not change with the aircraft (ground coordinate system),

• 4: Attach a sensor to another sensor, when MountType = 4, TargetCopter = SeqID in the Config. JSON (because

MountType = 4 is to attach a sensor to a sensor, So TargetCopter is used to give the vehicle ID, but it's not used

at this time. It's used to set the ID of the sensor, that is, SeqID)//variable

26

Note: The free version only

supports 2 RGB images and

receives images in shared memory

Note: TargetMountType determines whether the

value of SensorPosXYZ is relative to the center of

the aircraft, the center of the bottom of the aircraft,

or the ground. In addition, in order to ensure that

the object can be attached to the ground, the

coordinates sent by the sendUE4 * * command are

the center coordinates of the bottom of the object,

not the center coordinates, which are separated by

the height of the object (see XML definition).

0.ApiExps/1-UsageAPI/0.VisionSenorAPI/1.CameraImageGet

2. The base interface uses

2.4 RflySim3D Mapping Interface-Vision Sensor Profile Config. JSON.

• DataWidth://data or image width (not available for distance sensor)

• DataHeight://data or image height (not available for distance sensor)

• DataCheckFreq://Check the data update frequency (the ranging sensor does not have this parameter)

• SendProtocol [8]://transmission mode and address, SendProtocol [0] value 0: shared memory (the

free version only supports shared memory), 1: UDP direct PNG compression, 2: UDP direct image

compression, 3: UDP JPG compression; SendProtocol [1-4]: IP address; SendProtocol [5] port

number

• EulerOrOuat: 0 means using Euler angles, that is, SensorAngEular, and 1 means using quaternion

SensorAng Quat

• CameraFOV://camera field of view (vision sensors only) in degrees//changeable

• SensorPosXYZ [3]://Sensor installation position in meters//changeable

• SensorAngEular [3]:/sensor installation angle, unit ° °/changeable

• SensorAngQuat [4]://sensor mounting angle, expressed in quaternion.

• There are also the following parameters for the ranging sensor:

Distance: The maximum distance that can be detected

27

Note: The free version only

supports 2 RGB images and

receives images in shared memory

Note: TargetMountType determines whether the

value of SensorPosXYZ is relative to the center of the

aircraft, the center of the bottom of the aircraft, or

the ground. In addition, in order to ensure that the

object can be attached to the ground, the coordinates

sent by the sendUE4 * * command are the center

coordinates of the bottom of the object, not the center

coordinates, which are separated by the height of the

object (see XML definition).

2. The base interface uses

2.4 RflySim3D drawing interface — drawing and distribution principle

• The RflySim platform must run on a Windows computer, but its image stream can be

transmitted to the local vision program, other computers (Windows or Linux), and other

embedded computers (Linux + ROS) through shared memory and network communication

for the development and simulation of vision algorithms.

• Send the configuration information in the Config. JSON file to RflySim3D to request

pictures.

• SendProtocol [0] can select the transmission mode. Shared memory reception is selected by

default. UDP direct transmission can be selected for the full version.

28

 RflySimUE5

三维引擎

 RflySim3D

Python视
觉传感器

配置程序

Python/C视觉感知

与控制程序

机载计算机1/Linux+ROS

Python/C视觉感知

与控制程序

机载计算机2/Linux+ROS

RflySim仿真计算机/Windows系统

取图
请求

共享
内存
读图

UDP
传图

UDP
传图

 RflySimUE5

三维引擎

 RflySim3D

Python视
觉传感器

配置程序

Python/C视觉感知

与控制程序

机载计算机1/Linux+ROS

Python/C视觉感知

与控制程序

机载计算机2/Linux+ROS

RflySim仿真计算机/Windows系统

取图
请求

UDP
传图

UDP
传图

(a) 共享内存取图，中转发送模式（适用免费版，存在延迟） (b) RflySim3D图像直发（适用完整版，效率高延迟低）

2. The base interface uses

2.4 RflySim3D Image Acquisition Interface — VisionCaptureApi. Py of Image

Acquisition Interface
• VisionCaptureApi. Py is the interface file of the platform, including JSON loading, image request, image forwarding, etc.

• Class VisionSensorReq: # data structure, sent to RflySim3D to fetch image data package
• Class imuDataCopter: # data structure, IMU data packet returned by CopterSim
• Class SensorReqCopterSim: # data structure packet, send to CopterSim request sensor packet
• Class VisionCaptureApi: # The main interface class, which implements the drawing request and receiving
• AddVisSensor (VSR = VisionSensorReq ()): # Class function to add a vision sensor
• SendReqToCopterSim (srcs = SensorReqCopterSim (), copterID = 1): # class function, which sends a data packet

to CopterSim, and can specify the copterSim sequence number of the response request
• SendImuReqCopterSim (copterID = 1, IP = '127.0.0.1', port = 31000, freq = 200): # function, send a data

packet to CopterSim to request to send IMU data (IP and port frequency), and start to monitor data
• SendUpdateUEImage (vs = VisionSensorReq (), windID = 0): # Send a request to RflySim3D to update the

parameters and position of the specified vision sensor. You can specify the windID of the received RflySim3D
window number

• SendReqToUE4 (windID = 0): # Send the stored visual sensor list to RflySim3D, create the sensor, and check
whether the creation is successful. You can specify the windID of the received RflySim3D window number

• StartImgCap (isRemoteSend = False): # Start receiving pictures and store them in the Img list. IsRemoteSend
can configure whether the shared memory pictures are forwarded to other systems through UDP.

• JsonLoad (ChangeMode = -1, jsonPath =): # Load the local Json file and store it in the visual sensor list.
ChangeMode can override the SendProtocol [0] transmission mode in Json. JsonPath specifies the Json file
address.

29

2. The base interface uses

2.4 RflySim3D Mapping Interface-Mapping Interface Routine File
• Open the "VisionCapAPIDemo. Py" "file with VS Code, and you can see the implementation principle of the

routine

• Vis = VisionCaptureApi. VisionCaptureApi () # Create a graph interface class instance

• Ue.sendUE4 Cmd ('R. Setres 1280x720w', 0) # Set the UE4 window resolution. Note that
this window is only used for display. The image resolution is configured in JSON. The
smaller this window is, the less resources are required.

• Ue.sendUE4Cmd ('t. MaxFPS 30 ', 0) # Set the maximum refresh frequency of UE4, which is
also the drawing frequency

• Vis. JsonLoad () # Load the sensor configuration file in the Config. JSON.

• IsSuss = vis.sendReqToUE4 () # Send an image fetching request to RflySim3D and verify it

• Vis. StartImgCap () # to open the map, and enable the shared memory image forwarding,
forwarding to the filled directory

• If vis. HasData [I]: # Determine whether the picture has been received

• CV2.imshow ('Img' + str (I), vis. Img [I]) # OpenCV displays the current image

• # Image processing algorithms can be added here

• Vis. SendUpdateUEImage (vs) # Send request to update vision sensor parameters

30

2. The base interface uses

2.4 RflySim3D Image Acquisition Interface-Experimental Verification

• Open " 8.RflySimVision\0.ApiExps\1-

UsageAPI\0.VisionSenorAPI\1.CameraImageGet\VisionCapAPIDemo.bat " runs

as an administrator and opens. ".

• In this experiment, Json defines two left and right front RGB cameras and displays

them in real time.

31

0.ApiExps/1-UsageAPI/0.VisionSenorAPI/1.CameraImageGet/VisionCapAPIDemo.bat
0.ApiExps/1-UsageAPI/0.VisionSenorAPI/1.CameraImageGet/VisionCapAPIDemo.bat

2. The base interface uses

2.4 RflySim3D Image Acquisition Interface-UE5 Multi-camera Experimental

Verification

• Edit " 8.RflySimVision\0.ApiExps\1-

UsageAPI\0.VisionSenorAPI\2.MutCameraImageGet\VisionCapAPIDemo.bat ", You can

see that "% PSP _ PATH% \ RflySimUE5" indicates the use of UE5 engine; open the

"Config. JSON" "to see three cameras including RGB, grayscale and depth;

• Double-click the "VisionCapAPIDemo. Bat" and Run with VS Code "VisionCapAPIDemo.

Py" to see the following effect

32

0.ApiExps/1-UsageAPI/0.VisionSenorAPI/2.MutCameraImageGet/VisionCapAPIDemo.bat
0.ApiExps/1-UsageAPI/0.VisionSenorAPI/2.MutCameraImageGet/VisionCapAPIDemo.bat

2. The base interface uses

2.5 Three modes of PX4 UAV position + speed control-principle explanation

• In visual control, we often need to control the forward speed of the aircraft while controlling the

aircraft to fly to the designated target position, so as to achieve good tracking effect.

• Enter the " 8.RflySimVision\0.ApiExps\1-UsageAPI\2.ThreeCtrlModes " directory to see the control

examples of the three methods.

• Method 1, see "ThreeCtrlModes _ PosCtrl. Py" "for the routine, and use the Offboard location

interface

• Mav. SendPosNED (12, 13, -10, 0) # send desired position

• The Mav. SendCopterSpeed (3) # calls the function to set the maximum speed of
the aircraft.

• The second method is to use SendVelNED speed control interface to realize position control on the

basis of SendVelNED speed control interface. See "ThreeCtrlModes _ VelCtrlEarth. Py" "for the

routine.

• Method 3, see "ThreeCtrlModes _ VelCtrlBody. Py" "for routine, use SendVelFRD speed control

interface to realize position control on this basis, and the nose of this mode always faces to the target

direction.

33

0.ApiExps/1-UsageAPI/2.ThreeCtrlModes

2. The base interface uses

2.5 PX4 UAV Position + Speed Control Three Modes-Experimental Results

• Run the "ThreeCtrlModesSITL. Bat" or "ThreeCtrlModesHITL. Bat" to start a software-in-the-loop

or hardware-in-the-loop simulation of the aircraft.

• Run the "ThreeCtrlModes _ PosCtrl. Py" ". It can be seen that the aircraft flies to the specified

position [120, 130, -10]. On the QGC, it can be seen that the speed is the set value of 3m/s. At the same

time, the nose always faces north and the speed direction is inconsistent.

• Run "* _ PosCtrlFRD. Py" "," * _ VelCtrlBody. Py "" and "* _ VelCtrlEarth. Py" in turn. Please

read the code by yourself and confirm the experimental effect. Note: All three modes can control the

speed of the aircraft and always point to the target.

34

2. The base interface uses

2.6 Control Interface in Lightweight UAV Model-Experimental Principles
• In the above example, running the bat script will start the software-in-the-loop or hardware-in-the-loop simulation of

the aircraft, requiring the participation of CopterSim + flight control + QGC, which occupies more resources and may

be limited by performance in multi-aircraft visual simulation.

• In the directory " 8.RflySimVision\0.ApiExps\1-UsageAPI\1.UAVCtrlNoPX4Demo\1.UAVCtrlNoPX4Demo ", we

developed a particle based UAV control model in Python.

It can provide UAV dynamic effects similar to hardware and software in-loop simulation, but greatly reduce the

occupancy of computer performance and enhance flight.

Machine stability.

• Open "UAVCtrlNoPX4Demo.py" with VS Code. It can be seen that this mode is exactly the same as the MAVLink-

based control interface of SITL or HITL. The difference lies in the following statement.

• Mav.InitPointMassModel (-8.086, [0,0,0]) # Replace original initOffboard statement

• After the above statement is executed, a new particle UAV model will be automatically created (set the initial ground

height, XY position and yaw angle), and the position and speed commands will be monitored. (Exactly the same as the

original control method)

• Note: By opening "UAVCtrlNoPX4Demo.bat" with VS Code, we can see that only one RflySim3D program is opened,

and there is no need to open other programs such as CopterSim.

35

Note: For the method of obtaining the initial height of

the essential point model and the detailed method of

multi-machine simulation, please refer to the relevant

contents in the next chapter.

0.ApiExps/1-UsageAPI/1.UAVCtrlNoPX4Demo/1.UAVCtrlNoPX4Demo

2. The base interface uses

2.6 Control interface in a lightweight UAV model – experimental results

• Double-click to run "UAVCtrlNoPX4Demo.bat", and you can see that an RflySim3D

window is opened, and no other program is opened.

• Open "UAVCtrlNoPX4Demo.py" with VS Code and run it. You can see that the aircraft

takes off and flies according to the position or speed command sent. The flight control effect

is similar to that of the software/hardware in-loop, but it is smoother.

36

2. The base interface uses

2.6 Control Interface under Lightweight UAV Model-Visual Loop Penetration

Experiment

• Open the " 8.RflySimVision\1.BasicExps\1-VisionCtrlDemos\e1_CrossRingNoPX4 " directory, and

you can see the loop threading experiment routine based on the particle model. (For the specific visual

control principle, please refer to the ring-threading experiment in the next section)

• Double-click CrossRingNoPX4.bat to open a RflySim3D window

• Open "CrossRingNoPX4.py" with VS Code and run it, you can see that the scene switches to the

grass ring scene, generating a multi-rotor aircraft, which passes through three rings in turn after

taking off.

37

1.BasicExps/1-VisionCtrlDemos/e1_CrossRingNoPX4

2. The base interface uses

2.7 Lidar-Source Code Description

At present, there are two ways for data interaction: UDP direct transmission and memory sharing. The

following is a description of the source code directory

8. RflySimVision \ 0.Api Exps \ 4-AdvApiExps \ 7.LidarAPIDemo

• 1. SharedMemory 10Hz: shared memory mode, data transmission frequency 10hz;

• 2. SharedMemory ClientServer: In the shared memory mode, after the Client receives the shared

memory, UDP is sent and the Server receives the point cloud.

• 3. UDPDirect30Hz: UDP directly transmits 30hz frequency, Python sends the drawing request to

RflySim3D, and the latter directly transmits the point cloud through UDP;

• 4. UDPDirect ClientServer: UDP direct transmission between the client and the server. The Client

sends the request, and the Server receives the point cloud. Note: The Server supports virtual

machines or other computers.

• 5. UDPDirect ClientServerType5: UDP direct client and server transmission mode, using the map

coordinate system (default to use the laser radar coordinate system);

38

Note: The LIDAR sensor is

currently limited to the premium

full version, and the free

experience version does not have

this feature.

0.ApiExps/4-AdvApiExps/7.LidarAPIDemo

2. The base interface uses

2.7 Lidar-Source Code Description 2

• Although there are five projects in the project directory, there are only two transmission modes. Now,

the code operation of these two modes is described as follows. Take 1.SharedMemory10Hz and

4.UDPDirect ClientServer as examples:

• 1. SharedMemory 10Hz: After running the LidarAPIDemo. Bat script, run the LidarAPIDemo. Py

script directly to see the visual point cloud.

