
RflySim Platform Visual Interface Document
directory

1. Introduction to the RflySim Visual Architecture.. 9

2. Configuration of visual function development environment .. 11

2.1. Windows Development Environment .. 11

2.1.1. The platform comes with a VS Code development environment 11

2.1.2. Pycharm Development Environment .. 12

2.2. Ubuntu Virtual Machine Development Environment .. 14

2.3. Ubuntu Development Environment ... 14

3. Introduction to development tools that rely on the development of visual algorithms 15

3.1. MAVLink/mavros/pymavlink .. 15

3.2. ROS/ROS2 ... 16

3.3. OpenCV .. 16

4. RflySim platform visual configuration steps .. 18

4.1. bat Script Configuration Method (Configuration for Vision) .. 18

4.1.1. bat Script Template Selection (Select an existing script template based on your

needs) .. 18

4.1.2. START_INDEX(Coptic starting number in Copticsim) ... 18

4.1.3. UDP_START_PORT (Port number for MavLink UDP communication in CopterSim)

... 19

4.1.4. SimMode (Hardware/Software Emulation Mode Selection) 19

4.1.5. UE4_MAP (Specifying the scene map in RflySim3D) .. 19

4.1.6. IS_BROADCAST (Select CopterSim MavLink message communication method ）

... 19

4.1.7. UDPSIMMODE （ MavLink Messaging Communication UDP Emulation Mode

Settings ） .. 20

4.1.8. TOTOAL_COPTER （ The total number of aircraft ） 20

4.1.9. VEHICLE_INTERVAL （ Initialize the aircraft position interval ） 20

4.1.10. Flight Controller Initialization Pose Settings (Pos, Yaw, and Distributed Multi-

Machine Settings).. 21

4.1.11. IsSysID （Hardware-in-the-loop unique parameters determine whether CopterID

uses the sys_id of the flight controller） .. 21

4.1.12. More BAT Script Template Descriptions (e.g. Independently Set Pose for Each

Aircraft, etc.).. 21

4.2. PX4 software-in-the-loop simulation steps .. 21

4.2.1. Bat Script Settings ... 21

4.3. PX4 Hardware-in-the-Loop Simulation Steps (Flight Controller Needs to Restore Official

Firmware) .. 21

4.4. PX4 Software-in-the-Loop + Virtual Machine in the Loop ... 23

4.4.1. Bat script configuration ... 23

4.5. PX4 Software-in-the-Loop + NX Hardware-in-the-Loop ... 23

4.5.1. Bat script configuration ... 23

4.5.2. NX side configuration .. 23

4.6. PX4 Hardware-in-the-Loop + Virtual Machine in the Loop .. 24

4.6.1. Bat script configuration ... 25

4.6.2. Virtual Machine Configuration .. 25

4.7. PX4 Hardware-in-the-Loop + NX Hardware-in-the-Loop .. 25

4.7.1. Bat Script Configuration .. 26

4.7.2. NX Configuration ... 26

4.8. Multi-PX4+ Multi-NX Hardware-in-the-Loop ... 26

4.8.1. Bat Script Configuration .. 27

4.8.2. Flight Control Parameter Settings ... 27

4.8.3. NX Configuration .. 28

5. Introduction to vision-related communication ports .. 28

5.1. Description of UDP mutual communication port between the visual interface and

CopterSim and RflySim .. 28

5.1.1. Port 20010 (default single RflySim3D window, the port where the vision interface

communicates with RflySim3D for requests, such as collision detection, target properties,

camera properties, etc.) .. 28

5.1.2. Port 20100 (CopterSim accepts emulation port to restart an aircraft) 29

5.1.3. Port 30100 (CopterSim Single Aircraft Accepts External Requests for IMU Data by

Default) .. 29

5.1.4. Port 31000 (Vision Interface Configuration: The current system accepts IMU data

by default) ... 29

5.1.5. Port 20005 (Vision Interface Requests Timestamp of Aircraft Takeoff from

CopterSim) .. 29

5.1.6. Port 20006 (Listening for Data from RflySim3D) ... 29

5.1.7. Description of data structures related to communication 30

5.2. Python program communication interface with CopterSim .. 35

5.2.1. PX4SILIntFloat （ SILInts and SILFloats data exported to CopterSim DLL models ）

... 35

5.2.2. InitTrueDataLoop （Start two threads to receive real data from CopterSim and PX4

data respectively） ... 35

5.2.3. InitMavLoop （ Enable MAVLink to listen to CopterSim data and update it in real

time ） ... 35

5.2.4. TimeStmploop（Listen to the timestamp data of a specified CopterSim in a loop）

... 36

5.2.5. StartTimeStmplisten（The thread loop listens to the timestamp data of the

specified CopterSim and does not block the main thread） 36

5.2.6. endMavLoop （ Stop receiving CopterSim data, which is the same as stopRun ）

... 37

5.3. Python program to communicate with RflySim3D Interface .. 37

5.3.1. ReqVeCrashData (structure sent by RflySim3D, mainly data related to collision) . 37

5.3.2. CoptReqData (aircraft data returned by RflySim3D, information of a Copter sent)

... 38

5.3.3. ObjReqData (data returned by RflySim3D, information about an object sent) 38

5.3.4. CameraData (data returned by RflySim3D, information of a certain camera (vision

sensor) sent) .. 39

5.3.5. UE4MsgRecLoop (used to process the messages returned by RflySim3D or

CopterSim, there are 6 kinds of messages in total)... 40

5.3.6. Get CamCoptObj (get the specified data from RflySim3D and store the monitored

three types in three lists) .. 42

5.3.7. reqCamCoptObj (Request data for objects in the scene (does not create new

objects, but gets data for existing objects)) .. 42

5.3.8. sendUE4Cmd (To RflySim3D Send a Byte String Command) 42

5.4. Python programs and other Ubuntu Inside ROS Node communication 44

5.5. Application of RflySim platform time stamp alignment with other platform 45

5.5.1. RflySim Timestamp, Remote System Timestamp, ROS Timestamp 45

5.5.2. Timestamp alignment across system .. 45

6. RflySim3D control interface UE4CtrlAPI.py ... 46

6.1. Scene control interface (send command to control RflySim3D) 46

6.1.1. sendUE4Pos (Set the pose, type, etc. To the object of the specified copter _ ID in

RflySim3D) ... 46

6.1.2. sendUE4Cmd (To RflySim3D Send a "command") 47

6.2. Data request interface (get all objects B ounding B Properties such as ox ） 49

6.2.1. CoptReqData (aircraft data returned by RflySim3D, information of a Copter sent)

... 49

6.2.2. ObjReqData (data returned by RflySim3D, information about an object sent) 49

6.2.3. CameraData (data returned by RflySim3D, information of a certain camera (vision

sensor) sent) .. 50

6.2.4. reqCamCoptObj (In the request RflySim3D scene) .. 51

6.2.5. UE4MsgRecLoop (loop listening to data from RflySim3D) 51

6.2.6. Get CamCoptObj (get the attributes of the specified target from RflySim3D) 53

6.2.7. reqCamCoptObj (Request for properties of the specified object in RflySim3D) 53

6.3. Interface such as collision detection .. 54

6.3.1. ReqVeCrashData (the structure sent by RflySim3D, which mainly contains data

related to collision).. 54

6.3.2. UE4MsgRecLoop (used to process messages returned by RflySim3D or CopterSim)

... 55

6.4. Terrain acquisition interface ... 56

6.4.1. sendUE4Cmd (To RflySim3D Send command) ... 56

7. Vision sensor configuration protocol Config. JSON. .. 58

7.1. Config. General introduction to JSON protocol ... 58

7.1.1. Config. JSON File Parameter Description .. 58

7.1.2. jsonLoad (Increase vision sensor by reading configuration file) 60

7.1.3. addVisSensor (Object to add a vision sensor parameter) 60

7.2. Transmitting and receiving method ... 60

7.2.1. sendUpdateUEImage (Sent a vision sensor request, R flySim3D This sensor

will be created or updated when received) .. 60

7.2.2. sendReqToUE4 (Send a set of VisionSen sorReq) .. 61

7.3. Supported sensor list and configuration method .. 62

7.3.1. Visible RGB image.. 62

7.3.2. Grayscale image .. 63

7.3.3. Depth image .. 64

7.3.4. Partition map ... 65

7.3.5. Ranging sensor .. 65

7.3.6. Mechanical scanning laser radar ... 67

7.3.7. Fancy scanning laser radar .. 68

7.3.8. Infrared grayscale image ... 69

7.3.9. Thermodynamic color map ... 70

8. The Python visual interface is VisionCaptureApi. Py. .. 71

8.1. Related classes and data structures ... 71

8.2. Transmitting and receiving image related interface ... 75

8.2.1. sendReqToUE4 (Send one group VisionSensorReq ） 75

8.2.2. jsonLoad (Increase vision sensor by reading configuration file) 76

8.2.3. sendReqToCopterSim (Send U DP Data to C opterSim Request sensor

data. E.g. IMU) ... 76

8.2.4. img_mem_thrd (Image of receiving RflySim3D return by reading shared memory)