• 4. UDP direct client serv: IP configuration is required for remote communication,

First check the IP of your virtual machine Ubuntu:

Press Ctrl + Alt + T to open the terminal and enter the command "ifconfig" (without quotation marks) as

shown in the figure:

39

Note: The value of SendProtocol [0]

determines whether the shared memory

is used for UDP direct transmission.

When the jsonLoad function is called in

Python, the attached parameter can be

used to forcibly set the value of

SendProtocol [0] and change the

transmission mode.

2. The base interface uses

2.7 Lidar-Source Code Description 3

• If you want to transmit the point cloud to the remote Linux \

ROS system, you need to modify the JSON configuration file

or client _ ue4.py to set the IP address.

• If the IP of my virtual machine or Linux computer is

192.168.31.88, the JSON configuration file is shown in the

following figure:

40

Note: It is also possible to leave the IP

address in SendProtocol in JSON

unchanged and use 127.0.0.1, but

uncomment the vis. RemotSendIP in

client _ ue4.py and set it to the IP

address

Note: This method does not modify

the destination IP addresses of all

sensors defined in JSON.

2. The base interface uses

2.7 Lidar-Source Code Description 3

• In addition, the parameters in the _ SITL. Bat of the script client _ ue4 need to be modified so that

other computers can receive the aircraft data from CopterSim and control the aircraft in real time.

• IS _ BROADCAST = 1 corresponds to broadcast mode, all computers can receive data, low efficiency,

but convenient

• IS _ BROADCAST = 192.168.31.88 (configure according to your own virtual machine), high

efficiency.

41

2. The base interface uses

2.7 Lidar-Source Code Test Summary

• 1. SharedMemory10Hz: Run the LidarAPIDemo. Bat script. After RflySim3D prompts Fixed, open

and run the LidarAPIDemo. Py script with VS Code to view the point cloud. Control the aircraft

movement through QGC and observe the change of the point cloud.

• 2. SharedMemory ClientServer: Run the client _ ue4 _ SITL. Bat script, double click Python

38Run.bat after it is Fixed, enter the python client _ ue4.py, read the point cloud from the shared

memory and send it out with UDP. Open server _ ue4.py with VS Code and run it.

• Note 1: The reason why the client transmits the point cloud through UDP is that the function of the

"vis. StartImgCap (True)" statement (True parameter data is added compared with Routine 1) will

trigger the point cloud forwarding function.

• Note 2: Change the IP address of SendProtocol in the JSON file to the remote address to transmit the

point cloud to the Linux computer. A simpler way is to directly uncomment the following statements

in the client without changing SendProtocol and fill in the target IP address to automatically forward

the point cloud to this IP address.

42

2. The base interface uses

2.7 Lidar-Source Code Test Summary

• 3. UDPDirect30Hz: The test method is the same as that of 1. SharedMemory10Hz, run bat first

(administrator mode can be used), then run python script with VS Code, control the aircraft through QGC,

and observe the change of point cloud. Features of this routine: RflySim3D runs at 90 frames, the point

cloud acquisition speed is 30 frames, and UDP is directly transmitted to the local IP.

• 4. UDPDirect ClientServer: Run the client _ ue4 _ SITL. Bat (administrator), then run Python 38Run.bat,

and run the Python client _ ue4.py from the command line. VS Code runs server _ ue4.py.

• Note: If you want to upload the point cloud to other computers, you need to modify the IS _ BROADCAST

value of.bat and the IP address corresponding to the vis. RemotSendIP of client _ ue4.py. If it is a ROS

system, you can run server _ ue4ROS.py to publish the point cloud ROS package and preview it.

• 5. UDPDirect ClientServerType5: The test method is the same as that of the previous routine, except that

the axis of the coordinate system corresponding to Type5 is relative to the earth, and the map point cloud

can be obtained by superimposing the radar position in ImgData. In Type 4 mode, the point cloud is

relative to the radar attitude and needs to be mapped to the ground coordinate system to obtain the map

point cloud.

43

2. The base interface uses

2.7 Lidar-Data Interface:

• Vis. VisSensor [I]: The JSON data structure of the ith sensor (corresponding to the SeqID of the

JSON file and the serial number of the sensor), which can be used to obtain the parameter

configuration information of the current sensor.

• Vis. HasData [I]: Whether the ith sensor has updated data. If yes, it will become True.

• Vis. Img [I]: Image/point cloud data of the ith sensor, N * 3 dimensional vector array (the value of N

is equal to the vis. ImgData [I] [6]). Refer to the routine for the specific data acquisition method. Point

cloud data in meters (front-left-top coordinate system).

• Vis. TimeStmp [I]: timestamp of the ith sensor, in millisecond

• Vis. ImgData [I]: 7-dimensional vector, vis. ImgData [I] [0 ~ 2] position XYZ of the i-th sensor (unit:

m, Front-left-top coordinate system), vis. ImgData [I] [3 ~ 5] pose Euler angle roll, pitch, yaw (unit

radian), vis. ImgData [I] [6] total number of point clouds.

• Note: In this example, there is only one sensor, so the value of I is 0.

• Note: The interface for controlling the aircraft and obtaining flight control data is Mav. See Interface

Routine for Aircraft Control.

44

2. The base interface uses

2.7 Laser radar-parameter configuration description
• The configuration parameters are in the Config. JSON file in the 8-Lidar APIDemo

directory

• The parameters specific to the LIDAR configuration are described here, and other

parameters are described in 2.6 Config. JSON configuration file description:

• TypeID: value 20-22; 20: the output point cloud is the laser radar coordinate system; 21:

the output point cloud is the world coordinate system; 22: stands for livox lidar;

• DataWidth: the number of point clouds within a ring of the laser radar;

• DataHeight: is the number of laser radar harnesses. Data CheckFreq: Point cloud

publishing frequency (Hz)

• DataHeight: number of laser radar harnesses;

• SendProtocol: transmission mode and IP, where SendProtocol [0] represents the shared

memory output mode, and SendProtocol [1] represents the UDP direct sending mode.

• OtherParams: [maximum laser distance (m), precision (m), lower limit of horizontal

scanning angle (degree), upper limit of horizontal scanning angle (degree), lower limit of

vertical scanning angle (degrees), upper limit of vertical scanning angle [degrees],

reservation, reservation];

Note: The horizontal resolution of the laser radar is represented by DataWidth and the

horizontal scanning angle range, and the vertical resolution is represented by the processing

scanning angle (as shown in the figure, horizontal resolution = 90/900, vertical resolution =

40/32). The above angle values are expressed by degree.

45

Note: There is a delay of UE frame rate in

the interface of this point cloud, so

"vis.sendUE4Cmd (B't. Max FPS 30 ', 0)" in

Python

Statement can speed up the sending

frequency of UE4 and reduce the data

sending delay. For example, if the UE frame

rate is set to 100 frames, the output delay is

only 0.01s.

2. The base interface uses

• 2.7 Lidar-shared memory operation

• Start RFlySim3D first, that is, run the LdiarAPIDemo. Bat file, and then run the

LidarAPIDemo. Py script, you can see the following operation

• Note that the current point cloud output is the North-East coordinate system, that is, the Z

axis is downward, so the point cloud is inverted.

46

See the routine of 1.

SharedMemory10Hz, and the

SendProtocol [0] in the key point

JSON is set to 0.

2. The base interface uses

2.7 Laser radar-UDP direct transmission to remote computer mode

• Configure the parameters of remote communication before operation. See 2.6 Parameter Configuration

Description for details.

• Run RflySim3D, which is the client _ ue4 _ SITL. Bat script (administrator mode), and then run the

data conversion script client _ ue4.py locally with VS Code or Python 38Run.bat command box. Run

server _ ue4.py on the remote side (virtual machine or Linux computer) to see the same running results

as the shared memory mode, but it is recommended to use ROS to display the point cloud, so do not run

server _ ue4.py on the remote side, run roscore first, and then use

Run the program python server _ ueROS. Py and open rviz to see the results below.

47

See 4. Routine of UDP

DirectClientServer. Set SendProtocol [0]

in the key point JSON to 1, and fill in the

IP address of the remote Linux computer.

2. The base interface uses

2.7 Lidar-UDP direct transmission mode

operation (ROS communication description)
• After running server _ ue4ROS.py, two topics will be

published.

➢ /rflysim/vehicle 0 _ pose: The number 0 inside is the vehicle

number;

➢ /rflysim/vhicle _ 0/lidar _ 0: The following 0 is the lidar

number. Note this radar.

The number is the unified radar number in the whole RFlySim,

not the radar number relative to a certain carrier;

View data through rostopic echo topic _ name, such as:

You can see the pose and point cloud data, and the other data.

The value of frame _ ID can be modified according to the needs

of your TF tree.

Modify the code yourself. The point cloud coordinates may be

relative to the lidar.

Coordinate system can also be relative to the ground, depending

on your own configuration.

48

2. The base interface uses

2.7 Lidar-UDP transmission mode operation (ROS, rviz visualization)

The Rviz tool can easily view the environment point cloud data, which needs to be configured.

If it is the default code, you can directly load the configured files under the source file directory.

Okay, lidar. Rviz the files.

49

2. The base interface uses

2.8 Depth Camera-Json Profile

• The JSON file configuration method for depth

cameras is basically the same as that for RGB and

grayscale cameras.

• The TypeID of the depth camera needs to be set to

2. See Section 2.3 for other parameters. Includes

resolution DataWidth and DataHeight, binding

aircraft TargetCopter, binding type

TargetMountType, refresh rate

DataCheckFrequently, angle of view CameraFOV,

Mounting position SensorPosXYZ in meters and

mounting attitude SensorPosEular. (Unit degree)

• Other parameters are stored in the OtherParams

vector, including minimum range, maximum

range, and pixel precision.

50

2. The base interface uses

2.8 Depth Camera-Unique Parameters

• Note: The output data of depth camera is stored and transmitted in uinit16, and its data

range is 0 ~ 65535. By default, one unit represents 1mm (controlled by otherParams [2]),

which means that the maximum range is 0 to 65.535 meters. However, the data range does

not represent the actual detection distance of the camera, and otherParams [0] is required

to set the minimum detection distance and otherParams [1] is required to set the maximum

detection distance.

• OtherParams [0]: The minimum recognition distance of the depth camera (unit: m). If the

depth distance is less than this value, the 65535 corresponding to NaN will be output.

• OtherParams [1]: The maximum recognition distance of the depth camera (unit: m). If the

depth distance is greater than this value, the 65535 corresponding to NaN will be output.

• OtherParams [2]: The scale unit (in meters) of the output value of the depth camera uint16.

By default, the depth value is in milliseconds, so 0.001 is required. Note: If the default value

is 0, it will be replaced by otherParams [2] = 0.001.

• Actual depth value (in meters) = depth picture value (uint16 range) * otherParams [2]

51

2. The base interface uses

2.8 Depth Camera-Experimental Procedure

• For the routine of the depth camera, see " 8.RflySimVision\0.ApiExps\1-

UsageAPI\0.VisionSenorAPI\5.DepthCameraDemo ". First run the DepthCameraDemo. Bat script to

start the simulation. After CopterSim displays 3DFixed, turn on control and visual recognition in the

run DepthCameraDemo. Py.

• This example contains two depth cameras, both of which are included in the Config. JSON.

• In the first visual structure of the Config. JSON, otherParams is all 0, indicating that the default

configuration is used. The unit is mm, the minimum distance is 0 m, and the maximum distance is

65.535 m.

• In the second visual structure of the Config. JSON, otherParams [0] = 0.3, otherParams [1] = 12, and

otherParam [0] = 0.001. Indicates that the nearest recognition distance is 0.3 meters, the farthest

distance is 12 meters, and the scale unit is millimeter.

• In the Python routine, the depth image matrix can be read directly from the vis. Img [I]. The vis.

HasData [I] is used to judge whether the data is updated.

• During the movement, the camera parameters can be dynamically adjusted by the vis.

SendUpdateUEImage (vs).

52

0.ApiExps/1-UsageAPI/0.VisionSenorAPI/5.DepthCameraDemo
0.ApiExps/1-UsageAPI/0.VisionSenorAPI/5.DepthCameraDemo

2. The base interface uses

2.8 Depth Camera-Test Results

• The test result is shown in the figure below. The aircraft takes off from the ground,

and then opens the visual detection window, which can output two depth pictures.

The image on the left uses the default configuration, and remote buildings can be

seen without range constraints; the depth image on the right has a maximum

detection distance of 12 meters, so distant buildings cannot be seen.

53

2. The base interface uses

2.9 Timestamp-Structure Definition

• The structure definition code of the

timestamp is shown in the right figure.

• When receiving, you need to receive data

from the UDP port of the 20005, check

whether the packet length is equal to 32

bytes, check whether checksum is the preset

123456789, and judge whether copterID is

the ID of your aircraft. The Python routine

code is shown in the right figure.

• The specific code can be seen in the

ReadTimeS TMP. Py of "

8.RflySimVision\0.ApiExps\1-

UsageAPI\6.ReadTimeStmp ".

54

0.ApiExps/1-UsageAPI/6.ReadTimeStmp
0.ApiExps/1-UsageAPI/6.ReadTimeStmp

2. The base interface uses

2.9 Timestamp-Lab Flow

• See 8.RflySimVision\0.ApiExps\1-UsageAPI\6.ReadTimeStmp

ReadTimeStmp. Py for the timestamp routine. Run the

ReadTimeS TMP. Bat script to start the simulation. After

CopterSim shows 3DFixed, the running ReadTimeStmp. Py can

subscribe to get the timestamp.

• Key code: The PX4MavCtrlV4 and VisionCaptureApi interfaces

both implement the timestamp listener function. First, call

StartTimeStmplisten () in jsonLoad to enable the timestamp

listener. The vis. RflyStartStmp is the time (system time or ROS

time) of the computer where py is located when CopterSim is

started (the aircraft corresponding to TargetCopter), and the vis.

TimeStmp is the time from the start of CopterSim to the current

data generation. The vis. IMG Stmp is that true timestamp of the

image

55

0.ApiExps/1-UsageAPI/6.ReadTimeStmp

2. The base interface uses

2.9 Timestamp — Experimental Effect

The result of the test is shown in the following figure. Open the ReadTimeStmp. Bat

and start the software in-loop simulation of an aircraft.

Python runs ReadTimeS TMP. Py subscriptions to get timestamps.

56

2. The base interface uses

2.10 Obtaining the UE Interface — Interface Introduction

• This interface file is an interface for Python to obtain the positions and collision

data of all dynamically created objects in UE.