... 77

8.2.5. startImgCap (Turn on the thread that grabs images in shared memory) 77

8.2.6. sendImgUDPNew (Pass the picture returned by RflySim3D through u dp Send

to the specified ip And port number) ... 77

8.2.7. img_udp_thrdNew (Receive the image data returned by RflySim3D) 78

8.3. IMU obtains relevant interface .. 78

8.3.1. sendImuReqCopterSim (By sending S ensorReqCopterSim Instance to

request I mu Data .. 78

8.3.2. sendImuReqClient (Send S ensorReqCopterSim Instance to request I mu

Data ... 79

8.3.3. sendImuReqServe (Receive C in thread opterSim Back to pass Imu Data

... 79

8.3.4. AlignTime (Guarantee I mu Maintain stable frequency during data release

(release) .. 79

8.4. ROS-related interfaces.. 80

8.4.1. Imu2ros （C opterSim Back to pass imu Message to R os Built-in I

mu Message format conversion) .. 80

8.4.2. getIMUDataLoop (Will be Imu Data conversion to ROS I mu And send it

to the specified topic) ... 80

8.4.3. img_mem_thrd (When the global variable isEnableRosTrans is True, the image

content will be published in the form of ROS message.) .. 80

8.4.4. img_udp_thrdNew (Global variable I sEnableRosTrans T rue Is used, the

R os Publish the picture content in the form of a message) 81

8.5. Other intrinsic functions .. 81

8.5.1. sendImgBuffer (Encapsulate the data to be sent into one or more messages

according to the fixed size, and send the message through u. dp Send to Specified I

p And port number) ... 81

8.5.2. initUE4MsgRec (Start a t 4(self.UE4MsgRecLoop) Start listening 2 24.0.0.10：

20006） .. 82

8.5.3. endUE4MsgRec (Stop thread t 4(self.UE4MsgRecLoop) Monitoring of) 82

8.5.4. UE4MsgRecLoop (For processing R fly Sim3D Or C opterSim Message

returned) ... 82

8.5.5. getUE4Pos (Obtain Co pter At Rf lySim3D Position in the) 83

8.5.6. getUE4Data (Obtain C opter In R flySim3D Data in)............................... 83

8.5.7. TimeStmploop (Receive C opterSim The returned heartbeat and timestamp

data ensures that the terminal and C. opterSim The connection of is normal) 83

8.5.8. StartTimeStmplisten (Receive C in child thread opterSim Heartbeat and

timestamp data returned to ensure C opterSim The connection is normal 84

8.5.9. sendUE4Attatch (Other C opter Attach to other C opter Plus, "append"

means to follow the move) ... 84

8.5.10. sendUE4PosScalePwm20 (Set the status attributes of 20 groups of UAVs and set

the motor data) ... 85

8.5.11. sendUE4Pos (To all in the LAN R f lySim3D Send a C opter If it does

not exist, one will be created) ... 86

8.5.12. sendUE4PosScale100 (Set 100 groups of UAV status attributes) 86

8.5.13. sendUE4PosScale (Send a C opter The data for, R flySim3D Update the

Co upon receipt pter , with a scaling factor) ... 87

8.5.14. sendUE4Pos2Ground (Send a C opter The data for, R flySim3D The Co

will be updated upon receipt pter , but it can make C opter Close to the ground)

... 88

8.5.15. sendUE4PosScale2Ground (Send a C opter , update the Co pter , with a

zoom factor, and set the aircraft to ground contact) .. 88

8.5.16. sendUE4PosNew (Send the data of a Copter, and RflySim3D will update the

Copter after receiving it) ... 89

8.5.17. sendUE4PosSimple (Send the data of a Copter, and RflySim3D will update the

Copter after receiving it) ... 89

8.5.18. sendUE4PosFull (Send a C opter The data for, R flySim3D The Co will be

updated upon receipt pter ） ... 90

8.5.19. sendUE4ExtAct (To target C opter Send a set of data to be processed by the

user-defined function of the target to achieve various user-defined effects) 91

9. Python Aircraft Control Interface PX4MavCtrlV4.py ... 91

9.1. Initialize .. 92

9.1.1. InitMavLoop (Enable MAVLink to monitor CopterSim data and update it in real time)

... 92

9.1.2. endMavLoop (Stop receiving CopterSim data, consistent with stopRun) 92

9.1.3. stopRun (Quit MAVLink Data reception mode) ... 93

9.2. The offboard exits at the end ... 93

9.2.1. initOffboard (On offboard Mode, and start the thread to send o in a loop

ffboard News .. 93

9.2.2. initOffboard2 (On offboard Mode, and start the thread to send o in a loop

ffboard News .. 93

9.2.3. OffboardSendMode (Send offboard data cyclically) ... 93

9.2.4. endOffboard (Send MAV _ CMD _ NAV _ GUIDED _ ENABLE command to exit

offboard mode and stop sending offboard messages) ... 94

9.3. Unlock .. 94

9.3.1. SendMavArm (Unlock or lock the UAV) ... 94

9.4. Aircraft Pointing Flight Interface .. 94

9.4.1. SendPosNED (Send the target position and heading angle interface in the

northeast earth coordinate system) .. 94

9.4.2. SendPosNEDNoYaw (Sending the target position in the North-East coordinate

system) .. 95

9.4.3. SendPosNEDExt (Select Northeasterly or lower right forebody coordinate system

to send target position to PX4).. 95

9.4.4. SendPosGlobal (Earth coordinate system (latitude, longitude, altitude) with yaw

pointing flight interface).. 95

9.4.5. sendMavLand (Send Three-dimensional coordinates 、

MAV_CMD_NAV_LAND Command the aircraft to land at the target position) 96

9.4.6. sendMavTakeOffLocal (Send 3D coordinates, course angle, pitch angle, take-off

speed MAV_CMD_NAV_TAKEOFF_LOCAL Command the aircraft to fly to the target

position) .. 96

9.4.7. sendMavTakeOff (Send 3D coordinates, course angle, pitch angle,

MAV_CMD_NAV_TAKEOFF Command the aircraft to take off to the target position) . 96

9.4.8. F RD Pointing flight interface in coordinate system .. 97

9.4.9. F RD Pointing flight interface without yaw angle in coordinate system 98

9.5. Aircraft Speed Control Interface ... 99

9.5.1. F RD Speed control interface in coordinate system .. 99

9.5.2. Speed control interface for uncontrolled aircraft yaw .. 99

9.5.3. With yaw rate and altitude control interface .. 100

9.6. Aircraft attitude control interface .. 102

9.6.1. SendAttPX4 （F RD Attitude Control Interface in Coordinate System ） . 102

9.7. Aircraft Acceleration Control Interface .. 102

9.7.1. SendAccPX4 (Send target acceleration to P X4 ） 102

9.8. Carrier, carrier vision sensor, target and other attribute interfaces 103

9.8.1. Request Carrier Aircraft Attribute ... 103

9.8.2. Request carrier vision sensor interface ... 103

9.8.3. Request intra-scene target data interface ... 104

9.9. Other intrinsic functions .. 105

9.9.1. sendStartMsg (Wake up all aircraft) ... 105

9.9.2. waitForStartMsg Program blocks until received sendStartMsg Message of)

... 105

9.9.3. initPointMassModel (Create a particle drone model) 106

9.9.4. EndPointMassModel (End particle model) .. 106

9.9.5. yawSat (Back- PI To P I The heading angle between) 106

9.9.6. PointMassModelLoop (An endless loop in which the particle model processes

messages) .. 106

9.9.7. InitTrueDataLoop (Start two threads, each receiving C opterSim Real data

and PX4 Data ... 107

9.9.8. EndTrueDataLoop (Stop I nitTrueDataLoop Thread listening for) 107

9.9.9. initUE4MsgRec (Start a t 4(self.UE4MsgRecLoop) Start listening 2 24.0.0.10：

20006） .. 107

9.9.10. endUE4MsgRec (Stop thread t 4(self.UE4MsgRecLoop) Monitoring of).. 107

9.9.11. UE4MsgRecLoop (used to process messages returned by RflySim3D or CopterSim)

... 107

9.9.12. sat (InPWM clipping) .. 109

9.9.13. SendMavCmdLong (Send M AVLINK The C of the message ommand_long

Message, which may request the drone to perform some action) 110

9.9.14. send MavOffboardCmd (Send o ffboard Command to Flight Control) . 110

9.9.15. TypeMask (Get o ffboard The message requires typemask ） 111

9.9.16. sendM a vOffboardAPI (Update off board Data of the message) 111

9.9.17. sendUDPSimpData (Set control mode and control quantity) 111

9.9.18. sendMavSetParam (Send command to P X4 Modify the specified parameter)

... 112

9.9.19. SendSetMode (Send M AV_CMD_DO_SET_MOD Set airplane mode) 112

9.9.20. getTrueDataMsg (Loop listens to real data and updates built-in state) 112

9.9.21. getPX4DataMsg (Loop monitor PX4 Data, and update the built-in status)

... 113

9.9.22. getMavMsg (Cyclic update M AVLink Received data) 113

9.9.23. sendCustomData (Send a 1 6 Dimension data to the specified port. This

interface can be used with the S imulink Communication) 113

9.10. Aircraft status information ... 114

9.10.1. uavAngEular Euler angle returned by flight control (obtained from flight control

and can be used for real experiment) ... 114

9.10.2. uavAngRate Angular velocity returned by flight control (obtained from flight

control and can be used for real experiment) ... 114

9.10.3. uavPosNED The estimated local position (NED coordinate system) of the PX4

relative to the takeoff position returned by the flight control (obtained from the flight

control and can be used for real experiments) ... 114

9.10.4. uavVelNED Estimated local velocity (NED coordinate system) returned by the

flight control (derived from the flight control for real experiments) 114

9.10.5. isVehicleCrash Is it colliding with another vehicle?.. 114

9.10.6. IsVehicleCrashIDThe number of the vehicle involved in the crash 114

9.10.7. uavPosGPS GPS position returned from PX4, using the NED coordinate system,

including latitude, longitude, altitude, relative altitude, velocity component, heading

angle (derived from flight control for real experiments) .. 114

9.10.8. uavPosGPSHome GPS origin (takeoff) position returned from PX4, using the

NED coordinate system (derived from flight control for real experiments) 115

9.10.9. uavGlobalPos The global position returned from PX4 is converted into UE4

map coordinate system (obtained from flight control and can be used for real

experiments). .. 115

9.10.10. uavAngQuatern Euler angle quaternion returned from PX4 (derived from

flight control for real experiments) ... 115

9.10.11. uavMotorRPMS Motor PWM signal returned from PX4 (obtained from flight

control and can be used for real experiment) ... 115

9.10.12. uavAccB = [0, 0, 0] Acceleration returned from PX4 (derived from flight

control for real experiments) .. 115

9.10.13. UavGyro = [0,0,0] Gyro data returned from PX4 (obtained from flight control and

can be used for real experiments)... 115

9.10.14. uavMag = [0, 0, 0] Magnetometer data returned from PX4 (obtained from

flight control for real experiments) ... 115

9.10.15. uavVibr = [0, 0, 0] Vibration data returned from PX4 (obtained from flight

control and can be used for real experiment) ... 115

9.10.16. trueAngEular Real Euler angles simulated in CopterSim's DLL model

(simulation data) ... 116

9.10.17. trueAngRate Real angular rate simulated in CopterSim's DLL model

(simulation data) ... 116

9.10.18. truePosNED Real position simulated in the DLL model of CopterSim (in

relation to the UE4 map center), using the NED coordinate system (simulation data) 116

9.10.19. trueVelNED Real speed of simulation in DLL model of CopterSim, using NED

coordinate system (simulation data) ... 116

9.10.20. trueAngQuatern Real Euler angle quaternions simulated in CopterSim's DLL

model (simulation data) .. 116

9.10.21. trueMotorRPMS Real motor speed simulated in CopterSim's DLL model

(simulation data) ... 116

9.10.22. trueAccB Real acceleration simulated in CopterSim's DLL model (simulation

data) .. 116

10. Related interfaces of mavros/ROS required in development .. 116

10.1. Introduction of Common Communication Modes in ROS .. 117

10.1.1. Message topic communication ... 117

10.1.2. Service type communication ... 117

10.2. Application of ROS on RflySim platform ... 118

10.2.1. Interface for obtaining visual sensor data through topic 118

10.2.2. Interface for obtaining IMU data through topic .. 119

10.3. MavROS common interface.. 119

10.3.1. Topic/mavros/state Obtain flight control status information 119

10.3.2. Topic/mavros/local _ position/pose Get flight control pose data 119

10.3.3. Topic/mavros/IMU/data _ raw Obtain flight control IMU data 120

10.3.4. Topic/mavros/setpoint _ raw/local Send position, speed, acceleration, control

command interface ... 120

10.3.5. Topic mavros/setpoint _ raw/attitude Send Attitude Control Interface 120

10.3.6. Service/mavros/set _ mode flight control mode switching interface 120

10.3.7. Service/mavros/cmd/arming flight control unlocking interface 121

10.4. Application of MavROS on RflySim Platform .. 121

10.4.1. MavROS Software in the Loop .. 121

10.4.2. MavROS Hardware-in-the-Loop .. 122

10.4.3. MavROS and Flight Control Communication ... 122

10.4.4. Flight control mode of MavROS .. 124

10.5. RflySim Multi-machine ROS Distributed Deployment .. 134

10.5.1. Configuration of flight control parameters ... 134

10.5.2. MavROS parameter configuration ... 135

10.5.3. TF tree building ... 135

11. Introduction to coordinate systems such as MavROS and RflySim ... 139

11.1. RflySim3D coordinate system ... 139

11.1.1. RflySim3D Map coordinate system ... 139

11.1.2. Carrier coordinate system ... 140

11.1.3. RflySim IMU coordinate system .. 140

11.1.4. Sensor coordinate system ... 140

11.2. MavROS coordinate system ... 141

11.2.1. MavROS IMU coordinate system ... 141

11.2.2. MavROS map coordinate system .. 143

1. Introduction to the RflySim Visual Architecture

The RflySim vision architecture is divided into two parts: software-in-the-loop (SITLR

un communication framework) and hardware-in-the-loop (HITL+ data communication frame

work).

During the SITL software-in-the-loop simulation, the PX4 flight controller runs comple

tely in the Win10WSL virtual machine and uses px4_sitl firmware. The PX4 flight control

ler runs in a Win10WSL virtual machine using px4_sitl firmware. PX4 communicates dire

ctly with CopterSim via the MAVLink protocol, and then CopterSim sends and receives e

xternal Python messages through port 20100/20101. The Python program communicates dir

ectly with the RflySim3D program through UDP, and obtains visual images through shared

 memory/UDP sending.

Figure 1 SITLRun software-in-the-loop simulation communication architecture

In the HITL hardware-in-the-loop simulation, the PX4 flight controller algorithm runs

with the Pixhawk hardware, using the px4_fmu-v5 firmware. PX4 communicates directly w

ith CopterSim through the MAVLink protocol of the USB serial port, and then CopterSim

implements the message transmission and reception with external Python programs through

the data transmission serial port. The Python program communicates directly with the Rfly

Sim3D program through UDP, and obtains visual images through shared memory/UDP sen

ding.

Figure 2 HITLRun hardware-in-the-loop simulation communication architecture

2. Configuration of visual function development

environment

The vision function development environment of the RflySim platform is divided into

two parts: the Windows development environment and the Ubuntu virtual machine develop

ment environment. The Windows development environment is used to use the various inter

faces of the RflySim platform to control the motion of the drone, the scene control, and

obtain visual image data, while the Ubuntu virtual machine development environment adap

ts to the RflySim platform in order to adapt to the development needs of ros in the Linu

x system environment.

2.1. Windows Development Environment

2.1.1. The platform comes with a VS Code development environment

After running the one-click platform installation script, the python environment on which

the RflySim platform interface depends will be installed, and the default path is

C:\PX4PSP\Python38\python.exe 。 Once the VS Code software is installed, run a software-in-

the-loop example, configure the environment in VS Code, and then use the interface to the

../../Python38/python.exe
../../Python38/python.exe

RflySim platform. The configuration is as follows:

1) Click on the environment path key, then click on the Enter interpreter path, then click on

Find:

2）Select the corresponding Python environment：

2.1.2. Pycharm Development Environment

To use the RflySim platform under Pycharm, you need to configure the python environment.

The configuration environment is as follows:

1) Open pycharm and click file--settings, then click on Python Interpeter under profect, and

click Add Interpreter.

2)Select the python path when the platform is installed.

2.2. Ubuntu Virtual Machine Development Environment

Before using an Ubuntu VM, you need to download the VMware software and run the Ubuntu VM

image on the VMware software. It is recommended to use NAT mode for network communication

between the virtual machine and the host, which requires the host to connect to an external router,

so that a physical IP address can be assigned to the virtual machine, so that the virtual machine

can also access the external network. When there is no external route, the host uses a private

network connection to connect to the virtual machine, it should be noted that some computers

use private network communication, which will block some CopterSim communication with the

virtual machine, of course, private network communication, in rare cases, such a problem will occur.

2.3. Ubuntu Development Environment

 The RflySim platform vision algorithm is developed on the Ubuntu development environment in

order to have a good interaction between the RflySim platform and the Linux system environment.

Conducted joint development of RflySim platform for Windows and Linux. It is also designed to be

closely related to the ROS and ROS2 environments under Linux and mavros.

If you need to use a GPU, you need to build a cuda library and tensorRT acceleration.

3. Introduction to development tools that rely on the

development of visual algorithms

The RflySim vision algorithm development dependency tool is divided into two parts: the

simulation part and the algorithm dependency library, the simulation part is mainly related to the

application of the RflySim platform (software and hardware in the loop) and the communication

part (pymavlink, mavros, ros, ros2); The algorithm relies on public libraries (OpenCV, Eigen, etc.),

as well as some libraries based on AI target training and detection (cuda, torch, trensorRT, etc.).

The RflySim vision architecture is divided into two parts: software-in-the-loop (SITLRun

communication framework) and hardware-in-the-loop (HITL+ data communication framework).

Software-in-the-loop development only requires the RflySim platform interface and the following

dependent development tools, such as MAVLink, mavros, pymavlink, ROS, and ROS2. However,

hardware-in-the-loop development requires Pixhawk flight controller hardware in addition to the

software mentioned above, or a remote controller if required.

For AI, you need the cuda library of the GPU and the corresponding tensorRT library.

3.1. MAVLink/mavros/pymavlink

MAVLink is a lightweight, efficient drone communication protocol for communication

between drones, ground stations, and other drone-related systems. It provides a highly reliable

and flexible approach to real-time data transmission and control. MAVLink supports a variety of

communication media, including SERIAL, UDP, TCP, and CAN. It defines a variety of message types,

commands, and status information for acquiring sensor data, sending control commands, and

more. For more learning materials, please refer to: https://mavlink.io/en/.

 mavros is an open-source ROS (Robot Operating System) software package that implements

the bridging between MAVLink and ROS. It provides ROS nodes and services, enabling developers

to communicate and control UAVs through ROS. The mavros acts as an intermediate layer between

the UAS and the ROS, and the ROS function package can be used for condition monitoring, task

assignment and control of the robot, among other things. It provides many convenient functions

such as flight mode switching, waypoint navigation, attitude control, etc., as well as the reception

and release of various sensor data. For more learning materials, please refer to:

http://wiki.ros.org/mavros.

pymavlink is a MAVLink library for Python development. It provides parsing and generation

capabilities for the MAVLink protocol, enabling developers to communicate with drones in the

Python programming language. pymavlink can be used to write Python scripts that receive and

send MAVLink messages to process sensor data, send control commands, etc. It provides an

advanced encapsulation of the MAVLink protocol, making it easier for developers to operate and

https://mavlink.io/en/
http://wiki.ros.org/mavros

interact with UAS. For more learning materials, please refer to:

https://mavlink.io/zh/mavgen_python/.

3.2. ROS/ROS2

ROS (Robot Operating System) and ROS2 (Robot Operating System 2) are very common and

powerful tools. They are open-source robotics software development platforms that provide a

modular, reusable, and distributed way for robotic systems to build software.