• Ue.sendUE4Cmd ('RflyReqVehicleData 1') This interface is used to request

UE4 to return the received data of all aircraft (obstacles). Note: In order to

reduce the bandwidth consumption, only when the aircraft data changes, the

data will be returned. This means that objects created by obstacles sent before

this command will not be sent out. Therefore, this command needs to be sent

before the aircraft is created.

• Ue.initUE4MsgRec () is a function for python to monitor all aircraft status data

sent by UE4. After calling this function, aircraft data can be received.

57

2. The base interface uses

2.10 Obtaining the UE Interface — Interface

Introduction

• The aircraft data is stored in the list inReqUpdateVect

(Boolean, update flag or not) and the inReqVect list

(reqVeCrashData structure, store collision data). The

length of this list is variable, and each bit of data is a

struct reqVeCrashData, as shown in the right figure:

• The ue.getUE4Pos (TargetCopterID) interface will search

whether there is a copterID aircraft in the list and output

the location. The output format is a 4-dimensional vector,

the first three dimensions are the position XYZ vector of

the aircraft, and the last dimension is the bool variable of

whether there is an aircraft in the list.

• Ue.getUE4Data (TargetCopterID) can obtain the data

structure reqVeCrashData of the current aircraft.

58

2. The base interface uses

2.10 Acquiring the UE Interface —

Experimental Process and Effect

• Refer to " 8.RflySimVision\0.ApiExps\1-

UsageAPI\4.RflySim3DAPI\1.RflySim3D

PosGet " for the routine to get the UE

interface. Run the GetUE4PosAPI.bat

script to start the simulation. After

CopterSim displays 3DFixed, use

VSCold to run GetUE4PosAPI.py by

debugging single-step execution

• The running effect is shown in the right

figure. Different interfaces can be

obtained in each step, including all

interfaces for dynamically creating

object positions and collision data.

59

0.ApiExps/1-UsageAPI/4.RflySim3DAPI/1.RflySim3DPosGet
0.ApiExps/1-UsageAPI/4.RflySim3DAPI/1.RflySim3DPosGet
0.ApiExps/1-UsageAPI/4.RflySim3DAPI/1.RflySim3DPosGet

Outline

1. General introduction

2. The base interface uses

3. Visual control example

4. Visual AI is advanced

5. Distributed visual simulation

60

3. Visual control example

3.1 UAV Impact on Small Ball Experiment-Routine Introduction

• In Windows Explorer, open and enter the " 8.RflySimVision\1.BasicExps\1-

VisionCtrlDemos\e3_ShootBall "folder, as shown below.

• "ShootBall 3.py" is the main Python program of this routine, "ShootBall 3HITL.bat" is the

script to quickly start hardware-in-the-loop simulation, and "ShootBall3 SITL. Bat" "is the

script to quickly start software-in-the-loop simulation. As shown in the lower right figure, the

difference between the latter two relative to the S/HITLRun shortcut of the desktop is that

the "UE4 _ MAP" map scene variable selects the flat grass scene "VisionRingBlank" for

vision; Next, "UDP SIMMOde" communication UDP mode selects "Mavlink _ Full" mode

"for easy communication with Python; finally, 1 RflySim3D window is opened.

2024/7/25 61

1.BasicExps/1-VisionCtrlDemos/e3_ShootBall
1.BasicExps/1-VisionCtrlDemos/e3_ShootBall

3. Visual control example

3.1 Experiment of UAV impacting small ball — code analysis

• Open the "ShootBall 3.py" file with VS Code and view the source code and

comments below.

62

3. Visual control example

3.1 Experiment of UAV impacting small ball — code analysis

63

3. Visual control example

3.1 Experiment of UAV impacting small ball — code analysis

64

3. Visual control example

• 3.1 Experiment of UAV impacting small ball — code analysis

65

3. Visual control example

3.1 UAV Impact on Small Ball

Experiment — Experimental

Effect

• Double-click to run the

"ShootBall3SITL.bat" file to start

the software in-the-loop simulation

system. You can also plug in the

flight control, run the HILS script

"ShootBall3HITL.bat", and enter

the serial number to start the HITL

simulation.

• Run the "ShootBall 3.py" program

again. Generate a red sphere in

front, let the aircraft fly to the left

rear for some distance, and turn on

visual tracking, fly to the front of

the ball and stop.

66

Python Front

Camera

Image

Processing

RflySim3D Trailing Viewing Angle

RflySim. Visual Navigation Control of Multi-rotor Unmanned Aerial

Vehicle — — Experiment of Impacting Small Ball

This video can be viewed at:

Youku: https://v.youku.com/v_show/id_XNDcwNjA4NTYwNA==.html

YouTube：https://youtu.be/PvxEfY7oMq4

Station B: https://www.bilibili.com/video/BV13a411i7sH?p=13

67

https://v.youku.com/v_show/id_XNDcwNjA4NTYwNA==.html
https://youtu.be/PvxEfY7oMq4
https://www.bilibili.com/video/BV13a411i7sH?p=13

3. Visual control example

3.2 UAV Loop Penetration Experiment-Routine Introduction

• In Windows Explorer, open and enter the " 8.RflySimVision\1.BasicExps\1-

VisionCtrlDemos\e4_CrossRing "folder, as shown below.

• Where "CrossRing3.py" is the main Python program for this routine; The difference

between "ShootBall3HITL.bat" and "ShootBall3SITL.bat" relative to the previous

example of hitting a small ball is that the "UE4 _ MAP" map scene variable has been

selected for the visual ring-piercing scene "VisionRing". Note: Mavlink _ Full "Mode is

also selected for the UDPSIMMOde communication UDP mode.

• The subdirectories "TwoUAVDemo" and "ThreeUAVDemo" are two examples of

distributed vision control, generating two or three UAVs to independently process their

own vision and complete independent ring crossing tasks in the same scene.

68

1.BasicExps/1-VisionCtrlDemos/e4_CrossRing
1.BasicExps/1-VisionCtrlDemos/e4_CrossRing

3. Visual control example

3.2 UAV Ring Penetration Experiment — Key Code Analysis

69

3. Visual control example

3.2 UAV Ring Penetration Experiment — Key Code Analysis

70

3. Visual control example

3.2 UAV Ring Penetration Experiment — Key Code Analysis

71

3. Visual control example

3.2 UAV Ring Penetration

Test-Operation Effect
• Double-click to run the

"CrossRing3SITL.bat" file to start

the software in-the-loop simulation

system, and then run the

"CrossRing3.py" program.

• After taking off, the plane passes

through three rings in order, and

finally lands automatically.

• To use the hardware-in-the-loop

simulation, after setting the flight

control, run the

"CrossRing3HITL.bat" script and

input the flight control serial

number to start the hardware-in-

the-loop simulation system.

72

Python Front

Camera

Image

Processing

RflySim3D Trailing Viewing Angle

RflySim. Visual Navigation Control of Multi-rotor Unmanned Aerial

Vehicle — — Multi-rotor Loop Penetration Experiment

This video can be viewed at:

Youku: https://v.youku.com/v_show/id_XNDcwNjA4NTYwNA==.html

YouTube： https://youtu.be/PvxEfY7oMq4

Station B: https://www.bilibili.com/video/BV13a411i7sH?p=13&t=53.8

73

https://v.youku.com/v_show/id_XNDcwNjA4NTYwNA==.html
https://youtu.be/PvxEfY7oMq4
https://www.bilibili.com/video/BV13a411i7sH?p=13&t=53.8

3. Visual control example

3.3 Dual UAV Distributed Control-

Routine Introduction

• " 8.RflySimVision\1.BasicExps\1-

VisionCtrlDemos\e4_CrossRing\TwoUAVDe

mo " is shown in the right figure.

• In contrast to the stand-alone routines, there

are two Json files and two Python control

main programs, which correspond to the

images and controls of the two aircraft.

• The main differences between the camera

parameters corresponding to the two Json

files are:

• 1) SeqID is different, which is used to

distinguish image memory blocks; 2)

TargetCopter is bound to different aircraft,

which are bound to aircraft 1 and 2

respectively.

74

1.BasicExps/1-VisionCtrlDemos/e4_CrossRing/TwoUAVDemo
1.BasicExps/1-VisionCtrlDemos/e4_CrossRing/TwoUAVDemo
1.BasicExps/1-VisionCtrlDemos/e4_CrossRing/TwoUAVDemo

3.3 Dual UAV Distributed Control-Key Code Analysis

• The Python control program for aircraft 1 is "CrossRing3 _ vehicle 1.py", while that for aircraft 2 is

"CrossRing3 _ vehicle 2.py". The two programs are basically the same as the threading routine in the

previous section.

• The main difference between the two is that the jsonLoad function of VisionCaptureApi calls different

Json file paths; secondly, the UAV control interface PX4MavCtrler configures different CopterSim

communication ports (corresponding to different aircraft). Both take the first camera image in the JSON

definition camera list, so both use Img [0] to read the image.

75

3. Visual control example

3. Visual control example

3.3 Dual UAV Distributed Control-Experimental Results

• Enter "8.RflySimVision \ 1.Basic Exps \ 1-VisionCtrlDemos \ E4 _ CrossRing \ TwoUAVDemo", Double-

click to run the script "CrossRing3SITL.bat" or "CrossRing3HITL.bat" to start the software/hardware

in-the-loop simulation of two aircrafts.

• After the two aircraft are initialized (RflySim3D will prompt), double-click "Python38Run.bat" twice to

open the two Python environments; enter "python CrossRing3 _ vehicle 1.py" in the first Python window

(do not press Enter first); Type "python CrossRing3 _ vehicle2.py" in the second Python environment

(without pressing Enter first).

• Go back to the first Python window and press the Enter key to run the visual loop threading program for

aircraft 1. After a few seconds, switch to the Python window 2 and press the Enter key to start the visual

loop threading program for aircraft 2. It can be seen that the aircraft take off in turn and penetrate the

ring.

76

77

Main interface of RflySim3D, with the following

angle of view of aircraft 1 by default

Image processed by the front camera of

aircraft 2 (aircraft 1 is visible in the field

of view)

Image processed by the front camera of No.1 aircraft QGroundControl Trajectory Observations

3. Visual control example

3.3 Dual UAV Distributed Control –

Scaled to 3 Aircraft
• With the example of distributed control of two UAVs,

we can easily expand the number of UAVs to more,

such as three aircraft. Note: The free version only

supports up to two image outputs, so it can only be

used for dual vision.

• Enter the directory " 8.RflySimVision\1.BasicExps\1-

VisionCtrlDemos\e4_CrossRing\ThreeUAVDemo "

and follow the same method.

• You can turn on the visual control of three aircraft, as

shown in the lower right picture.

• Three planes can be seen taking off in turn, and the

plane behind can see the plane in front in view.

• Because the front aircraft will block the ring, there

will be fluctuations in the ring recognition of this

mode, which will reduce the control effect.

78

Main interface of

RflySim3D, following

perspective of No.3

aircraft
Visually processed image

of aircraft 1

Visually

processed image

of aircraft 2

Visually processed

image of aircraft 3

1.BasicExps/1-VisionCtrlDemos/e4_CrossRing/ThreeUAVDemo
1.BasicExps/1-VisionCtrlDemos/e4_CrossRing/ThreeUAVDemo

3. Visual control example

3.4 Binocular Vision Face Recognition Experiment-Routine Introduction

• In Windows Explorer, open and enter the " 8.RflySimVision\1.BasicExps\1-

VisionCtrlDemos\e7_ManDetect "folder, as shown below.

• Where, "ManDetect3.py" is the main Python program of this routine; the folder

"cascades" contains some feature files in XML format for face recognition; The

difference between "ManDetect3HITL.bat" and "ManDetect3SITL.bat" relative

to the desktop shortcut is that the communication UDP mode of "UDPSIMMOde"

also selects "Mavlink _ Full" mode; The folder "MultiCameraDemo" contains an

advanced example of two aircraft each with a binocular camera, a total of four

camera images (full version only).

79

1.BasicExps/1-VisionCtrlDemos/e7_ManDetect
1.BasicExps/1-VisionCtrlDemos/e7_ManDetect

3. Visual control example

3.4 Binocular Vision Face Recognition Experiment — Key Source Code Analysis

80

3. Visual control example

3.4 Binocular vision face recognition

experiment — running effect

• Run "ManDetect3SITL.bat" or
"ManDetect3HITL.bat" to start the HW/SW

in-the-loop simulation, and then run the main

control program "ManDetect 3.py".

• In RflySim3D, a walking person is generated

and set to face the plane. After the plane takes

off, the face recognition algorithm is turned on,

and the binocular frame selects the face.

• Assignment 1: Update the location of people in

real time, realize the simulation of people

walking, and write the aircraft tracking

controller.

• Job 2: Change to the forward-looking +

downward-looking camera, and verify the

tracking + optical flow algorithm.

81

82

RflySim: Obtain binocular camera images and perform face recognition

This video can be viewed at:

Youku: https://v.youku.com/v_show/id_XNDcwNjA4NzgxMg==.html

YouTube： https://youtu.be/hm6i6UCQjCI

Station B: https://www.bilibili.com/video/BV13a411i7sH?p=14

https://v.youku.com/v_show/id_XNDcwNjA4NzgxMg==.html
https://youtu.be/hm6i6UCQjCI
https://www.bilibili.com/video/BV13a411i7sH?p=14

3. Visual control example

3.4 Binocular Vision Face Recognition Experiment — Extended Binocular

• Enter the directory " 8.RflySimVision\1.BasicExps\1-

VisionCtrlDemos\e7_ManDetect\MultiCameraDemo ". You can view the key source code analysis of the

Config. JSON file (lower left two figures) and the MultiCameraDemo. Py file. (Bottom right)

83

1.BasicExps/1-VisionCtrlDemos/e7_ManDetect/MultiCameraDemo
1.BasicExps/1-VisionCtrlDemos/e7_ManDetect/MultiCameraDemo

3. Visual control example

3.4 Binocular Vision Face

Recognition Experiment —

Extended Binocular

• First double click the

"MultiCameraDemoSITL. Bat"

or "MultiCameraDemoHITL.

Bat" to open the dual computer

software/hardware in the loop

simulation of two CopterSim and

two RflySim3D.

• Then run the

"MultiCameraDemo. Py" "to see

the aircraft take off and get the

right.

84

Aircraft 1 RflySim3D Trailer Window Aircraft 2 RflySim3D Trailer Window

Aircraft 1 left camera
Aircraft 1 right camera

Aircraft 2 right camera

Aircraft 2 left camera

3. Visual control example

3.5 Screen Capture Interface-Routine Introduction

• In Windows Explorer, open and enter the " 8.RflySimVision\1.BasicExps\1-

VisionCtrlDemos\e5_ScreenCapAPI "folder, as shown in the following figure, which contains

examples of hitting balls and piercing rings. The interface used is the way to take screenshots.

• UE4 internal shared memory image transmission: high efficiency, one window can achieve multi-

channel transmission, the image is not the final effect.

• Screen screenshot: low efficiency, a window can only be an image, the image is the final rendering

effect.

• To sum up, the screen mapping mode image is the final best effect, while the shared memory mode

image is not the best intermediate rendering result, but the screen mapping mode is inefficient, so it is

used as an alternative scheme.

• Note: Screen mapping can also be used for any other 3D engine (such as FlightGear, Unity).

85

Note: It is recommended that you use the Python 38 environment

that comes with the platform to run the routines. If you use

another Python environment, be sure to install the following

components:

pip3 install d3dshot pywin32

1.BasicExps/1-VisionCtrlDemos/e5_ScreenCapAPI
1.BasicExps/1-VisionCtrlDemos/e5_ScreenCapAPI

3. Visual control example

3.5 Screen capture interface-impact ball

experiment

• Open the 8.RflySimVision\1.BasicExps\1-

VisionCtrlDemos\e5_ScreenCapAPI\1-ShootBall

folder. Double-clicking ShootBall3SITL.bat or

ShootBall3HITL.bat will open a simulation closed

loop of CopterSim aircraft, and open two RflySim3D

windows at the same time, one for displaying the front

camera and the other for global observation.

• Run "ShootBall 3.py" to see the effect on the right.

• Because of the way the screen takes pictures, the

front-facing camera image on the left side must

always be kept at the forefront, otherwise there will

be occlusion.

• Python images will be smaller than the window,

which is affected by the DPI setting.

86

Viewing angle of

RflySim3D front

camera

RflySim3D Trailing

Viewing Angle

Python front camera

image processing

Note: When running this routine, please double click

to open the SITL. Bat or HITL. Bat script file directly,

and do not run it in the administrator mode.

1.BasicExps/1-VisionCtrlDemos/e5_ScreenCapAPI/1-ShootBall
1.BasicExps/1-VisionCtrlDemos/e5_ScreenCapAPI/1-ShootBall

3. Visual control example

3.5 Screenshot Interface — Comparison of Experimental Effects of Binocular Face

Recognition

• The lower left is the drawing of UE4 shared memory, and the lower right is the screenshot

mode. It can be seen that the change of light and shadow in the way of screen drawing is

consistent with the actual window display effect, and there is a certain display limitation in

the backlighting of UE4 internal drawing.

87

Outline

1. General introduction

2. The base interface uses

3. Visual control example

4. Visual AI is advanced

5. Distributed visual simulation

88

4. Visual AI is advanced

4.1 Binocular Camera Calibration Experiment-Routine Introduction

• In Windows Explorer, open and enter the " 8.RflySimVision\0.ApiExps\3-

VisionAIAPI\0.BinocularCameraCalib " folder, as shown below.

• Where "Binocular CameraCalib4.py" is the main Python program for this routine;

"Binocular CameraCalib4.bat" is a batch startup script, double-clicking it will

automatically open three RflySim3D windows (left and right cameras + trailing

global viewing angle).

89

0.ApiExps/3-VisionAIAPI/0.BinocularCameraCalib
0.ApiExps/3-VisionAIAPI/0.BinocularCameraCalib

4. Visual AI is advanced

4.1 Binocular Camera Calibration Experiment —

Core Code Analysis

• Open the "Binocular CameraCalib4.py" file

with VS Code.

• The key code lines are shown in the right figure.

This script can obtain images of multiple

windows at the same time.

• Please read and learn the rest of the code

according to the previous explanation.

90

4. Visual AI is advanced

4.1 Binocular Camera Calibration

Experiment — Experimental Effect

• After running "Binocular

CameraCalib4.bat", run "Binocular

CameraCa lib4.py".

• Open multiple RflySim3D scenes, create a

new aircraft, configure binocular position

information, create a new target, and place

the targets according to random rules.

• Job 1: After obtaining the images of the

left and right cameras, implement the

online calibration algorithm.

• Homework 2: Store the images of the left

and right cameras locally in the form of

pictures, and then use the calibration

toolbox of MATLAB to calculate the

parameters.

91

92

RflySim: Obtain binocular camera images and use for camera calibration

This video can be viewed at:

Youku: https://v.youku.com/v_show/id_XNDcwNjA4NzgxMg==.html

YouTube： https://youtu.be/hm6i6UCQjCI

Station B: https://www.bilibili.com/video/BV13a411i7sH?p=14&t=39.8

https://v.youku.com/v_show/id_XNDcwNjA4NzgxMg==.html
https://youtu.be/hm6i6UCQjCI
https://www.bilibili.com/video/BV13a411i7sH?p=14&t=39.8

4. Visual AI is advanced

4.2 Virtual Camera Calibration Principle-Introduction

• Camera calibration concept: In the process of image measurement and computer

vision, in order to determine the relationship between the three-dimensional

geometric position of a point in a space object and its corresponding point in the

image, it is necessary to establish a geometric model of camera imaging, and the

parameters of the model are the parameters of the camera. The process of solving

the parameters is called camera calibration.

93

4. Visual AI is advanced

4.2 Principle of virtual camera calibration — camera model

• The process of digital camera image shooting is actually a process of optical imaging. The

imaging process of the camera involves four coordinate systems: the world coordinate

system, the camera coordinate system, the image coordinate system and the pixel

coordinate system.

• Ideal perspective model-pinhole imaging model: The camera model is a simplification of the

optical imaging model. At present, there are two kinds of models: linear model and

nonlinear model. The actual imaging system is a nonlinear model of lens imaging. The most

basic lens imaging principle is shown in the figure:

• Where is the object distance, is the focal length, and is the distance. The three

satisfy the relation

94

u f

v

u f v

1 1 1

f u v
= +

4. Visual AI is advanced

4.2 Principle of virtual camera calibration — camera model

• The lens of a camera is a group of lenses. When light rays parallel to the main optical axis pass

through the lens, they converge on a point. This point is called the focus. The distance from the focus

to the center of the lens is called the focal length. The lens of a digital camera is equivalent to a convex

lens, and the photosensitive element is located near the focus of the convex lens. When the focal length

is approximated by the distance from the center of the convex lens to the photosensitive element, it

becomes a pinhole imaging model. The pinhole imaging model is shown in the figure.

• The pinhole imaging model is the most widely used model for camera imaging. In this model, the

relationship between the spatial coordinates of the object and the image coordinates is linear, so the

solution of the camera parameters comes down to the solution of linear equations.

95

物体
凸透镜

像平面

4. Visual AI is advanced

4.2 Principle of virtual camera calibration — definition of coordinate system

• The camera imaging system consists of four coordinate systems: world coordinate

system, camera coordinate system, image coordinate system and pixel coordinate

system.

96

世界
坐标系

相机
坐标系

图像
坐标系

像素
坐标系

刚体变换

透视投影

仿射变换

4. Visual AI is advanced

4.2 Principle of virtual camera calibration — definition of coordinate system

• The transformation relationship between these four coordinate systems is:

• Where, is the physical coordinate of a point in the world coordinate

system, is the pixel coordinate of the point in the pixel coordinate system, and

is the scale factor.

97

0

0

1 cot

0 0 0
1

0 0 0 0
sin

1 0 0 1 0
0 0 1 1

u
UdX dXu f
V

Z v v f
WdY

−

 =

R T

0 1

仿射变换 透视投影 刚体变换

内参矩阵 外参矩阵

(, ,)U V W+ +

(,)u v

Z

4. Visual AI is advanced

4.2 Principle of virtual camera calibration — definition of coordinate system

• The relationship diagram of the four coordinate systems is shown in the following figure,

where is the three-dimensional space point, and is the image point projected on the image

plane.

• ① World coordinate system: It is the absolute coordinate system of the objective three-

dimensional world, also called objective coordinate system. Because the digital camera is

placed in the three-dimensional space, we need the world coordinate system to describe the

position of the digital camera, and use it to describe the position of any other object placed

in the three-dimensional environment to express its coordinate value.

98

M m M

CY

O

CX

1O

y

x

(,)m x y

(, ,)W W WM X Y Z

CZ

WZ

WX

WY

相机坐标系 图像坐标系

世界坐标系

f

(, ,)W W WX Y Z

4. Visual AI is advanced

4.2 Principle of virtual camera calibration — definition of coordinate system

• ② Camera coordinate system (optical center coordinate system): The optical center of the camera is

taken as the coordinate origin, the X axis and Y axis are parallel to the X axis and Y axis of the image

coordinate system respectively, and the optical axis of the camera is taken as the axis to represent its

coordinate value.

• ③ Image coordinate system: the center of the CCD image plane is taken as the coordinate origin, the

axis and the axis are respectively parallel to the two vertical sides of the image plane, and the

coordinate values are represented by. The image coordinate system represents the position of a pixel

in an image in physical units, such as millimeters.

• ④ Pixel coordinate system: take the vertex of the upper left corner of the CCD image plane as the

origin, axis and axis are parallel to the axis and axis of the image coordinate system respectively, and

their coordinate values are represented by. The images captured by digital cameras are first formed

into standard electrical signals, and then converted into digital images through analog-to-digital

conversion. Each image is stored as an array, and the value of each element in the row and column of

the image represents the gray level of the image point. Each such element is called a pixel, and the

pixel coordinate system is the image coordinate system in pixels.

99

4. Visual AI is advanced

4.2 Calibration principle of virtual camera — calibration principle

• Why do you want to calibrate the camera? For example, when we get a picture and

recognize it, the distance between the two parts is 1 pixel, but how many meters does this

pixel correspond to in the real world? This requires the use of camera calibration results to

convert pixel coordinates to physical coordinates to calculate the distance.

• If we want to model an imaging system and then calculate the corresponding parameters,

the necessary parameters are the camera.

Internal parameter matrix: and the external parameter matrix of the

camera. ,Therefore, the camera is calibrated.

The first purpose is to obtain the intrinsic and extrinsic parameter matrices of the camera.

100

0

0

cot
0

0 0
sin

0 0 1 0

f f
u

dX dX

f
v

dY

−

R T

0 1

4. Visual AI is advanced

4.2 Virtual camera calibration principle — internal parameter matrix and external

parameter matrix

• We put the matrix:

• It is called the intrinsic parameter matrix of the camera, which depends on the

intrinsic parameters of the camera. Where, is the image distance, ,

respectively represents the physical length of a pixel on the camera plate in the

direction of , , (that is, how many millimeters is a pixel on the plate), and

respectively represents the coordinates of the center of the camera plate in the

pixel coordinate system.

101

0 0

0 0

1 cot cot
0

0 0 0
1

0 0 0 0 0 0
sin sin

0 0 1 0
0 0 1 0 0 1 0

f f
u u

dX dX dX dXf
f

v f v
dY dY

− −

 =

f dX dY

X Y
0u 0v

4. Visual AI is advanced

4.2 Virtual camera calibration principle — internal parameter matrix and external

parameter matrix

• When the camera is an ideal camera, the relationship between the focal length, the

resolution, and the field angle is:

• A simplified internal reference matrix can be derived:

• Where is the focal length, is the width of the resolution, and is the angle of

view.

• For example, when the field angle is 90 and the resolution is (640 480), the internal

reference matrix is:

102

2 tan
2

f

=

0

0

0 0

0 0

0 0 1 0

f u

f v

f

320 0 320

0 320 240

0 0 1

4. Visual AI is advanced

4.2 Virtual camera calibration principle — internal parameter matrix and external

parameter matrix
• For the same camera, the internal parameter matrix of the camera depends on the internal parameters of the

camera. No matter what the position relationship between the calibration board and the camera is, the internal

parameter matrix of the camera does not change. This is also the reason why we can use the matrix H obtained

from different pictures (the calibration board and the camera have different positions) to solve the camera

internal parameter matrix A. However, the extrinsic parameter matrix reflects the positional relationship

between the calibration board and the camera. For different pictures, the position relationship between the

calibration board and the camera has changed, and the extrinsic parameter matrix corresponding to each picture

is different.

• We call the matrix: the extrinsic parameter matrix of the camera, which depends on the relative

position of the camera coordinate system and the world coordinate system, R represents the rotation matrix, and

T represents the translation vector.

• That is, the camera imaging model without distortion at a single point is as follows:

103

R T

0 1

0

0

cot
0

0 0
sin

1
0 0 1 0 1

f f
u

UdX dXu
Vf

Z v v
WdY

−

 =

R T

0 1

4. Visual AI is advanced

4.2 Virtual camera calibration principle — internal parameter matrix and external

parameter matrix

• Each column vector of represents the orientation of each coordinate axis of the world coordinate

system in the camera coordinate system; rather, the origin of the world coordinate system is

represented in the camera coordinate system. So we need to do a coordinate transformation to

convert the internal coordinates of the camera to the world coordinate system.

• The rotation matrix for this model is as follows:

• Since the known condition is the Euler angles of the camera, it is easier to derive the world

coordinate system from the camera coordinate system. So we use another model: assume that the

point P is a point in three-dimensional space with a position of in the camera coordinate system

and a position of in the world coordinate system. And may be interconvert by a transformation

matrix and , which may be subdivided into a rotation matrix and a translation matrix .

Its mathematical expression is:

104

() () ()

1 0 0 cos 0 sin cos sin 0

0 cos sin 0 1 0 sin cos 0

0 sin cos sin 0 cos 0 0 1

X Y Z

−

= = = −

 −

R R R

CP

WP
WP CP

'W CP P= +R t

'R t

4. Visual AI is advanced

4.2 Virtual camera calibration principle — internal parameter matrix and external

parameter matrix

• The relationship between the rotation direction and the corresponding matrix transformation: left

multiplication and right multiplication

• Left Multiplication – Transforms with respect to a fixed coordinate system. (For example, the world

coordinate system, for example, First Z, then Y, then X, rotate around the world coordinate system,

and then multiply the rotation matrix to the left in order.)

• Right multiplication-transform with respect to its own coordinate system, and each time it changes,

the next time it needs to be transformed with the new coordinate system as the standard. For example,

after the first transformation, the position of the original axis changes to the axis, then the next

transformation around the axis will transform around the previous axis. For example, rotate

according to the body coordinate system, for example, around the body coordinate system, First Z,

then Y, then X, multiply to the right in order , ,multiply to the right in order.

• Representation of the rotation matrix rotated according to the coordinate axis of the body:

105

X Y Z=R R R R

Z Y X=R R R R

()

1 0 0

0 cos sin

0 sin cos

x

= −

R
()

cos 0 sin

0 1 0

sin 0 cos

y

=

 −

R
()

cos sin 0

sin cos 0

0 0 1

z

−

=

R

4. Visual AI is advanced

4.2 Virtual camera calibration principle — internal parameter matrix and external

parameter matrix

• — a 3 × 3 rotation matrix = , where

Is the rotation angle of the calibration plate around the three axes of the

camera coordinate system, which is called the rotation vector;

• - is the translation vector. The combination with and is called

camera external reference. The complete external parameter matrix is .