1. ROS (Robot Operating System): ROS is a flexible and extensible software development

framework designed to support the development and operation of robot systems. It provides a

range of tools, libraries, and conventions for handling aspects such as hardware abstraction,

device drivers, library integration, shared messaging, package management, and visualization for

bots. ROS uses a publish-subscribe model for communication between nodes, allowing modular

software components to interact via messaging. This architecture enables developers to divide

system functions into independent nodes and build robotics applications in a composable and

reusable manner. For more learning materials, please refer to: http://wiki.ros.org/cn.

 2. ROS2 (Robot Operating System 2): ROS2 is the next-generation version of ROS, which

improves some of the limitations and shortcomings in ROS. It is a multi-language, cross-platform,

real-time, and scalable robotics software development framework. ROS2 introduces Data

Distribution Service (DDS) as the underlying communication protocol to support higher-level real-

time communication and security. It also offers features such as better real-time behavior,

distributed system support, multi-sensor fusion, and better encapsulation. ROS2 has been

developed with a focus on improving performance, reliability, and scalability, making it suitable for

a wider range of robotics applications and scales. For more learning materials, please refer to:

Https://www.ros.org.

3.3. OpenCV

OpenCV (Open Source Computer Vision Library) is an open-source computer vision and

machine learning library, which is widely used in vision algorithm development and image

processing tasks. It provides a rich set of functions and tools that can be used to process image and

video data and perform a variety of computer vision tasks, such as feature extraction, object

detection, image segmentation, and image and video processing and analysis.

Wide range of features: OpenCV provides more than 2,500 optimized algorithm functions,

including image processing, feature detection, computer vision, machine learning, deep learning,

and image transformation. It supports a variety of programming languages, such as C++, Python,

Java, and MATLAB, allowing developers to choose the right language to develop according to their

preferences and needs.

Cross-platform support: OpenCV is cross-platform and runs on multiple operating systems,

https://mavlink.io/zh/mavgen_python/
http://wiki.ros.org/cn
https://www.ros.org/

including Windows, Linux, macOS, Android, and iOS. This allows developers to use the same

interface and code in different environments, facilitating the development and deployment of

cross-platform applications.

Efficient image processing and computation: OpenCV uses optimized algorithms and

underlying implementations to efficiently process images and computer vision operations. It

utilizes hardware acceleration and parallel computing to improve the performance and efficiency

of the algorithm. In addition, OpenCV provides powerful matrix and vector manipulation that

simplifies the programming of image processing and computations.

Hundreds of image processing functions and algorithms: OpenCV provides a wealth of image

processing functions and algorithms, including filtering, edge detection, morphology manipulation,

histogram processing, color space conversion, image inpainting and enhancement, and more.

These functions can be used to process and manipulate different aspects of images, making it easy

for developers to implement a variety of image processing tasks.

Machine learning and deep learning support: OpenCV also provides modules and functions

for machine learning and deep learning. It supports common machine learning algorithms and

techniques, such as Support Vector Machine (SVM), k-nearest neighbor (KNN), Random Forest,

etc. In addition, OpenCV integrates deep learning frameworks, such as TensorFlow and PyTorch,

to enable the construction and inference of deep learning models. For more learning materials,

please refer to: https://opencv.org/.

https://opencv.org/

4. RflySim platform visual configuration steps

4.1. bat Script Configuration Method (Configuration for

Vision)

4.1.1. bat Script Template Selection (Select an existing script template

based on your needs)

4.1.1.1.SITLRun.bat software-in-the-loop simulation base script

4.1.1.2.SITLPos.bat Initialize the position control software in the loop script

4.1.1.3.Initialize the position control software in the loop script SITLPosStr.bat

the form of a string

4.1.1.4.HITLRun.bat Hardware-in-the-loop simulation base script

4.1.1.5.HITLPos.bat Initialize Position Control Hardware-in-the-Loop Script

4.1.1.6.Initialize the Position Control Hardware-in-the-Loop Script

HITLPosStr.bat Strings

4.1.1.7.HITLPosSysID.bat configure the initial position sequence hardware-

in-the-loop script

4.1.1.8.The value of CopterID is determined by SysID HITLPosSysIDStr.bat,

and the initial position sequence can be configured

4.1.2. START_INDEX(Coptic starting number in Copticsim)

The starting aircraft serial number, the CopterID of the aircraft generated by this script, is

initially valued at this START_INDEX, and is incremented by 1 in turn. This option is useful for

simulations with multiple computers.

4.1.3. UDP_START_PORT (Port number for MavLink UDP

communication in CopterSim)

Set the starting UDP port of SIMULINK/OFFBOARD API, this option should not be modified to

cluster simulation, the UDP communication interface that receives external control data,

corresponding to the CopterID, will automatically add 2 to 20100+CopterID*2, which usually does

not need to be modified here, and is only modified when the computer port is occupied.

4.1.4. SimMode (Hardware/Software Emulation Mode Selection)

Set the CopterSim simulation mode, which can be identified by number or name, set to 0 or

PX4_HITL for hardware-in-the-loop simulation, and set to 2 or PX4_SITL_RFLY for software-in-the-

loop simulation.

4.1.5. UE4_MAP (Specifying the scene map in RflySim3D)

Set up the map, use the index or name of the map on CopterSim, and control the RflySim 3D

scene by specifying the scene map name. Use the LowGPU scenario to ensure that low-spec

computers can run the platform.

4.1.6. IS_BROADCAST (Select CopterSim MavLink message

communication method ）

This variable is used to set whether to broadcast to other computers, and if IS_BROADCAST=0,

it will only be transmitted locally. IS_BROADCAST=1 indicates intra-LAN broadcast transmission. Or

use an IP address to boost your speed. Note: When filling in the IP address mode, IS_BROADCAST=0

is equivalent to IS_BROADCAST=127.0.0.1, and IS_BROADCAST=1 is equivalent to

IS_BROADCAST=255.255.255.255. You can also use the IP address sequence in English","or";

"Separate the specified send. For example: 127.0.0.1, 192.168.1.4, 192.168.1.5, note that this only

affects the CopterSim communication, and does not affect the RflySim3D communication, in other

words, no matter what the value of the IS_BROADCAST is, it does not affect the acquisition of

sensor data from RflySim3D.

4.1.7. UDPSIMMODE （ MavLink Messaging Communication UDP

Emulation Mode Settings ）

UDPSIMMODE value

selection

illustrate

0 Indicates the use of a custom UDP_FULL communication mode (full

mode, with the most complete data, but a large amount of data

transferred)

1 Indicates the use of a custom UDP_Simple communication mode (the

I/O is streamlined, and the structure of UDP transmission is also

streamlined, so there is no additional information in the UDP_FULL

mode, and in addition, MAVLink communication is optimized for

multi-computer vision hardware-in-the-loop simulation

2 Mavlink_Full mode (directly use the MAVLink data stream to

communicate between Python and PX4 (through CopterSim relay),

which has a large amount of data and occupies a high bandwidth, but

it is closer to the real machine and has perfect functions, and it is easy

to block the bandwidth in large-scale clusters)

3 Mavlink_Simple mode (Python-PX4 communication directly using

MAVLink data stream (via CopterSim relay), but the amount of data

has been reduced)

4 Corresponding to the Mavlink_NoSend mode, CopterSim will not send

MAVLink data to the outside, this mode needs to cooperate with

hardware-in-the-loop simulation + data transmission serial port

communication, and transmit MAVLink through wired mode, this

mode has the smallest amount of data in the local area network,

suitable for distributed vision hardware-in-the-loop simulation, and

the number of drones is not limited.

5 mavlink_full mode without GPS positioning

4.1.8. TOTOAL_COPTER （ The total number of aircraft ）

The total number of drones, automatically arranging positions.

4.1.9. VEHICLE_INTERVAL （ Initialize the aircraft position interval ）

Set the distance between the two drones in meters.

4.1.10. Flight Controller Initialization Pose Settings (Pos, Yaw, and

Distributed Multi-Machine Settings)

Set the origin of the drone in RflySim3D to be in meters and the declination in degrees. It is

also possible to give the coordinate position and declination angle in the form of a list, separated

in English, and set the posture of multiple UAVs separately.

4.1.11. IsSysID （Hardware-in-the-loop unique parameters determine

whether CopterID uses the sys_id of the flight controller）

If a hardware-in-the-loop experiment is performed, the CopterSim will use the ID number of

the flight controller as the CopterID for simulation.

4.1.12. More BAT Script Template Descriptions (e.g. Independently Set

Pose for Each Aircraft, etc.)

You can set the pose of multiple drones in the script, such as setting the list of PosXStr, PosYStr,

and YawStr with ",". For example, SET PosXStr=1.1,2.2,SET PosYStr=1,2,SET YawStr=0,0 can set the

pose of two UAVs.

4.2. PX4 software-in-the-loop simulation steps

4.2.1. Bat Script Settings

Please modify it on the basis of the SITLRun.bat software-in-the-loop simulation script, and the

software-in-the-loop simulation first sets the simulation mode SimMode=2 or

SimMode=PX4_SITL_RFLY. Then set the simulated rack to the corresponding rack, for example, set

PX4SitlFrame=iris. And set it to SET IS_BROADCAST=1.

4.3. PX4 Hardware-in-the-Loop Simulation Steps (Flight

Controller Needs to Restore Official Firmware)

Please modify it based on the hardware-in-the-loop simulation script HITLRun.bat, and set the

simulation mode SimMode=0 or SimMode=PX4_HITL for hardware-in-the-loop simulation. Set SET

/a IsSysID=1 to enable the function of automatically calculating CopterID from SysID.

Then connect the flight controller to the computer, and turn on the QGC ground station to set up

the rack, as shown in the following figure:

1. Select the vehicle settings:

Select Rack Settings, and then select HIL

After the selection is completed, click Apply and restart to set the rack successfully.

4.4. PX4 Software-in-the-Loop + Virtual Machine in the

Loop

4.4.1. Bat script configuration

Please modify it on the basis of the SITLRun.bat software-in-the-loop simulation script, and the

software-in-the-loop simulation first sets the simulation mode SimMode=2 or

SimMode=PX4_SITL_RFLY. Set the simulated rack to the corresponding rack, for example, set

PX4SitlFrame=iris. And set it to SET IS_BROADCAST=1 VM configuration.

When creating one or more drones, specify the port number and IP address in the python program,

PX4MavCtrler(port,ip) for a single drone for PX4MavCtrler (20100,'127.0.0.1') for a single drone

and PX4MavCtrler (20100+ID*2,'127.0.0.1' for multiple drones). IP address 127.0.0.1 is local

communication, IP address 255.255.255.255 is local LAN communication. You can also specify a

fixed IP address.

4.5. PX4 Software-in-the-Loop + NX Hardware-in-the-Loop

4.5.1. Bat script configuration

Please modify it on the basis of the SITLRun.bat software-in-the-loop simulation script, and the

software-in-the-loop simulation first sets the simulation mode SimMode=2 or

SimMode=PX4_SITL_RFLY. Then set the simulated rack to the corresponding rack, for example, set

PX4SitlFrame=iris. And set it to SET IS_BROADCAST=1.

4.5.2. NX side configuration

When creating one or more drones, specify the port number and IP address in the python program,

PX4MavCtrler(port,ip) for a single drone for PX4MavCtrler (20100,'127.0.0.1') for a single drone

and PX4MavCtrler (20100+ID*2,'127.0.0.1' for multiple drones). IP address 127.0.0.1 is local

communication, IP address 255.255.255.255 is local LAN communication. You can also specify a

fixed IP address.

4.6. PX4 Hardware-in-the-Loop + Virtual Machine in the

Loop

First, connect the flight controller to the computer, and open the QGC ground station to set the

rack, as shown in the following figure:

1. Select the vehicle settings:

2. Select Rack Settings, and then select HIL

3. Once you've made your selection, click Apply and restart for the rack setup to be successful.

4.6.1. Bat script configuration

Please modify it based on the hardware-in-the-loop simulation script HITLRun.bat, and set the

simulation mode SimMode=0 or SimMode=PX4_HITL for hardware-in-the-loop simulation. Set SET

/a IsSysID=1 to enable the function of automatically calculating CopterID from SysID.

4.6.2. Virtual Machine Configuration

Identify the port number of the hardware flight controller in the computer, and specify the port

number or port number plus baud rate in the python program, such as PX4MavCtrler('COM3') or

PX4MavCtrler('COM3:57600').

4.7. PX4 Hardware-in-the-Loop + NX Hardware-in-the-

Loop

First, connect the flight controller to the computer, and open the QGC ground station to set the

rack, as shown in the following figure:

1. Select the vehicle settings:

2、Select Rack Settings, and then select HIL

3、Once you've made your selection, click Apply and restart for the rack setup to be successful.

4.7.1. Bat Script Configuration

Please modify it based on the hardware-in-the-loop simulation script HITLRun.bat, and set the

simulation mode SimMode=0 or SimMode=PX4_HITL for hardware-in-the-loop simulation. Set SET

/a IsSysID=1 to enable the function of automatically calculating CopterID from SysID.

4.7.2. NX Configuration

Identify the port number of the hardware flight controller in the Ubuntu system in NX, such as

/dev/ttyACM0, and then enter the command "chmod +x /dev/ttyACM0" in the terminal to

authorize the port to execute, and other ports are also operated accordingly. Then specify the port

number or port number plus baud rate in the python program, e.g. PX4MavCtrler('/dev/ttyACM0')

or e.g. PX4MavCtrler('/dev/ttyACM0:57600').

4.8. Multi-PX4+ Multi-NX Hardware-in-the-Loop

First, connect the flight controller to the computer, and open the QGC ground station to set the

rack, as shown in the following figure:

1. Select the vehicle settings:

2、Select Rack Settings, and then select HIL

3、Once you've made your selection, click Apply and restart for the rack setup to be successful.

4.8.1. Bat Script Configuration

Please modify it based on the hardware-in-the-loop simulation script HITLRun.bat, and set the

simulation mode SimMode=0 or SimMode=PX4_HITL for hardware-in-the-loop simulation. Set SET

/a IsSysID=1 to enable the function of automatically calculating CopterID from SysID. It is possible

to set the initial pose of each drone.

4.8.2. Flight Control Parameter Settings

Connect each hardware flight controller to NX via USB cable, open QGroundControl software, and

set the ID number. This is so that the CopterSimID is consistent with the flight controller ID. The

settings are as follows:

4.8.3. NX Configuration

Identify the port number of the hardware flight controller in the Ubuntu system in NX, such as

/dev/ttyACM0, and then enter the command "chmod 777 /dev/ttyACM0" in the terminal to

authorize the port with read and write rights, and other ports are also operated accordingly. Then

specify the port number or port number plus baud rate in the python program, e.g.

PX4MavCtrler('/dev/ttyACM0') or e.g. PX4MavCtrler('/dev/ttyACM0:57600').

5. Introduction to vision-related communication ports

5.1. Description of UDP mutual communication port

between the visual interface and CopterSim and

RflySim

5.1.1. Port 20010 (default single RflySim3D window, the port where the

vision interface communicates with RflySim3D for requests, such as

collision detection, target properties, camera properties, etc.)

Quite the same as the specified port to communicate with different RflySim3D, 20010~20029 these

20 ports are one-to-one correspondence, for example, RflySim3D-0 refers to it is listening on 20010,

and RflySim3D-3 refers to it listening on 20013

5.1.2. Port 20100 (CopterSim accepts emulation port to restart an

aircraft)

CopterSim provides the mavlink communication port to the external of the current aircraft, of

course this value can be something else, the key is the configuration in the bat that starts the

RflySim platform. For more information about BAT script configuration, see BAT Script

Configuration Method (Configuration for Vision)

5.1.3. Port 30100 (CopterSim Single Aircraft Accepts External Requests

for IMU Data by Default)

The IMU data is requested for each aircraft through this port.

5.1.4. Port 31000 (Vision Interface Configuration: The current system

accepts IMU data by default)

For example, you can call the sendImuReqClient(self, copterID=1, IP="", port=31000, freq=200) API

to send a SensorReqCopterSim instance to request Imu data. Or call the sendImuReqServe(self,

copterID=1, port=31000) API to create a thread, which receives the Imu data sent back by

CopterSim in the thread and does not block the main thread. You can also call the

sendImuReqCopterSim(self, copterID=1, IP="", port=31000, freq=200) API to request Imu data by

sending a SensorReqCopterSim instance, and then start a thread to listen to and process the Imu

data sent back by CopterSim.

5.1.5. Port 20005 (Vision Interface Requests Timestamp of Aircraft

Takeoff from CopterSim)

This port mainly stores the timestamp of the terminal computer and the simulation, and detects

whether the connection between the terminal computer and the simulation program is normal

through the heartbeat. It is used to call the StartTimeStmplisten(self, cpID=1) interface, bind port

20005 of the machine, receive the heartbeat and timestamp data sent back by CopterSim in the

subthread, ensure that the connection between the terminal and CopterSim is normal, and does

not block the main thread. where cpID represents the ID of CopterSim.

5.1.6. Port 20006 (Listening for Data from RflySim3D)

This port is the struct that will be sent when RflySim3D turns on the data return mode (using the

"RflyReqVehicleData 1" command). It contains mainly collision-related data, which will be sent to

the multicast IP "224.0.0.10:20006". It is also used to initialize self.udp_socketUE4 on the

initUE4MsgRec(self) interface and start a thread t4(self. UE4MsgRecLoop) starts listening on

224.0.0.10:20006, as well as its own 20006 port. It can also be used to listen for 224.0.0.10:20006

on the UE4MsgRecLoop(self) interface, as well as its own handler on port 20006 to process

messages returned by RflySim3D or CopterSim.

5.1.7. Description of data structures related to communication

5.1.7.1.RflyTimeStmp (Time information received from CopterSim)

5.1.7.2.VisionSensorReq (Reading the structure from the Config.json file to

request sensor configuration from RflySim3D)

5.1.7.3.imuDataCopter (accepts IMU data structures from CopterSim)

5.1.7.4.SensorReqCopterSim (request relevant data from CopterSim, e.g.

IMU)

5.1.7.5.reqVeCrashData (Listen to RflySim3D to object property data when it

is hit by an airplane)

5.1.7.6.CoptReqData (request to RflySim3D to obtain the attributes of the

specified aircraft)

5.1.7.7.ObjReqData (request to RflySim3D to get the properties of the

specified object)

CameraData (request RflySim3D to get the properties of the specified camera)

The vision-related communication of the RflySim platform is divided into Python programs

communicating with CopterSim, Python programs communicating with RflySim3D, and Python

programs communicating with other ROS nodes in Ubuntu.

fifo: Abstract the first-in-first-out queue with python lists, and implement write and read methods

to achieve the effect of similar operations to files.

1.def write(self, data):

I. Parameter Explanation:

1) data: the item to be added to the team

II. Function Explanation:

This method inserts data into the queue head.

2.def read(self):

I. Parameter Explanation:

II. Function Explanation:

This method deletes and returns the element at the end of the queue, and throws an IndexError

exception if the queue is empty.

PX4SILIntFloat: This class encapsulates SILInts and SILFloats data output to the CopterSim DLL

model.