106

'R

cos sin 0 cos 0 sin 1 0 0

sin cos 0 0 1 0 0 cos sin

0 0 1 sin 0 cos 0 sin cos

−

−

 − (), ,

t (), ,x y zt t t 'R t

'

R t

0 1

4. Visual AI is advanced

4.2 Virtual Camera Calibration Experiment-Routine Introduction

• Task 1: Calibration of Matlab calibration board

• 1. Storage of monocular camera image: start the OneCameraCal. Bat to obtain the

following image:

107

Routines see: RflySimAPIs \ 8. RflySimVision \

0.ApiExps\3-VisionAIAPI\2.CameraCalcDemo

4. Visual AI is advanced

4.2 Virtual Camera Calibration Experiment-Routine Introduction

• Task 1: Calibration of Matlab calibration board

• 2. Run the One CameraCal. Py in VS Code, and the calibration board and the

calibration board image shot by the camera will appear in the interface:

108

4. Visual AI is advanced

4.2 Virtual Camera Calibration Experiment-Routine Introduction

• Task 1: Calibration of Matlab calibration board

• 3. The captured picture is saved in a folder under the working path, for example, "

8.RflySimVision\0.ApiExps\3-VisionAIAPI\2.CameraCalcDemo\20220207_220418

".

• If the distance between the calibration board and the camera is too far or too close,

it will affect the test results. You can modify the first value in InitTargePos to

change the distance. After getting about thirty pictures, the program can be

stopped.

109

0.ApiExps/3-VisionAIAPI/2.CameraCalcDemo/20220207_220418

4. Visual AI is advanced

4.2 Virtual Camera Calibration Experiment-Routine Introduction

• Task 1: Calibration of Matlab calibration board

• 4. Open MATLAB and click on the app bar above.

110

4. Visual AI is advanced

4.2 Virtual Camera Calibration Experiment-Routine Introduction

• Task 1: Calibration of Matlab calibration board

• 5. Pull down the toolbar and select the Camera Calibrator toolbox.

111

4. Visual AI is advanced

4.2 Virtual Camera Calibration Experiment-Routine Introduction

• Task 1: Calibration of Matlab calibration board

• 6. After opening the toolbox, click Add Images, open to the location where we

grabbed the picture, and select the picture. Click the Open button when the

selection is complete.

112

4. Visual AI is advanced

4.2 Virtual Camera Calibration Experiment-Routine Introduction

• Task 1: Calibration of Matlab calibration board

• 7. In the pop-up window below, enter the size of the checkerboard. 60mm is

provided in the scene. Click OK.

113

4. Visual AI is advanced

4.2 Virtual Camera Calibration Experiment-Routine Introduction

• Task 1: Calibration of Matlab calibration board

• 8. After a few seconds, the toolbox will tell you the accepted picture. Click OK

directly.

114

4. Visual AI is advanced

4.2 Virtual Camera Calibration Experiment-Routine Introduction

• Task 1: Calibration of Matlab calibration board

• 9. You can roughly browse the checkerboard extraction quality, which should be

all on the image. Click the Calibrate button to start the calibration.

115

4. Visual AI is advanced

4.2 Virtual Camera Calibration Experiment-Routine Introduction

• Task 1: Calibration of Matlab calibration board

• 10. You can drag the red line to select the pictures with large backprojection error,

and press Delete to delete these pictures and recalibrate them.

116

4. Visual AI is advanced

4.2 Virtual Camera Calibration Experiment-Routine Introduction

• Task 1: Calibration of Matlab calibration board

• 11. After the results are satisfactory, click Export to export the calibration results.

117

4. Visual AI is advanced

4.2 Virtual Camera Calibration

Experiment-Routine Introduction

• Task 1: Calibration of Matlab

calibration board

• 12. Back in the Matlab workspace,

you'll see a structure called

cameraParams, and you can double-

click to see the member variables. You

can also enter the cameraParams.

Intrinsics below to view the camera

information and enter the

cameraParams. IntrinsicM atrix to

view the internal reference matrix.

118

4. Visual AI is advanced

4.2 Virtual Camera Calibration Experiment-Routine Introduction

• Task 2: Python Calibration

• 1. Start the Camera CalcDemo. Bat, run the Camera CalcDemo. Py for some time,

and a folder with captured pictures will be obtained under the working path. For

example, " 8.RflySimVision\0.ApiExps\3-

VisionAIAPI\2.CameraCalcDemo\20220207_220418 ".

• 2. In the bord-Calibration. Py file, change the path in line 19 to the photo path to

be calibrated and run it

images = glob.glob(“.\20220207_220418\img1*.jpg”)。

• 3. The resulting internal reference matrix is as follows.

119

0.ApiExps/3-VisionAIAPI/2.CameraCalcDemo/20220207_220418
0.ApiExps/3-VisionAIAPI/2.CameraCalcDemo/20220207_220418

4. Visual AI is advanced

4.2 Virtual Camera Calibration Experiment-Routine Introduction

• Task 3: Calibration Process of Python Double Small Ball

• 1. Principle: Two small balls are generated, and their distance is fixed at one meter under the

world coordinates. The proportional relationship between the world coordinate system and

the image coordinate system is judged according to the distance between the two small balls on

the image. The translation of the coordinate origin is then measured by the distance from the

midpoint of the ball line to the camera. The focal length can be obtain from that distance

between the two small balls, the width of the small ball on the image and the distance

from the middle point of the line connecting the small balls to the camera . Formula:

120

L
w s

f
w s

f
L

=

图像
宽度w

物体
宽度 L

物体
位置P

焦距 f

物体到相机距离（深度） s

相机
位置O

视场角
/ 2FOV

4. Visual AI is advanced

4.2 Virtual Camera Calibration Experiment-Routine Introduction

• Task 3: Calibration Process of Python Double Small Ball

• 2. Run ball2-Calibration. Py in VS Code, and the result is as shown in the following

figure.

121

4. Visual AI is advanced

4.2 Virtual Camera Calibration Experiment-Routine Introduction

• Task 3: Calibration Process of Python Double Small Ball

122

4. Visual AI is advanced

4.3 Camera coordinate conversion —

introduction to the principle

• The camera is based on the pinhole principle for imaging, as

shown in the right figure, which is a schematic diagram of

the pinhole principle. The pinhole model corresponds to the

imaging process, the object in the real world is the imaging

target in the three-dimensional space, the pinhole is the

center of the camera, and the reflection imaging plane is a

two-dimensional image plane.

• One of the characteristics of pinhole imaging is that any

point in the real world, its projection point on the imaging

plane and the center of the camera are in a straight line,

which is called central projection or perspective projection,

and is also the basis of imaging analysis. Perspective

projection is a reduced-rank spatial transmission

transformation, which projects a three-dimensional space

onto a two-dimensional plane.

123

Routines see: RflySimAPIs \ Python

VisionAPI \ 3-VisionAIDemos \ 3-

GetRelativePosDemo

4. Visual AI is advanced

4.3 Camera coordinate conversion — introduction to the principle

• In order to make complex 3D measurements with pictures, we must rely on a series

of complex calculations, which are based on the Cartesian coordinate system.

Generally, the coordinate systems related to the visual image of the UAV are as

follows:

– Image pixel coordinate system;

– Image physical coordinate system;

– Camera coordinate system;

– Body coordinate system;

– World coordinate system;

124

4. Visual AI is advanced

4.3 Camera coordinate conversion — introduction to the

principle
• Image pixel coordinate system: It is a two-dimensional rectangular coordinate

system, which reflects the arrangement of pixels in the camera. Its origin O is

located in the upper left corner of the image, and the u and V coordinate axes

coincide with the two sides of the image respectively. Pixel coordinates are

discrete values (0, 1, 2, …) , in pixels.

• Image physical coordinate system: In order to relate the image to the physical

space, the image needs to be transformed into the physical coordinate system.

The origin O is located at the center of the image (ideally) and is the

intersection of the camera's optical axis and the image plane (called the

principal point). The X and y axes are parallel to the u and V axes,

respectively. The two coordinate systems are actually translation relations,

and the translation quantity is (u0, v0).

• The above two can be collectively referred to as the image coordinate system,

and both coordinate systems are two-dimensional coordinate systems.

125

4. Visual AI is advanced

4.3 Camera coordinate conversion — introduction to the

principle

• The right figure shows two different expressions of the image

coordinate system. If we know the conversion relationship from

pixel to physical size, that is, the physical size of a pixel, that is, the

pixel size is DX DX ∗ dy (the size in the X direction is DX, and the

size in the y direction is dy), we can convert between the two

coordinate systems:

126

• In order to facilitate matrix operations, it can be written in

matrix form. The three-dimensional vector on both sides of the

formula is a homogeneous expression, that is, the third

dimension is set to 1 to represent the two-dimensional vector

with the three-dimensional vector. The advantage of this is

that the transformation from three-dimensional to two-

dimensional can be completed by matrix operation.

4. Visual AI is advanced

4.3 Camera coordinate conversion — introduction to the principle

• The camera coordinate system, the body coordinate system and the world coordinate system are

all three-dimensional coordinate systems, and in the quad-rotor unmanned aerial vehicle, the

relative position between the camera coordinate system and the body coordinate system is fixed,

so that after the relative position is measured at the beginning, the camera coordinate systems

and the body coordinate systems can be considered as a whole to be discussed together, Both of

them can be regarded as a coordinate system in which the direction of the origin and coordinate

axis is bound to the initial state of the UAV, and it is a coordinate system that will move relative

to the ground;

• The world coordinate system is an absolute coordinate system with a fixed position on the

ground as the origin. Its function is to unify all points in space into the same coordinate system.

• The conversion between 3D coordinate systems is more convenient to be expressed by rotation

and translation, and the key and difficult point is the conversion between 3D coordinate systems

such as camera coordinate system and 2D coordinate systems such as image coordinate system.

127

4. Visual AI is advanced

4.3 Camera coordinate conversion — introduction to the principle

• The origin of the camera coordinate system is at the center of the camera. The XY

axis of the camera coordinate system is parallel to the XY axis of the image

coordinate system. The Z axis is perpendicular to the image plane and faces the

image plane. The intersection point of the Z axis and the image plane is the origin

of the image XY coordinate system (image principal point), as shown in the

following figure:

128

4. Visual AI is advanced

4.3 Camera coordinate conversion — introduction to the principle

• In this scheme, the Z coordinates of all pixel points on the image plane in the

camera coordinate system are equal to the focal length f, and the values in the

camera XY coordinate system and the image XY coordinate system are equal, that

is, if the coordinates of the pixel point p in the image XY coordinate system is (X, y),

then its coordinates in the camera XY coordinate system is (X, y, f).

129

4. Visual AI is advanced

4.3 Camera coordinate conversion — introduction to the principle

• Assume that the coordinates of the space point corresponding to the pixel p in the

camera coordinate system are (Xc, Yc, Zc). If two points lie on the same straight line

from the origin of the coordinate system, their coordinates are in a proportional

relationship. That is

130

4. Visual AI is advanced

4.3 Camera coordinate conversion — introduction to the principle

• Assume that the coordinates of the space point corresponding to the pixel p in the

camera coordinate system are (Xc, Yc, Zc). If two points lie on the same straight line

from the origin of the coordinate system, their coordinates are in a proportional

relationship. That is

131

• In order to facilitate matrix operations, it is written in matrix form:

• You can also convert XY coordinates to UV coordinates:

• Zc is usually called the scale factor λ, and the 3x3 matrix in the middle is called the

internal reference matrix K. Obviously, the internal reference matrix K describes the

conversion relationship from the camera coordinate system to the UV coordinate

system.

4. Visual AI is advanced

4.3 Camera coordinate conversion — introduction to the principle

• The internal reference matrix K is one of the key parameters of the camera,
𝒇

𝑑𝒙
𝐚𝐧𝐝

𝒇

𝑑𝒚
is actually used to convert the focal length f in the unit of physical size into

the focal length value in the unit of pixel, where fx =
𝒇

𝑑𝒙
, fy=

𝒇

𝑑𝒚
, fx and fy are

respectively the pixel unit values of the focal lengths in the two pixel directions.

Finally, the matrix expression of the internal reference is obtained:

132

4. Visual AI is advanced

4.3 Camera coordinate conversion —

introduction to the principle

• Due to the deviation of the manufacturing

process, the pixel in reality is not an absolute

rectangle, but a parallelogram, as shown in

the right figure. At this time, the vertical

boundary of the pixel is not parallel to the y-

axis but is tilted at a certain angle, so a tilt

factor s is introduced into the K matrix, and

the K matrix is expressed as

133

4. Visual AI is advanced

4.3 Camera coordinate conversion — introduction to

the principle
• For a world coordinate system, a fixed absolute coordinate system.

• The world coordinate system and the camera coordinate system are both

three-dimensional coordinate systems, and they can be transformed by

rotation and translation.

• Assuming that the coordinates of the space point P in the world

coordinate system are (Xw, Yw, Zw), it can be converted into the camera

coordinate system coordinates (Xc, Yc, Zc) through a 3x3 unit

orthogonal rotation matrix R and a 3x1 translation vector t:

or

134

• The rotation matrix R and the translation vector t are called the

extrinsic parameter matrix of the camera.

4. Visual AI is advanced

4.3 Camera Coordinate Conversion-Routine

Introduction

• Open the “ 8.RflySimVision\0.ApiExps\3-

VisionAIAPI\4.GetRelativePosDemo ”folder.

• Double-click to start the Get RelativePosDemo.

Bat file.

• Open the GetRelative PosDemo. Py script, set

breakpoints for key statements, and execute

the statements one by one in debug mode.

• This script shows several ways to set and

obtain coordinate position information in the

software, both in the ground coordinate

system and in the UAV coordinate system.

135

0.ApiExps/3-VisionAIAPI/4.GetRelativePosDemo
0.ApiExps/3-VisionAIAPI/4.GetRelativePosDemo

4. Visual AI is advanced

4.4 Methods for Generating Data Sets —

Introduction to Routines

• Open the “ 8.RflySimVision\0.ApiExps\3-

VisionAIAPI\5.GenVisionDataSet ”folder.

• Double-click the launch One CameraCal. Bat

file to launch RflySim3D.

• Run the get _ dateset. Py, and the aircraft will

appear in a random position on the screen and

be marked with a red box. A folder named by

timestamp is added to the directory, in which

the images directory stores the collected aircraft

images, and the labels directory stores the labels

(YOLO format) corresponding to each image.