I. _ _ init _ _.

def __init__(self):

self.checksum = 0

self.CopterID = 0

self.inSILInts = [0, 0, 0, 0, 0, 0, 0, 0]

self.inSILFLoats = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

def __init__(self, iv):

self.checksum = iv[0]

self.CopterID = iv[1]

self.inSILInts = iv[2:10]

self.inSILFLoats = iv[10:30]

This class has two constructors, where:

1. checksum：the check digit

2. CopterID：the Copter ID of the message

3. inSILInts：SILInts data exported to the CopterSim DLL model

4. inSILFLoats：SILFoats data exported to the CopterSim DLL model

 reqVeCrashData ：This class is a struct sent by RflySim3D, which is sent when RflySim3D turns

on the data postback mode (using the "RflyReqVehicleData 1" command). It contains mainly

collision-related data, which will be sent to the multicast IP "224.0.0.10:20006".

I. _ _ init _ _.

def __init__(self):

self.checksum = 1234567897

self.copterID = 0

self.vehicleType = 0

self.CrashType = 0

self.runnedTime = 0

self.VelE = [0, 0, 0]

self.PosE = [0, 0, 0]

self.CrashPos = [0, 0, 0]

self.targetPos = [0, 0, 0]

self.AngEuler = [0, 0, 0]

self.MotorRPMS = [0, 0, 0, 0, 0, 0, 0, 0]

self.ray = [0, 0, 0, 0, 0, 0]

self.CrashedName = ""

1. copterID: data indicating which copter the structure belongs to.

2. vehicleType: indicates the style of the Copter

3. CrashType: indicates the type of collision object, -2 indicates the ground, -1 indicates

the scene static object, 0 indicates no collision, and 1 or more indicates the ID number

of the aircraft being hit

4. runnedTime: The timestamp of the current aircraft

5. VelE: Current aircraft velocity (m/s)

6. PosE: Current Aircraft Position (North East, in meters)

7. CrashPos: Coordinates of the collision point (north-east, in meters)

8. targetPos: the center coordinate of the object to be touched (north-east, unit: meters)

9. AngEuler: Roll, Pitch, Yaw, Arc of the current aircraft

10. MotorRPMS: The motor speed of the current aircraft

11. Ray: The plane's front, back, left, right, and up and down scanning lines

12. CrashedName: The name of the object being touched

RflyTimeStmp：This class encapsulates the message sent to the specified remote computer port

20005, mainly stores the timestamp of the terminal computer and the simulation, and detects

whether the connection between the terminal computer and the emulator program is normal

through the heartbeat.

__init__

def __init__(self):

self.checksum = 1234567897

self.copterID = 0

self.SysStartTime = 0

self.SysCurrentTime = 0

self.HeartCount = 0

This is the constructor of the class, where:

1. checksum： is the check digit of the data, which is used to check whether an

exception has occurred during data transmission.

2. copterID：indicates the copter ID of the message.

3. SysStartTime：is the timestamp of the start of the simulation in milliseconds, using

the Greenwich Mean starting point.

4. SysCurrentTime： the current timestamp in Windows, in milliseconds, using the

Greenwich Mean starting point.

5. HeartCount：The counter of the heartbeat packet.

PX4ExtMsg：This class encapsulates the pixhawk state data returned by CopterSim.

I. _ _ init _ _.

def __init__(self):

self.checksum=0

self.CopterID=0

self.runnedTime=0

self.controls=[0,0,0,0,0,0,0,0]

This is the constructor of the class, where:

1. checksum：data validation.

2. CopterID：the Copter ID of the message.

3. runnedTime：timestamp.

4. controls：Status data in Pixhawk.

CoptReqData: This class encapsulates the aircraft data returned by RflySim3D, and after the

PX4MavCtrler.reqCamCoptObj() function calls RflySim3D's "RflyReqObjData" command, RflySim3D

sends information about a Copter according to the parameters of the command (the Copter ID is

attached when sending the command to RflySim3D).

I. _ _ init _ _.

 def __init__(self):

 self.checksum = 0 # 1234567891 as a check

Self. CopterID = 0 # Aircraft ID

 self.PosUE = [0,0,0]

 self.angEuler = [0,0,0]

 self.boxOrigin = [0,0,0]

 self.BoxExtent = [0,0,0]

 self.timestmp = 0

 self.hasUpdate=True

This is the constructor of the class, where:

checksum：is the check digit of the data, which is used to check whether an exception has

occurred during data transmission.

CopterID：indicates the copter ID of the message.

PosUE：Indicates the location of the Copter (m, North East)

angEuler：Represents the angle of the Copter (radians, Roll, Pitch, Yaw)

boxOrigin：Surround the geometric center of the box (m, north-east)

BoxExtent：Half the length of the side of the box (m, X-axis (forward), Y-axis (right), Z-axis (up))

Timestmp：timestamp

hasUpdate：This value is not sent by RflySim3D

ObjReqData ： This class encapsulates the data returned by RflySim3D, and when the

PX4MavCtrler.reqCamCoptObj() function calls RflySim3D's "RflyReqObjData" command,

RflySim3D sends information about an object according to the parameters of the command (the

name of the object is attached when sending the command to RflySim3D).

__init__

def __init__(self):

 self.checksum = 0 # 1234567891 as a check

 self.seqID = 0

 self.PosUE = [0,0,0]

 self.angEuler = [0,0,0]

 self.boxOrigin = [0,0,0]

 self.BoxExtent = [0,0,0]

 self.timestmp = 0

 self.ObjName=''

 self.hasUpdate=True

This is the constructor of the class, where:

1. checksum: is the check digit of the data, which is used to check whether an

exception has occurred during data transmission.

2. seqID: always 0. (Obj is not Copter, it has no ID to return)

3. PosUE: Indicates the position of the object (m, north-east)

4. angEuler: Angle (radian, Roll, Pitch, Yaw)

5. boxOrigin: Surround the geometric center of the box (m, north-east)

6. BoxExtent: Half the length of the side of the box (m, X-axis (forward), Y-axis

(right), Z-axis (up))

7. Timestmp: The time that the current scene has existed (seconds, the time when

the scene exists (because it is not a Copter, there is no timestamp))

8. ObjName: The name of the object

9. hasUpdate: This value is not sent by RflySim3D

CameraData: This class encapsulates the data returned by RflySim3D, after the

PX4MavCtrler.reqCamCoptObj() function calls the "RflyReqObjData" command of RflySim3D,

RflySim3D sends information about a certain camera (vision sensor) according to the parameters

of the command (when sending a command to RflySim3D, The SeqID of the camera (vision sensor)

is included).

One __init__

def __init__(self):

 self.checksum = 0 #1234567891 as a check

 self.SeqID = 0

 self.TypeID = 0

 self.DataHeight = 0

 self.DataWidth = 0

 self.CameraFOV = 0

 self.PosUE = [0,0,0]

 self.angEuler = [0,0,0]

 self.timestmp = 0

 self.hasUpdate=True

This is the constructor of the class, where:

1. checksum: is the check digit of the data, which is used to check whether an exception

has occurred during data transmission.

2. seqID: The ID of the vision sensor

3. TypeID: Type of vision sensor (RPG, depth map, etc.)

4. DataHeight: The height of the data (pixels)

5. DataWidth: The width of the data (pixels)

6. CameraFOV: Camera's horizontal field of view (in degrees)

7. PosUE: Indicates the position of the object (m, north-east)

8. angEuler: indicates the angle of the camera (radian, Roll, Pitch, Yaw)

9. Timestmp: timestamp

10. hasUpdate: This value is not sent by RflySim3D

5.2. Python program communication interface with

CopterSim

5.2.1. PX4SILIntFloat （ SILInts and SILFloats data exported to

CopterSim DLL models ）

I. _ _ init _ _.

def __init__(self):

self.checksum = 0

self.CopterID = 0

self.inSILInts = [0, 0, 0, 0, 0, 0, 0, 0]

self.inSILFLoats = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

def __init__(self, iv):

self.checksum = iv[0]

self.CopterID = iv[1]

self.inSILInts = iv[2:10]

self.inSILFLoats = iv[10:30]

This class has two constructors, where:

1. checksum: the check digit

2. CopterID: the Copter ID of the message

3. inSILInts: SILInts data exported to the CopterSim DLL model

5.2.2. InitTrueDataLoop （Start two threads to receive real data from

CopterSim and PX4 data respectively）

def InitTrueDataLoop(self):

I. Parameter Explanation:

II. Function Explanation:

Start two threads to receive real data from CopterSim and PX4 data respectively.

5.2.3. InitMavLoop （ Enable MAVLink to listen to CopterSim data and

update it in real time ）

def InitMavLoop(self,UDPMode=2)

一、 Parameter Explanation:s

1) UDPMode：UDPmode

二、 Parameter Explanation:

Enable MAVLink to listen to CopterSim data and update it in real time. where the

UDPModel value is:

0: Corresponding to the UDP_Full mode, Python transmits complete UDP data to CopterSim, and

the amount of data transmitted is small. After CopterSim receives the data, it converts it to Mavlink

and transmits it to the PX4 flight controller. It is suitable for simulation of small and medium-sized

clusters (less than 10 in number).

1: Corresponding to the UDP_Simple mode, the packet size and sending frequency are smaller than

those of the UDP_Full mode; It is suitable for large-scale swarm simulation, and the number of

drones is less than 100.

2: Corresponding to Mavlink_Full mode (default mode), Python directly sends MAVLink messages

to CopterSim, and then forwards them to PX4, which is suitable for stand-alone control with large

data volume; It is suitable for single aircraft or a small number of aircraft simulation, and the

number of UAVs is less than 4;

3: Corresponding to the Mavlink_Simple mode, it will block some MAVLink message packets,

reduce the data frequency, and send much smaller data than MAVLink_Full, which is suitable for

multi-machine cluster control. It is suitable for small-scale swarm simulation, and the number of

drones is less than 8.

4: Corresponding to the Mavlink_NoSend mode, CopterSim will not send MAVLink data to the

outside, this mode needs to cooperate with hardware-in-the-loop simulation + data transmission

serial port communication, and transmit MAVLink through wired mode, this mode has the smallest

amount of data in the LAN, suitable for distributed vision hardware-in-the-loop simulation, and the

number of drones is not limited.

5.2.4. TimeStmploop （ Listen to the timestamp data of a specified

CopterSim in a loop）

def TimeStmploop(self)

I. Parameter Explanation:

II. Function Explanation:

Listen to the timestamp data of a specified CopterSim in a loop.

5.2.5. StartTimeStmplisten（The thread loop listens to the timestamp data

of the specified CopterSim and does not block the main thread）

def StartTimeStmplisten(self,cpID=0)

一、 Parameter Explanatio：

1) cpID：copter ID

二、 Function Explanation：

Create a thread loop to listen to the timestamp data of the specified CopterSim and not block

the main thread.

5.2.6. endMavLoop （ Stop receiving CopterSim data, which is the same

as stopRun ）

def endMavLoop(self)

一、 Parameter Explanatio:

二、 Function Explanation:

Stop receiving CopterSim data, which is the same as stopRun.

5.3. Python program to communicate with RflySim3D

Interface

5.3.1. ReqVeCrashData (structure sent by RflySim3D, mainly data

related to collision)

I. _ _ init _ _.

def __init__(self):

self.checksum = 1234567897

self.copterID = 0

self.vehicleType = 0

self.CrashType = 0

self.runnedTime = 0

self.VelE = [0, 0, 0]

self.PosE = [0, 0, 0]

self.CrashPos = [0, 0, 0]

self.targetPos = [0, 0, 0]

self.AngEuler = [0, 0, 0]

self.MotorRPMS = [0, 0, 0, 0, 0, 0, 0, 0]

self.ray = [0, 0, 0, 0, 0, 0]

self.CrashedName = ""

This class is the struct sent by RflySim3D. It is the struct that will be sent when RflySim3D turns

on the data return mode (using the "RflyReqVehicleData 1" command). It mainly contains data

related to collision, which will be sent to multicast IP "224.0.0.10: 20006".

1. CopterID: indicates the data of which copter the struct is.

2. VehicleType: Indicates the style of this Copter

3. CrashType: indicates the collision object type, -2 indicates the ground, -1 indicates the

scene static object, 0 indicates no collision, and above 1 indicates the ID number of the

collided aircraft

4. RunnedTime: Time stamp of the current aircraft

5. VelE: Current aircraft speed (m/s)

6. PosE: Current aircraft position (NE, in meters)

7. CrashPos: Coordinates of the impact point (NE, in meters)

8. TargetPos: coordinates of the center of the impacted object (northeast, unit: m)

9. AngEuler: Euler angle of the current aircraft (Roll, Pitch, Yaw, radians)

10. MotorRPMS: Current aircraft motor speed

11. Ray: Front, back, left, right, up and down scan lines of the aircraft

12. CrashedName: The name of the touched object

5.3.2. CoptReqData (aircraft data returned by RflySim3D, information of

a Copter sent)

I. _ _ init _ _.

 def __init__(self):

Self. Checksum = 0 # 1234567891 as check

Self. CopterID = 0 # Aircraft ID

 self.PosUE = [0,0,0]

 self.angEuler = [0,0,0]

 self.boxOrigin = [0,0,0]

 self.BoxExtent = [0,0,0]

 self.timestmp = 0

 self.hasUpdate=True

For the aircraft data returned by RflySim3D, after the PX4MavCtrler.reqCamCoptObj ()

function calls the "RflyReqObjData" command of RflySim3D, RflySim3d, according to the

parameters of the command, The information of a Copter sent (the ID of the Copter is attached

when sending the command to RflySim3D).

This is the constructor for this class, where:

1. Check sum: is the check bit of the data, which is used to check whether an exception

occurs during data transmission.

2. CopterID: indicates the copter ID corresponding to the message.

3. PosUE: indicates the location of the Copter (m, NE)

4. AngEuler: represents the angle of this Copter (radians, Roll, Pitch, Yaw)

5. BoxOrigin: Geometric center of bounding box (m, NE)

6. Box Extent: Half of the side length of the bounding box (meters, X axis (forward), Y axis

(right), Z axis (up))

7. Times TMP: timestamp

8. HasUpdate: Set to True if the data can be obtained normally, call it outside, set to True

to indicate that the data can be read, and then set to False

5.3.3. ObjReqData (data returned by RflySim3D, information about an

object sent)

一. __init__

 def __init__(self):

Self. Checksum = 0 # 1234567891 as check

 self.seqID = 0

 self.PosUE = [0,0,0]

 self.angEuler = [0,0,0]

 self.boxOrigin = [0,0,0]

 self.BoxExtent = [0,0,0]

 self.timestmp = 0

 self.ObjName=''

 self.hasUpdate=True

For the data returned by RflySim3D, after the PX4MavCtrler.reqCamCoptObj () function calls

the "RflyReqObjData" command of RflySim3D, Rflymim3d, according to the parameters of the

command, The information of an object sent (the Name of the object is attached when sending

the command to RflySim3D).

This is the constructor for this class, where:

1. Check sum: is the check bit of the data, which is used to check whether an exception

occurs during data transmission.

2. SeqID: always 0. (Obj is not a Copter, it has no ID to return)

3. PosUE: indicates the position of the object (m, NE)

4. AngEuler: represents the angle of this Obj (radians, Roll, Pitch, Yaw)

5. BoxOrigin: Geometric center of bounding box (m, NE)

6. Box Extent: Half of the side length of the bounding box (meters, X axis (forward), Y axis

(right), Z axis (up))

7. Timestmp: Time the current scene has been in existence (seconds, the time the scene

has been in existence (because it is not a Copter, there is no timestamp))

8. ObjName: The name of the object

9. HasUpdate: Set to True if the data can be obtained normally, call it outside, set to True

to indicate that the data can be read, and then set to False

5.3.4. CameraData (data returned by RflySim3D, information of a certain

camera (vision sensor) sent)

One __init__

def __init__(self):

Self. Checksum = 0 # 1234567891 as check

 self.SeqID = 0

 self.TypeID = 0

 self.DataHeight = 0

 self.DataWidth = 0

 self.CameraFOV = 0

 self.PosUE = [0,0,0]

 self.angEuler = [0,0,0]

 self.timestmp = 0

 self.hasUpdate=True

For the data returned by RflySim3D, after the PX4MavCtrler.reqCamCoptObj () function calls

the "RflyReqObjData" command of RflySim3D, Rflymim3d, according to the parameters of the

command, The information of a camera (vision sensor) sent (the SeqID of the camera (vision sensor)

is attached when the command is sent to RflySim3D).

This is the constructor for this class, where:

1. Check sum: is the check bit of the data, which is used to check whether an exception

occurs during data transmission.

2. SeqID: ID of the vision sensor

3. TypeID: The type of visual sensor (RPG, depth map, etc.)

4. DataHeight: Data height (pixels)

5. DataWidth: Data width (pixels)

6. CameraFOV: Camera field of view (in degrees)

7. PosUE: indicates the position of the object (m, NE)

8. AngEuler: indicates the angle of the Camera (radian, Roll, Pitch, Yaw)

9. Times TMP: timestamp

10. HasUpdate: Set to True if the data can be obtained normally, call it outside, set to True

to indicate that the data can be read, and then set to False

5.3.5. UE4MsgRecLoop (used to process the messages returned by

RflySim3D or CopterSim, there are 6 kinds of messages in total)

def UE4MsgRecLoop(self)

一、 Explanation of parameters:

二、 Function interpretation:

It monitors 224.0.0.10: 20006 and its own 20006 port. It is used to process the messages

returned by RflySim3D or CopterSim. There are 6 kinds of messages in total:

1) CopterSimCrash with length of 12 bytes:

struct CopterSimCrash {

int checksum;

int CopterID;

int TargetID;

}

For the collision data returned by RflySim3D, RflySim3D will start the collision detection

mode when the P key is pressed in RflySim3D. If a collision occurs, the data will be returned. The

P + number can select the sending mode (0 local sending, 1 LAN sending, 2 LAN sending only in

case of collision). The default is local sending.

2) PX4SILIntFloat of length 120 bytes:

struct PX4SILIntFloat{

int checksum;//1234567897

int CopterID;

int inSILInts[8];

float inSILFLoats[20];

};

3) ReqVeCrashData of length 160 bytes:

struct reqVeCrashData {

int checksum; //Packet check code 1234567897.

int copterID; //ID number of the current aircraft

int vehicleType; //The style of the current aircraft

Int CrashType;//Collision object type, -2 indicates ground, -1 indicates scene static

object, 0 indicates no collision, and above 1 indicates ID number of the collided aircraft

double runnedTime; //Timestamp of the current aircraft

float VelE[3]; //Speed of the current aircraft

float PosE[3]; //Current aircraft position

Float CrashPos [3];//Coordinates of the collision point

Float targetPos [3];//the center coordinate of the touched object

float AngEuler[3]; //Euler angle of the current aircraft

float MotorRPMS[8]; //Current aircraft motor speed

float ray[6]; //front, back, left, right, up and down scan lines of the aircraft

Char CrashedName [20] = { 0 };//Name of the touched object

}

This class has been introduced before. When data return is enabled, RflySim3D will send

reqVeCrashData for all Copters (send when data changes, once per second).

4) CameraData with length of 56 bytes:

struct CameraData { //56

int checksum = 0;//1234567891

int SeqID; //camera serial number

Int TypeID;//camera type

Int Data Height;//pixel height

Int Data Width;//pixel width

Float Camera FOV;//camera field angle

float PosUE[3]; //Camera center position

Float angEuler [3];//camera Euler angle

Double times TMP;//timestamp

};

RflySim3D returns the structure regularly according to the command sent by the

reqCamCoptObj function, and the program will store it in the self. CamDataVect after receiving it.