136

0.ApiExps/3-VisionAIAPI/5.GenVisionDataSet
0.ApiExps/3-VisionAIAPI/5.GenVisionDataSet

4. Visual AI is advanced

4.4 Methods for Generating Data Sets — Introduction to Routines

• Modify the ROOT path in the maketxt. Py to the generated folder path. Be careful

to change "\" to "/" to prevent escaping.

• Running the program will generate a data directory and an ImageSets directory in

the folder. The data directory is the data set directory read during training. By

default, the training set and the test set are randomly divided according to the ratio

of 9:1.

137

4. Visual AI is advanced

4.4 Methods for Generating Data Sets — Introduction to Routines

• At present, the model of No.3 quadrotor UAV is used. If you want to change it to

another model, you need to know the coordinates of all convex points of the model,

and change the coordinates corresponding to each point of the function shown in

the following figure. Note that the following parameters include the wing.

138

4. Visual AI is advanced

4.4 Methods for Generating Data Sets — Introduction to Routines

• When increasing or decreasing the number of raise points of the function in the figure above, you also

need to change the number of columns in the position array shown in the figure below.

• When changing the automatically generated model, you also need to change the number of the model

in the data set, that is, the "0" below here. Here is the name corresponding to the number 0 in the

class during training. If you want to change it to another model, please change the number, and

change the corresponding number position in the corresponding class to the required name during

training.

• Finally, if the data sets of different models need to be generated and put together to form a data set, it

is also necessary to change the CNT starting parameter as shown in the figure, which corresponds to

the starting number of the image and txt document name when generating the data set.

139

4. Visual AI is advanced

4.5 Visual Object Recognition Experiment-Environment Configuration

• For this lab, you need to first install PyTorch in the python environment, which is divided

into a CPU version and a GPU version. If the computer's graphics card is an AMD graphics

card, only the CPU version can be installed; if it is an NVIDIA graphics card, it is

recommended to install the GPU version, which is faster.

• To install the GPU version, you need to install the CUDA Toolkit and cuDNN. You can find

the installation method of the corresponding version of the graphics card in the link

https://developer.nvidia.com/cuda-toolkit-archive and

https://developer.nvidia.com/rdp/cudnn-archive respectively.

• After the installation is completed, start to install PyTorch, enter the link

https://pytorch.org/ and select the corresponding installation command. If the CPU version

is installed, select CPU in Compute Platform.

140

https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/rdp/cudnn-archive
https://pytorch.org/

4. Visual AI is advanced

4.5 Visual Object Recognition Experiment-Routine Introduction

This routine is located in the "

8.RflySimVision\2.AdvExps\e7_ObjDetectYolo\ShootBallBaseOnYolo ".

• Double-click the Launch ShootBall3SITL.bat file to launch RflySim3D.

• Run the ShootBall 3.py program, and you can see the effect of the plane hitting the

ball.

141

2.AdvExps/e7_ObjDetectYolo/ShootBallBaseOnYolo
2.AdvExps/e7_ObjDetectYolo/ShootBallBaseOnYolo

4. Visual AI is advanced

4.6 Visual AI Training Experiment-Routine Introduction

Target tracking experiment

• Open the " 8.RflySimVision\2.AdvExps\e8_SingleObjTracking "folder.

• Right click the Tracking. Bat and select Run as Administrator to start RflySim3D.

• Run the tracking. Py to see that another aircraft is generated on the right side of

the aircraft. After the two aircraft take off, the aircraft on the right side will fly to

the front and move. At the same time, a window is generated to display the

coincidence effect of the target aircraft identification detection frame and the

tracking detection frame.

142

2.AdvExps/e8_SingleObjTracking

4. Visual AI is advanced

4.6 Visual AI Training Experiment-Routine Introduction

Target following experiment

• This routine is located in the " 8RflySimVision\2.AdvExps\e9_Object-Follow " folder.

• Run the target _ follow. Bat as an administrator.

• Run the target _ follow. Py, it can be seen that two planes take off, the right plane flies to

the front, at the same time, a window is generated to display the front plane, it can be seen

that the target plane identification detection frame, the target plane starts to move, and the

main plane follows the target plane to move.

143

2.AdvExps/e9_Object-Follow

Outline

1. General introduction

2. The base interface uses

3. Visual control example

4. Visual AI is advanced

5. Distributed visual simulation

144

5. Distributed visual simulation

5.1 General introduction to routines

• In the actual UAV top-level development and testing process, there are often the following

two requirements.

• 1) On-board computers (Raspberry Pi, NVIDIA Jetson Xavier NX, NANO, etc.) Running

Linux/ROS environment for visual perception algorithm (recognition, SLAM, obstacle

avoidance, etc.) Development.

• 2) Multiple UAV clusters perform distributed perception and control, that is, to simulate

multiple UAV clusters, each UAV needs to have its own independent vision to complete the

exploration and cooperation tasks of a specific scene.

• This section builds a series of solutions for these two requirements and provides routines

and documentation. As shown in the figure below, the " 8.RflySimVision\0.ApiExps\2-

DistributedSimAPI\0.Preparation " folder contains the remote connection debugging

methods for Raspberry Pi, NX and other hardware, which is convenient for the experiment.

145

0.ApiExps/2-DistributedSimAPI/0.Preparation
0.ApiExps/2-DistributedSimAPI/0.Preparation

5. Distributed visual simulation

5.1 General introduction to routines

• " 8.RflySimVision\0.ApiExps\4-AdvApiExps\9.VisionAPIsTest " and "

8.RflySimVision\0.ApiExps\2-DistributedSimAPI\1.VisionAPIsTest " introduces

the routines of different image transmission interfaces; "

8.RflySimVision\3.CustExps\2-DistributedSimDemos " directory, "E1 _

OneVehilceCtrls" introduces the routines of single unmanned vision; "E2

introduces the multi-UAV routine _ MultipleVehicles"; "E3 introduces the vision-

controlled routine for an arbitrary number of UAVs _ AnyVehilces".

146

0.ApiExps/4-AdvApiExps/9.VisionAPIsTest
3.CustExps/2-DistributedSimDemos
0.ApiExps/2-DistributedSimAPI/1.VisionAPIsTest
3.CustExps/2-DistributedSimDemos

5. Distributed visual simulation

5.2 Access to the ROS system for simulation — from algorithm development to

deployment
• For ease of development and ease of use, the RflySim platform runs only on the Windows platform, but supports

the transfer of images to other computers (embedded hosts, virtual machines, desktops, etc.) via media such as

network cables.

• Figure (a) below shows the implementation architecture of the previous routine. This architecture is suitable for

the rapid development and verification of a single perception algorithm. After completion, it is transplanted to the

on-board Linux/ROS system shown in Figure (B) for deployment and hardware-in-the-loop testing.

• As an intermediate transition, the Python-aware algorithm module in Figure (a) can be replaced by a Linux/ROS

virtual machine environment, so that the deployment and preliminary test of the algorithm can be realized on a

single computer to achieve the purpose of improving efficiency and saving costs.

147

计算机/Windows系统

CopterSim无人机

模型仿真器

RflySim3D实时三维

环境仿真器

PX4飞控软件在环仿

真系统

Python/C视觉感知与

控制程序

电机
控制

传感
数据

真值
状态

图像
获取

视觉
控制

估计
状态

(a) 单电脑Windows下纯软件在环开发模式

计算机/Windows系统

CopterSim无人机

模型仿真器

RflySim3D实时三维

环境仿真器

电机
控制

传感
数据

真值
状态

图像
获取

(b) 自驾仪+通信链路+机载计算机 硬件在环仿真

PX4飞控硬件在环

仿真系统

Pixhawk/Nuttx系统

Python/C视觉感知

与控制程序

视觉
控制

估计
状态

机载计算机/Linux+ROS

网络通信 线缆通信

5. Distributed visual simulation

5.2 Access to the ROS system for simulation — hardware-in-the-loop simulation to

the real machine experiment
• After the airborne computer receives the image from the network (currently using UDP protocol), it can directly

process the image, or forward it to other sensing modules through ROS nodes.

• Pixhawk is directly connected to the onboard computer through a serial port cable, which is the same as the

hardware connection on the real machine.

• Directly insert the output of Pixhawk/PX4 flight control into the electric controller, and connect the image

acquisition interface to the camera to complete the migration from the hardware-in-the-loop simulation shown in

Figure (B) to the real machine system shown in Figure (C).

148

计算机/Windows系统

CopterSim无人机

模型仿真器

RflySim3D实时三维

环境仿真器

电机
控制

传感
数据

真值
状态

图像
获取

(b) 自驾仪+通信链路+机载计算机 硬件在环仿真

PX4飞控硬件在环

仿真系统

Pixhawk/Nuttx系统

Python/C视觉感知

与控制程序

视觉
控制

估计
状态

机载计算机/Linux+ROS

(c) 机架+自驾仪+通信链路+机载计算机 真机实验

PX4飞控软件系统

Python/C视觉感知

与控制程序

视觉
控制

估计
状态

机载计算机/Linux+ROS

电机
控制

图像
获取

Pixhawk/Nuttx系统

机架/动力/相机

5. Distributed visual simulation

5.3 Distributed Cluster Networking Simulation —

UAV Quantity Expansion Scheme

• Whether from the perspective of multi-machine

simulation or from the perspective of UAV real cluster

control, communication bandwidth and computing

performance are always important bottlenecks

restricting the increase of the number of clusters.

• Due to the performance bottleneck of the simulation

computer, the number of hardware-in-the-loop

simulations that a single computer can connect to

Pixhawk is limited, so it is necessary to realize the

arbitrary expansion of the number of UAVs by

networking multiple computers.

• As the number of UAVs increases, the amount of data

that aircraft communicate with each other increases

dramatically until the communication bandwidth

reaches saturation. Therefore, it is necessary to divide

the whole UAV cluster into several subgroups, and use

the network hierarchical approach to achieve a larger

scale of cluster simulation.
149

集群指挥控制中心

模型仿真器#1

评估与输出

三维引擎

模型仿真器#2

PX4 #1

PX4 #2

PX4 #3

PX4 #4

PX4 #5

5. Distributed visual simulation

5.3 Distributed Cluster Network

Simulation-Communication

Optimization Scheme
• The communication between each program

inside the computer adopts the shared

memory or UDP communication mode, and

the transmission of large data such as

images is directly operated on the memory,

with the lowest delay and the fastest speed.

• Each computer can open multiple

hardware/software in-loop simulation

systems to simulate multiple UAVs, and the

flight control and airborne computers are

connected through wired data transmission

to reduce latency.

• The data sent and received by each

computer is collected, compressed and

synchronized by a specific module, and then

sent out to ensure smooth communication

within the network.

• Support the use of request communication

(DDS protocol), support large-scale cluster

simulation.
150

仿真计算机3/Windows

仿真计算机1/Windows

CopterSim无人机

模型仿真器1

RflySim3D实时三

维环境仿真器N

CopterSim无人机

模型仿真器N

RflySim3D实时三

维环境仿真器1

PX4飞控硬件在环

仿真系统1

Pixhawk/Nuttx系统

PX4飞控硬件在环

仿真系统N

Pixhawk/Nuttx系统

... ... 共享内存
/UDP通信

...

Python/C视觉感知

与控制程序1

机载计算机1/Linux

Python/C视觉感知

与控制程序N

机载计算机N/Linux

...

数据汇总、压缩、
转发、同步程序

组网通信

数据汇总、压缩、
转发、同步程序

仿真计算机M/Windows

数据汇总、压缩、
转发、同步程序...

仿真计算机2/Windows

数据汇总、压缩、
转发、同步程序

集群指挥计算机

5. Distributed visual simulation

5.3 Distributed Cluster Network Simulation — Image Transmission Network Optimization

• In order to avoid transmitting a large number of images in the LAN, in this simulation framework, the visual

images of the RflySim simulation computer are directly sent to the embedded host under the underlying switch

in the form of a specified IP, and are not transmitted to the upper layer.

• In the upper router (switch), the state data of UAV is mainly transmitted, and the subscription and publication

mechanism is adopted to avoid useless communication.

151

底层交换机1

网线 网线/

图像

数传 数传

USB/传感&控制

USB/传感&控制

RflySim运动

+三维模拟
机载视觉

处理器

Pixhawk

自驾仪

Pixhawk

自驾仪

上层路由器/交换机

...

集群指挥/可视化

地面站

网线

机载视觉

处理器

网线/

图像

底层交换机N

网线 网线/

图像

数传 数传

USB/传感&控制

USB/传感&控制

RflySim运动

+三维模拟

机载视觉

处理器

Pixhawk

自驾仪

Pixhawk

自驾仪

机载视觉

处理器

网线/

图像

5. Distributed visual simulation

5.4 Remote access method of embedded host

• Because the distributed experiment involves many computers or embedded small hosts, in order to facilitate the

observation of the results of subsequent experiments, it is recommended to use the "remote desktop connection"

tool to connect other hosts under the Windows computer running on the RflySim platform. Note: Of course, you

can also use a remote access tool dedicated to the embedded host (with a graphical interface, not a single

command line).

• If the remote host is a Windows system, then after upgrading the professional version platform and enabling

remote access, you can directly access the remote through the host name and enter the account password.

• If the remote host is a Raspberry Pi (or an Ubuntu system), You can go to the directory "8. RflySimVision \ 0.

Api Exps \ 2-Distributed SimAPI \ 0. Preparation \" RaspberryPI _ connection method ",

• And follow that steps in the document to configure the Raspberry Pi and get the IP address from the rout,

Graphical access is available through the Remote Desktop Connection tool.

Note: Our hardware is ready for direct connection.

• If it is TX2 or NX, it can be configured through the document "RflySimAPIs \ 8.RflySimVision \ 0.ApiExps \ 2-

Distributed SimAPI \ 0.Preparation", and then through the IP address

Address and login password to connect. The effect is shown in the right figure.

152

5. Distributed visual simulation

5.5 Interface Test Lab-Introduction to Routine
• See the directory " 8.RflySimVision\0.ApiExps\2-DistributedSimAPI\1.VisionAPIsTest " for the experiment routines

• The key configuration item is the SendProtocol [8] vector in the Config. JSON configuration file in section 2.4 of this lecture.

• Where, SendProtocol [0] represents four graph transfer protocols.

• 0: UE4 writes the image into the shared memory. Other programs of this computer can read the image through the memory.

If the remote computer needs the image, it can forward the image again. Features: The shared memory mode allows the local

machine to read pictures at a high speed, but when the remote computer reads pictures, it needs additional transfer, and the

amount of calculation and delay are large.

• 1: UDP is directly transmitted to the remote computer (through the IP specified by SendProtocol [1-4]), and PNG

compression is used for sending compression and receiving decompression. Features: Low latency, PNG lossless compression,

low compression ratio but good quality.

• 2: UDP is directly transmitted to the remote computer, and the picture is not compressed. Features: minimum delay, small

amount of calculation, high network pressure.

• 3: UDP is directly transmitted to the remote computer, and JPG compression is used. Features: Low network pressure,

moderate delay and computation, but the image is lossy compression, with a slight loss of accuracy, but it meets the real-time

visual control requirements of UAV.

• Note: The free version can only use the 0 mode, and the full version is recommended to use the 3 mode (default for

subsequent routines).

153

0.ApiExps/2-DistributedSimAPI/1.VisionAPIsTest

5. Distributed visual simulation

5.5 Interface Test Experiment-Routine File Structure

• See " 8.RflySimVision\0.ApiExps\4-AdvApiExps\9.VisionAPIsTest " for the

experiment routine.

• It can be seen from the right figure that the six routines correspond to four

image transmission modes, namely, shared memory, PNG direct transmission,

uncompressed direct transmission, JPEG direct transmission, IMU data

acquisition, image acquisition and transmission limit delay experiment.

• The following types of files are included in the routine:

• Client _ * *.bat file: enable the software/hardware in-loop simulation, and set

the number of aircraft to 1 in this routine.

• Config. JSON file: configure camera parameters, including several cameras,

camera position, camera type (RGB, depth, etc.)

• File client _ ue4.py: start the script for image transmission

• File server _ ue4.py: Enable image reception and control

• Python 38Run.bat: Platform Python shortcut

• * * ROS. Py files: ROS-enabled routines and interfaces

154

0.ApiExps/4-AdvApiExps/9.VisionAPIsTest

5. Distributed visual simulation

5.6 Interface test experiment — single computer

experiment
• Four modes of test routines, on a computer, can be tested in the following

way

• Double-click to run the "client _ ue4" _ SITL. Bat "to open the software in-

the-loop simulation of an aircraft

• Double-click to run "Python 38Run.bat" to start the platform Python

environment, and enter the command "python client _ ue4.py" to start the

image request and image forwarding. (VS Code can only run one program,

which is reserved for server)

• Open "server _ ue4.py" with VS Code, read the code and run the routine.

• The motion of the four experimental aircraft is the same. They all take off

to 10 meters and begin to fly in circles.

• After all server programs are run, three image data are obtained, which

are RGB, depth, and grayscale.

• In mode 0, the client can preview three images. In other modes, there is no

image without python transfer.

• The depth map has a distance limit, and the results can only be observed at

close objects. In the experiment, it is white after takeoff.
155

5. Distributed visual simulation

5.6 Interface test experiment — dual computer experiment

• The process is basically the same as that of a single computer, except that the client needs to add the IP of a

remote computer (Windows computer, Linux computer or Raspberry Pi), and the server program needs to

run on the remote computer. The steps are as follows:

• Observe the local IP address (for example, 192.168.3.80) and the IP address of the remote computer (for

example, 192.168.3.81) through the router, and record the IP address.

• Double-click to run the "client _ ue4" _ SITL. Bat "to open the software in-the-loop simulation of an aircraft.

Note: The routine uses the broadcast mode for MAVLink data transmission by default. In order to improve

the efficiency, the "SET IS _ BROADCAST = 1" statement can be changed into "SET IS _ BROADCAST =

192.168.3.81", where the IP address of the remote computer needs to be filled in.

• Open "client _ ue4.py" with VS Code, uncomment the following statement "# vis. RemotSendIP =", and set

the IP address to the IP address of the remote computer, for example, "vis. RemotSendIP = '192.168.3.81'"

• Copy all the files in the folder to another computer, open "server _ ue4.py" through Python environment or

VS Code and run it to receive and display the pictures. Note: In order to improve the communication

efficiency, the "255.255.255.255" broadcast address can be changed to the "192.168.3.80" host address.

• Note: Uncomment "# print ('Img', idx)" in the "VisionCaptureApi. Py" "to observe the category and

receiving timestamp of each picture. This data can be used to analyze and test the synchronism and packet

loss rate.
156

5. Distributed visual simulation

5.7 Single Aircraft Visual Control Experiment

• Enter the " 8.RflySimVision\3.CustExps\2-DistributedSimDemos\e1_OneVehilceCtrls "directory, and

you can see the previous visual API, ball impact, ring piercing, and binocular face recognition

routines. It is reproduced here in a distributed way.

• The experimental process is basically the same as the previous one, and the experimental effect is the

same as Section 3.

• For stand-alone experiments, run bat first, then Python client, and finally server.

• For online experiment, first record the IP addresses of the two hosts, then run bat, open the client

with VS Code and set the IP address of the host, finally copy all files to the remote host, and then run

server.

• Note: If there are not many computers in the LAN, you can directly modify the client and set the IP

address of the remote host to the broadcast address of "255.255.255.255" without going to the router

to check the IP address of the computer.

• Note: It is recommended to set the IP address of the computer or embedded host as static IP in the

router, so that the IP address will not change after each restart, and there is no need to query the IP

address frequently.

• Note: It is recommended to use remote access to operate the lab on one computer.
157

3.CustExps/2-DistributedSimDemos/e1_OneVehilceCtrls

5. Distributed visual simulation

5.8 Multi-Aircraft Visual Control Experiment-General Introduction
• Enter the directory of " 8.RflySimVision\3.CustExps\2-

DistributedSimDemos\e2_MultipleVehicles ", and you can see several experiment routines.

The file names have the following meanings:

• TransMode indicates the transfer mode, 0 is the shared memory, and 3 is the JPEG direct

transfer.

• SITL indicates the use of PX4 software in-loop simulation, which requires running SITL *

*.bat to start the simulation closed loop; HITL indicates hardware in-loop simulation.

• UDP indicates that the communication between the flight control and the Server is in UDP

mode, while Serial indicates that the data transmission module needs to be used to

communicate between the flight control and the Server through the serial port.

• Local indicates that the lab can be run on a single computer; Remote indicates that the lab

requires at least two computers and requires an IP address.

• The suffix of "_" indicates the number of aircraft. If there is no suffix, the default is 1

aircraft with 3 cameras. 2V4C indicates 2 aircraft with 4 cameras, that is, 2 cameras for each

aircraft.

• The AllSourceFile folder is the template source file for all routines.

158

3.CustExps/2-DistributedSimDemos/e2_MultipleVehicles
3.CustExps/2-DistributedSimDemos/e2_MultipleVehicles

5. Distributed visual simulation

5.8 Multi-Aircraft Visual Control Experiment-Routine Introduction
• Entering the "1-SITLUdpDemo _ TransMode0 _ Local" directory, you can see several files

used to generate the required aircraft and camera routines with one click.

• The Config. JSON is the same as the previous profile, defining parameters for multiple

cameras. Note: The maximum number of cameras supported by each aircraft should be

defined here, and the first few of them can be selected and enabled in the config. Xlsx.

• The config. Xlsx defines Windows host data, the number of Linux hosts (the same as the

number of aircraft) and IP addresses, the location of each aircraft, the number of cameras

on each aircraft, and so on.

• According to the distributed simulation framework defined in the Config. Xlsx, the

ConfigWrite. M can automatically generate distributed simulation routines of any number

of aircraft, and can select a variety of simulation modes. The template file for the routine

comes from the "All Source File" folder in the upper directory.

• The experimental process is also very simple: 1) Use MATLAB to locate the directory where

the "ConfigWrite. M" file "is located, and then right click to run it to generate the folder of

Vision Demo *, where * represents the total number of aircraft; 2) Run the bat Qidong

script of Windows PC * on the simulation computer, and then run the client image transfer

program; 3) Copy LinuxNXX * to the remote host, and run the server. Note: Support multi-

computer and host networking.

159

5. Distributed visual simulation

5.8 Multi-Aircraft Visual Control Experiment-Introduction to Config. Xlsx Usage

• Take the SITLUdpDemo _ Local _ 1V3C as an example, and refer to the notes in the

following table for details.

160

HIL or SIL, UDP or Serial,

COM Name ,Baud Num

Hardware or software in the loop (HIL/SIL), UDP or serial

communication (UDP/Serial), serial port number (HIL only), baud

rate (HIL only) SIL UDP

WindowsPCIPList IP address of the Windows computer 127.0.0.1

VehicleNumOnPC Number of aircraft on each Windows PC 1

NXXIPList

IP list for each embedded computer NXX, the number of which

shall be the same as the number of aircraft 127.0.0.1

CameraNumList Number of cameras per aircraft 3

VehicleXPosList(m) List of X coordinates of the aircraft in m 0

VehicleYPosList(m) List of Y coordinates of the aircraft in m 0

VehicleYawList(degree) List of yaw angles of the aircraft in radians 0

UE4_MAP Map name or serial number GrassLands

PX4SitlFrame

When the software is in the loop, set the PX4 internal rack Airframe

type iris

DLLModel

The name or serial number of the DLL model. By default, select 0

for multi-rotor, and select DLL for fixed-wing, etc. 0

isEnableSyncStart

Whether to enable synchronous startup 0: Do not enable

synchronous startup 1: Enable synchronous startup, and trigger the

preceding aircraft after the last aircraft command is executed 2:

Trigger the preceding aircraft in turn after the last aircraft script runs;

the second column of this option can set the delay time (s) for

triggering 0

5. Distributed visual simulation

5.8 Multi-Aircraft Visual Control Experiment-Introduction to Config. Xlsx Usage

• Take HITLUdpDemo _ Local _ 1V3C as an example.

• You need to use HITL hardware in the loop, so you need to prepare a Pixhawk and connect it to your

computer.

• In Local mode, both the computer and the remote host IP address are set to 127.0.0.1

• One computer, one plane, so the Windows PC IP List has only one column, and each plane has three

cameras.

• Experimental steps: Run the bat and client of Windows PC1, and then run the server under Linux

NXX1.

161

HIL or SIL, UDP or
Serial, COM Name
,Baud Num HIL UDP

WindowsPCIPList 127.0.0.1

VehicleNumOnPC 1

NXXIPList 127.0.0.1

CameraNumList 3

VehicleXPosList(m) 0

VehicleYPosList(m) 0

VehicleYawList(degree) 0

5. Distributed visual simulation

5.8 Multi-Aircraft Visual Control Experiment-Introduction to Config. Xlsx Usage

• Taking the HITLSerialDemo _ Local _ 1V3C as an example, it is necessary to prepare a data

transmission connection between the flight control TELEM1 and the computer USB port, that is to

say, the computer needs to occupy two USB ports, one for HITL simulation and the other for server

and PX4 communication.

• In the following table, COM14 is the serial port number of data transmission, and the 57600 is the

baud rate of data transmission, which can be set in QGC.

162

HIL or SIL, UDP or
Serial, COM Name
,Baud Num HIL Serial COM14 57600

WindowsPCIPList 127.0.0.1

VehicleNumOnPC 1

NXXIPList 127.0.0.1

CameraNumList 3

VehicleXPosList(m) 0

VehicleYPosList(m) 0

VehicleYawList(degree) 0

5. Distributed visual simulation

5.8 Multi-Aircraft Visual Control Experiment-Introduction to Config. Xlsx Usage

• Taking the SITLUdpDemo _ Remote _ 1V3C as an example, it is necessary to prepare: 1 computer, 1

host, 1 router (or switch), power supply, and several network cables.

• In the table below, 192.168.3.80 is the computer IP, and 192.168.3.55 is the remote host IP, which

needs to be modified according to the personal network configuration.

• During the experiment, the files in the Windows PC1 directory were run on the computer, and the

files in the Linux NXX1 directory were copied to the host computer to run.

163

HIL or SIL, UDP or
Serial, COM Name
,Baud Num SIL UDP

WindowsPCIPList 192.168.3.80

VehicleNumOnPC 1

NXXIPList 192.168.3.55

CameraNumList 3

VehicleXPosList(m) 0

VehicleYPosList(m) 0

VehicleYawList(degree) 0

5. Distributed visual simulation

5.8 Multi-Aircraft Visual Control Experiment-Introduction to Config. Xlsx Usage

• Taking the HITLUdpDemo _ Remote _ 1V3C as an example, it is necessary to

prepare: 1 computer, 1 host, 1 flight control, 1 router (or switch), power supply

and several network cables.

164

HIL or SIL, UDP or
Serial, COM Name
,Baud Num HIL UDP

WindowsPCIPList 192.168.3.80

VehicleNumOnPC 1

NXXIPList 192.168.3.82

CameraNumList 3

VehicleXPosList(m) 0

VehicleYPosList(m) 0

VehicleYawList(degree) 0

5. Distributed visual simulation

5.8 Multi-Aircraft Visual Control Experiment-Introduction to Config. Xlsx Usage

• Taking the HITLSerial Demo _ Remote _ 1V3C as an example, it is necessary to

prepare: 1 computer, 1 host, 1 flight control, 1 data transmission, 1 router (or

switch), power supply and several network cables.

165

HIL or SIL, UDP or
Serial, COM Name
,Baud Num HIL Serial /dev/ttyUSB0 57600

WindowsPCIPList 192.168.3.80

VehicleNumOnPC 1

NXXIPList 192.168.3.82

CameraNumList 3

VehicleXPosList(m) 0

VehicleYPosList(m) 0

VehicleYawList(degree) 0

5. Distributed visual simulation

5.8 Multi-Aircraft Visual Control Experiment-Introduction to Config. Xlsx Usage

• Take SITLUdpDemo _ Remote _ 2V4C as an example, it is required to prepare: 1

computer, 2 hosts, 1 router (or switch), power supply and several network cables.

166

HIL or SIL, UDP or
Serial, COM Name
,Baud Num SIL UDP

WindowsPCIPList 192.168.3.80

VehicleNumOnPC 2

NXXIPList 192.168.3.81 192.168.3.82

CameraNumList 2 2

VehicleXPosList(m) 0 1

VehicleYPosList(m) 0 0

VehicleYawList(degree) 0 0

5. Distributed visual simulation

5.8 Multi-Aircraft Visual Control Experiment-Introduction to Config. Xlsx Usage

• Take the HITLSerial Demo _ Remote _ 2V4C as an example, it is necessary to

prepare: 1 computer, 2 hosts, 2 flight controllers, 2 data transmitters, 1 router (or

switch), power supply and several network cables.

167

HIL or SIL, UDP or
Serial, COM Name
,Baud Num HIL Serial /dev/ttyUSB0 57600

WindowsPCIPList 192.168.3.80

VehicleNumOnPC 2

NXXIPList 192.168.3.81 192.168.3.82

CameraNumList 2 2

VehicleXPosList(m) 0 1

VehicleYPosList(m) 0 0

VehicleYawList(degree) 0 0

5. Distributed visual simulation

5.9 Multi-Computer Multi-Aircraft Vision Control Experiment-General Introduction

• Enter the " 8RflySimVision\3.CustExps\2-DistributedSimDemos\e3_AnyVehilces

"directory, and you can see the routines of multi-computer and multi-aircraft. The

theory class supports the networking of any number of computers and hosts in the

LAN, but the architecture shown in the following figure must be adopted. Ensure

that the image is only propagated within the underlying switch using the specified

IP.

168

底层交换机1

网线 网线/

图像

数传 数传

USB/传感&控制

USB/传感&控制

RflySim运动

+三维模拟
机载视觉

处理器

Pixhawk

自驾仪

Pixhawk

自驾仪

上层路由器/交换机

...

集群指挥/可视化

地面站

网线

机载视觉

处理器

网线/

图像

底层交换机N

网线 网线/

图像

数传 数传

USB/传感&控制

USB/传感&控制

RflySim运动

+三维模拟

机载视觉

处理器

Pixhawk

自驾仪

Pixhawk

自驾仪

机载视觉

处理器

网线/

图像

3.CustExps/2-DistributedSimDemos/e3_AnyVehilces

5. Distributed visual simulation

5.9 Multi-Computer Multi-Aircraft Visual Control Experiment-Introduction to

Config. Xlsx Usage

• Take the SITLUdpDemo _ Remote _ 4V4C (each computer is equipped with two airplanes, and each

airplane is equipped with one camera) as an example. It is necessary to prepare two computers, four

hosts, two routers (or switches), a power supply, and several network cables.

• Six IP addresses need to be filled in, and the experimental phenomenon is that the aircraft penetrate

the ring in turn and are visible to each other (occlusion may lead to the failure of penetrating the ring).

169

HIL or SIL, UDP or
Serial, COM Name
,Baud Num

硬件或软件在环(HIL/SIL)，UDP或串口通信(UDP/Serial)，串
口号(仅HIL填写)，波特率(仅HIL填写) SIL UDP

WindowsPCIPList Windows电脑的IP地址 192.168.3.80 192.168.3.79

VehicleNumOnPC 各台Windows电脑上的飞机数量 2 2

NXXIPList 各嵌入式电脑NXX的IP列表，数量应该与飞机数量相同 192.168.3.81 192.168.3.82 192.168.3.83 192.168.3.84

CameraNumList 每台飞机上相机数量 1 1 1 1

VehicleXPosList(m) 飞机的X坐标列表，单位m -0.5 -0.5 0.5 0.5

VehicleYPosList(m) 飞机的Y坐标列表，单位m -0.5 0.5 -0.5 0.5

VehicleYawList(degree) 飞机的偏航角度列表，单位弧度 0 0 0 0
UE4_MAP 地图名字或序号 VisionRing
PX4SitlFrame 软件在环时，设置PX4内部机架Airframe类型 iris

DLLModel
DLL模型的名字或序号，默认多旋翼选0，固定翼等需要选
DLL 0

isEnableSyncStart

是否开启同步启动
0：不开启同步启动
1：开启同步启动，最后一个飞机命令执行后触发前面飞机
2：最后一个飞机脚本运行后，依次触发前面飞机；本选项
第2列可设置延迟触发的时间（s） 0

isEnableIMUSend 是否开启IMU数据发送 0

5. Distributed visual simulation

5.9 Multi-Computer Multi-Aircraft Visual Control Experiment-Introduction to

Config. Xlsx Usage

• Taking the HITLSerial Demo _ Remote _ 4V4C (each computer is equipped with two airplanes, and

each airplane is equipped with one camera) as an example, it is necessary to prepare two computers,

four hosts, four flight controllers, four data transmitters, two routers (or switches), a power supply,

and several network cables.

• The synchronous start simulation function can be enabled. When the last host runs the server, the

server program blocked in front will be triggered in turn to realize the phenomenon that the aircraft

passes through the ring at the same time or in turn.

170

HIL or SIL, UDP or
Serial, COM Name
,Baud Num

硬件或软件在环(HIL/SIL)，UDP或串口通信(UDP/Serial)，串
口号(仅HIL填写)，波特率(仅HIL填写) HIL Serial /dev/ttyUSB0 57600

WindowsPCIPList Windows电脑的IP地址 192.168.3.80 192.168.3.79

VehicleNumOnPC 各台Windows电脑上的飞机数量 2 2

NXXIPList 各嵌入式电脑NXX的IP列表，数量应该与飞机数量相同 192.168.3.81 192.168.3.82 192.168.3.83 192.168.3.84

CameraNumList 每台飞机上相机数量 1 1 1 1

VehicleXPosList(m) 飞机的X坐标列表，单位m -0.5 -0.5 0.5 0.5

VehicleYPosList(m) 飞机的Y坐标列表，单位m -0.5 0.5 -0.5 0.5

VehicleYawList(degree) 飞机的偏航角度列表，单位弧度 0 0 0 0
UE4_MAP 地图名字或序号 VisionRing
PX4SitlFrame 软件在环时，设置PX4内部机架Airframe类型 iris

DLLModel
DLL模型的名字或序号，默认多旋翼选0，固定翼等需要选
DLL 0

isEnableSyncStart

是否开启同步启动
0：不开启同步启动
1：开启同步启动，最后一个飞机命令执行后触发前面飞机
2：最后一个飞机脚本运行后，依次触发前面飞机；本选项
第2列可设置延迟触发的时间（s） 2 5

isEnableIMUSend 是否开启IMU数据发送 1

171

Brief summary

• This lecture mainly explains the development course of flight control algorithm, which is divided into two parts: basic

experiment and advanced experiment, so that students can familiarize themselves with the development process of

multi-rotor theoretical design, RflySim platform simulation and physical real machine control as soon as possible.

• The basic experiment is based on the RflySim platform software-in-the-loop and hardware-in-the-loop simulation

process learning, and the advanced experiment is based on the learning route of multi-rotor theoretical design and

modeling experiment → estimation experiment → control experiment → decision-making experiment.

If you have any questions, please go to the https://doc.rflysim.com/ for more information.

RflySim More

Tutorials

Scanning code

consultation and

communication

Freescale RflySim

Technology Exchange

Group

https://doc.rflysim.com/
https://space.bilibili.com/3493283546269949?spm_id_from=333.1007.0.0

172

Thank you!

	幻灯片 1
	幻灯片 2: Outline
	幻灯片 3: 1. General introduction
	幻灯片 4: 1. General introduction
	幻灯片 5: 1. General introduction
	幻灯片 6: 1. General introduction
	幻灯片 7: 1. General introduction
	幻灯片 8: Outline
	幻灯片 9: 2. The base interface uses
	幻灯片 10: 2. The base interface uses
	幻灯片 11: 2. The base interface uses
	幻灯片 12: 2. The base interface uses
	幻灯片 13: 2. The base interface uses
	幻灯片 14: 2. The base interface uses
	幻灯片 15: 2. The base interface uses
	幻灯片 16: 2. The base interface uses
	幻灯片 17: 2. The base interface uses
	幻灯片 18: 2. The base interface uses
	幻灯片 19: 2. The base interface uses
	幻灯片 20: 2. The base interface uses
	幻灯片 21: 2. The base interface uses
	幻灯片 22: 2. The base interface uses
	幻灯片 23: 2. The base interface uses
	幻灯片 24: 2. The base interface uses
	幻灯片 25: 2. The base interface uses
	幻灯片 26: 2. The base interface uses
	幻灯片 27: 2. The base interface uses
	幻灯片 28: 2. The base interface uses
	幻灯片 29: 2. The base interface uses
	幻灯片 30: 2. The base interface uses
	幻灯片 31: 2. The base interface uses
	幻灯片 32: 2. The base interface uses
	幻灯片 33: 2. The base interface uses
	幻灯片 34: 2. The base interface uses
	幻灯片 35: 2. The base interface uses
	幻灯片 36: 2. The base interface uses
	幻灯片 37: 2. The base interface uses
	幻灯片 38: 2. The base interface uses
	幻灯片 39: 2. The base interface uses
	幻灯片 40: 2. The base interface uses
	幻灯片 41: 2. The base interface uses
	幻灯片 42: 2. The base interface uses
	幻灯片 43: 2. The base interface uses
	幻灯片 44: 2. The base interface uses
	幻灯片 45: 2. The base interface uses
	幻灯片 46: 2. The base interface uses
	幻灯片 47: 2. The base interface uses
	幻灯片 48: 2. The base interface uses
	幻灯片 49: 2. The base interface uses
	幻灯片 50: 2. The base interface uses
	幻灯片 51: 2. The base interface uses
	幻灯片 52: 2. The base interface uses
	幻灯片 53: 2. The base interface uses
	幻灯片 54: 2. The base interface uses
	幻灯片 55: 2. The base interface uses
	幻灯片 56: 2. The base interface uses
	幻灯片 57: 2. The base interface uses
	幻灯片 58: 2. The base interface uses
	幻灯片 59: 2. The base interface uses
	幻灯片 60: Outline
	幻灯片 61: 3. Visual control example
	幻灯片 62: 3. Visual control example
	幻灯片 63: 3. Visual control example
	幻灯片 64: 3. Visual control example
	幻灯片 65: 3. Visual control example
	幻灯片 66: 3. Visual control example
	幻灯片 67
	幻灯片 68: 3. Visual control example
	幻灯片 69: 3. Visual control example
	幻灯片 70: 3. Visual control example
	幻灯片 71: 3. Visual control example
	幻灯片 72: 3. Visual control example
	幻灯片 73
	幻灯片 74: 3. Visual control example
	幻灯片 75: 3. Visual control example
	幻灯片 76: 3. Visual control example
	幻灯片 77
	幻灯片 78: 3. Visual control example
	幻灯片 79: 3. Visual control example
	幻灯片 80: 3. Visual control example
	幻灯片 81: 3. Visual control example
	幻灯片 82
	幻灯片 83: 3. Visual control example
	幻灯片 84: 3. Visual control example
	幻灯片 85: 3. Visual control example
	幻灯片 86: 3. Visual control example
	幻灯片 87: 3. Visual control example
	幻灯片 88: Outline
	幻灯片 89: 4. Visual AI is advanced
	幻灯片 90: 4. Visual AI is advanced
	幻灯片 91: 4. Visual AI is advanced
	幻灯片 92
	幻灯片 93: 4. Visual AI is advanced
	幻灯片 94: 4. Visual AI is advanced
	幻灯片 95: 4. Visual AI is advanced
	幻灯片 96: 4. Visual AI is advanced
	幻灯片 97: 4. Visual AI is advanced
	幻灯片 98: 4. Visual AI is advanced
	幻灯片 99: 4. Visual AI is advanced
	幻灯片 100: 4. Visual AI is advanced
	幻灯片 101: 4. Visual AI is advanced
	幻灯片 102: 4. Visual AI is advanced
	幻灯片 103: 4. Visual AI is advanced
	幻灯片 104: 4. Visual AI is advanced
	幻灯片 105: 4. Visual AI is advanced
	幻灯片 106: 4. Visual AI is advanced
	幻灯片 107: 4. Visual AI is advanced
	幻灯片 108: 4. Visual AI is advanced
	幻灯片 109: 4. Visual AI is advanced
	幻灯片 110: 4. Visual AI is advanced
	幻灯片 111: 4. Visual AI is advanced
	幻灯片 112: 4. Visual AI is advanced
	幻灯片 113: 4. Visual AI is advanced
	幻灯片 114: 4. Visual AI is advanced
	幻灯片 115: 4. Visual AI is advanced
	幻灯片 116: 4. Visual AI is advanced
	幻灯片 117: 4. Visual AI is advanced
	幻灯片 118: 4. Visual AI is advanced
	幻灯片 119: 4. Visual AI is advanced
	幻灯片 120: 4. Visual AI is advanced
	幻灯片 121: 4. Visual AI is advanced
	幻灯片 122: 4. Visual AI is advanced
	幻灯片 123: 4. Visual AI is advanced
	幻灯片 124: 4. Visual AI is advanced
	幻灯片 125: 4. Visual AI is advanced
	幻灯片 126: 4. Visual AI is advanced
	幻灯片 127: 4. Visual AI is advanced
	幻灯片 128: 4. Visual AI is advanced
	幻灯片 129: 4. Visual AI is advanced
	幻灯片 130: 4. Visual AI is advanced
	幻灯片 131: 4. Visual AI is advanced
	幻灯片 132: 4. Visual AI is advanced
	幻灯片 133: 4. Visual AI is advanced
	幻灯片 134: 4. Visual AI is advanced
	幻灯片 135: 4. Visual AI is advanced
	幻灯片 136: 4. Visual AI is advanced
	幻灯片 137: 4. Visual AI is advanced
	幻灯片 138: 4. Visual AI is advanced
	幻灯片 139: 4. Visual AI is advanced
	幻灯片 140: 4. Visual AI is advanced
	幻灯片 141: 4. Visual AI is advanced
	幻灯片 142: 4. Visual AI is advanced
	幻灯片 143: 4. Visual AI is advanced
	幻灯片 144: Outline
	幻灯片 145: 5. Distributed visual simulation
	幻灯片 146: 5. Distributed visual simulation
	幻灯片 147: 5. Distributed visual simulation
	幻灯片 148: 5. Distributed visual simulation
	幻灯片 149: 5. Distributed visual simulation
	幻灯片 150: 5. Distributed visual simulation
	幻灯片 151: 5. Distributed visual simulation
	幻灯片 152: 5. Distributed visual simulation
	幻灯片 153: 5. Distributed visual simulation
	幻灯片 154: 5. Distributed visual simulation
	幻灯片 155: 5. Distributed visual simulation
	幻灯片 156: 5. Distributed visual simulation
	幻灯片 157: 5. Distributed visual simulation
	幻灯片 158: 5. Distributed visual simulation
	幻灯片 159: 5. Distributed visual simulation
	幻灯片 160: 5. Distributed visual simulation
	幻灯片 161: 5. Distributed visual simulation
	幻灯片 162: 5. Distributed visual simulation
	幻灯片 163: 5. Distributed visual simulation
	幻灯片 164: 5. Distributed visual simulation
	幻灯片 165: 5. Distributed visual simulation
	幻灯片 166: 5. Distributed visual simulation
	幻灯片 167: 5. Distributed visual simulation
	幻灯片 168: 5. Distributed visual simulation
	幻灯片 169: 5. Distributed visual simulation
	幻灯片 170: 5. Distributed visual simulation
	幻灯片 171: Brief summary
	幻灯片 172