5) CoptReqData with length of 64 bytes:

struct CoptReqData { //64

int checksum = 0; //123456 78 91 as check

Int CopterID;//Aircraft ID

float PosUE[3]; //Object center position (specified during artificial 3D modeling, the

attitude coordinate axis is not necessarily at the geometric center)

Float angEuler [3];//Euler angle of object

Float boxOrigin [3];//object geometric center coordinate

Float Box Extent [3];//half of the length, width and height of the object frame

Double times TMP;//timestamp

};

RflySim3D returns the structure regularly according to the command sent by the

reqCamCoptObj function, and the program will store it in the self. CoptDataVect after receiving it.

6) ObjReqData of length 96 bytes:

struct ObjReqData { //96

int checksum = 0; //123456 78 91 as check

int seqID = 0;

float PosUE[3]; //Object center position (specified during artificial 3D modeling, the

attitude coordinate axis is not necessarily at the geometric center)

Float angEuler [3];//Euler angle of object

Float boxOrigin [3];//object geometric center coordinate

Float Box Extent [3];//half of the length, width and height of the object frame

Double times TMP;//timestamp

Char ObjName [32] = { 0 };//Name of object touched

};

RflySim3D returns the structure regularly according to the command sent by the

reqCamCoptObj function, and the program will store it in the self. ObjDataVect after receiving it.

The received data can be retrieved using the getCamCoptObj function.

5.3.6. Get CamCoptObj (get the specified data from RflySim3D and store

the monitored three types in three lists)

def getCamCoptObj(self,type=1,objName=1)

一、 Explanation of parameters:

1) Type: 0 for camera, 1 for airplane, 2 for object

二、 Function interpretation:

Obtain the specified data from RflySim3D. The UE4MsgRecLoop function enables the

monitoring of RflySim3D messages and stores the monitored three types in three lists. This

function searches the data in these lists. Therefore, you need to use the reqCamCoptObj

function to request the relevant data from RflySim3D.

5.3.7. reqCamCoptObj (Request data for objects in the scene (does not

create new objects, but gets data for existing objects))

def reqCamCoptObj(self,type=1,objName=1,windowID=0)

一、 Explanation of parameters:

1) Type: 0 for camera, 1 for airplane, 2 for object

2) ObjName: type represents camera seqID; when s represents aircraft, objName

corresponds to CopterID; when s represents object, objName corresponds to object name

3) WindowID: Indicates which RflySim3D you want to send a message to. The default is

window 0. (Do not send this data to all RflySim3D, because the value returned is the same,

and there is no need to consume additional performance.)

二、 Function interpretation:

Send a data request to RflySim3D to request data for objects in the scene (not to create

new objects, but to get data for existing objects). It can be a visual sensor, a Copter, and a

common object in the scene. See CoptReqData class, ObjReqData class and CameraData class

for details of the obtained data.

5.3.8. sendUE4Cmd (To RflySim3D Send a Byte String Command)

def sendUE4Cmd(self, cmd, windowID=-1)

一、 Explanation of parameters:

1) Cmd: Byte string of the command sent

2) WindowsID: affects the sending target port, which can be taken as -1 during normal

multicast. If the designated RflySim3D on the designated computer is required to

receive, it can be set according to the target computer IP and the window title

number of the RflySim3D program. (This serial number corresponds to the 20 ports

from 20010 to 20029 mentioned above. For example, RflySim3D-0 means that it is

monitoring the 20010, and RflySim3D-3 means that it is monitoring the 20013.)

二、 Function interpretation:

This function is to send a "command" to RflySim3D, where cmd is a byte string,

representing the command sent to RflySim3D, and the structure sent out is as follows:

struct Ue4CMD{

int checksum;

char data[52];

}

For example

mav = PX4MavCtrl.PX4MavCtrler(20100)

mav.sendUE4Cmd(b'RflyChangeMapbyName Grasslands')

It sends a command, "RflyChangeMapbyName Grasslands", "which tells RflySim3D to

change the map to something called" Grasslands. ".

For other commands and their functions, please refer to "OneDrive \ RflySimDocs \ Advanced

Version Manuscript \ Development Version \ Chapter 3-3D Scene Modeling and Simulation \ Demo

_ Resources _ 3 \ E0 \ E0 _ 2 \ RflySim3D Command Interface.docx". Here they are listed and

briefly introduced:

1. RflyShowTextTime (String txt, float time) \ \ Make the UE display txt for time seconds

2. RflyShowText (String txt) \ \ Make the UE display txt for 5 seconds

3. RflyChangeMapbyID (int ID) \ \ Switch the RflySim3D scene map according to the map ID

4. RflyChangeMapbyName (String txt) \ \ Switch the RflySim3D scene map based on the map

name

5. RflyChangeView KeyCmd (String key, int num) \ \ Consistent with pressing a key + num in

RflySim3D

6. RflyCameraPosAngAdd (float X, float y, float Z, float roll, float pitch, float yaw) \ \ Adds an

offset value to the camera's position and angle

7. RflyCameraPosAng (float X, float y, float Z, float roll, float pitch, float yaw) \ \ Sets the position

and angle of the camera (world coordinates of the UE)

8. RflyCameraFovD egrees (float degrees) \ \ Sets the camera's view volume FOV angle

9. RflyChange3D Model (int CopterID, int veTypes = 0) \ \ Modify a UAV model style

10. RflyChangeVehicle Size (int CopterID, float size = 0) \ \ Modify the zoom size of a UAV

11. RflyMoveVehiclePosAng(int CopterID, int isFitGround, float x, float y, float z, float roll, float

pitch, Float yaw) \ \ Set an offset value for the position and angle of the drone, and isFitGround

sets whether the drone fits the ground

12. RflySetVehiclePosAng(int CopterID, int isFitGround, float x, float y, float z, float roll, float pitch,

Float yaw) \ \ Sets the position and angle of the drone

13. RflyScanTerrainH(float xLeftBottom(m), float yLeftBottom(m), float xRightTop(m), float

yRightTop(m), Float scanHeight (m), float scanInterval (m)) \ \ Scan the terrain to generate a

PNG height map and txt, which is needed by the CopterSim program to know what terrains

the UE has and their elevations

14. RflyCesium OriPos (double lat, double lon, double Alt) \ \ Modifies the origin position of

Cesium based on latitude and longitude

15. RflyClearCapture () \ \ Clear captured images

16. RflySetActuatorPWMs(int CopterID, float pwm1, float pwm2, float pwm3, float pwm4, float

pwm5, float pwm6, float pwm7, float pwm8); \ \ Pass in 8 values and trigger the interface

function of the target UAV's blueprint

17. RflySetActuatorPWMsExt(int CopterID, float pwm9, float pwm10, float pwm11, float pwm12,

float pwm13, float pwm14, float pwm15, float pwm16, float pwm17, float pwm18, float

pwm19, float pwm20, float pwm21, float pwm22, float pwm23, Float PWM 24); \ \ Pass in 16

values and trigger the blueprint interface function of the target UAV. This function requires

the full version to be functional

18. RflyReqVehicleData(FString isEnable); If the 'isEnable' is not 0, RflySim3D starts sending the

data of all Copters (reqVeCrashData as described above).

19. RflySetPosScale (float scale); \ \ Scale of global position

20. RflyLoad3DFile (FString FileName); \ \ Load and execute the TXT script file under the path

21. RflyReqObjData (int opFlag, FString objName, FString colorStr); \ \ Request to get data of

objects in 3D scene

22. RflySetIDLabel (int CopterID, FString Text, FString colorStr, float size); \ \ Set the top ID display

content of a Copter (default display CopterID)

23. RflySetMsgLabel(int CopterID, FString Text, FString colorStr, float size, float time, int flag); \ \

Set the contents of the Message display on the top of a Copter

24. RflyDelVehicles (FString CopterIDList); \ \ Remove some Copters (comma is a separator)

25. RflyDisableVe Move (FString CopterIDList, int disable); \ \ Rejects the message of the Copter

that receives the specified ID (comma is the delimiter)

26. In addition, there are some built-in commands of the UE that can be used, for example,

the'stat FPS 'can display the current frame rate, and the't. Maxfps 60' can set the maximum

frame rate to 60.

5.4. Python programs and other Ubuntu Inside ROS

Node communication

The interface file (VisionCaptureAPI. Py) supports running in the ROS/ROS2 environment by adding

the following statement:

Enable ROS Publish Mode

import VisionCaptrueApi

VisionCaptureApi.isEnableRosTrans =True

vis = VisionCaptureApi.VisionCaptureApi()

Instructions: The above statement only runs under the Linux system, and does not support the ROS

environment under the windows system at present. After running the above code (ROS runs

roscore first to confirm that rosmaster can use rosrun or directly python3 XXX. Py instruction to

run the code), You can publish the topic corresponding to the config. JSON. Refer to 错误!未找到

引用源。

5.5. Application of RflySim platform time stamp alignment

with other platform

5.5.1. RflySim Timestamp, Remote System Timestamp, ROS Timestamp

5.5.1.1. RflySim timestamp

RflySim time is assigned based on the system timestamp of its running platform. If RflySim is

running on a Windows system, then the reference timestamp is the Windows system timestamp.

If RflySim is running on a Linux system, then the reference timestamp is the Windows system

timestamp. When CopterSim is used to load the model, timestamps like images, point clouds, and

IMU outputs are based on relative timestamps from the moment the aircraft takes off. When

CopterSim is not used and only RflySim3D is used, the image time is real-time system timestamp

5.5.1.2.Remote System Timestamp

Usually the RflySim platform runs on Windows systems, and we need to do algorithms and

distributed deployments on Ubuntu systems, so each distributed host computer has its own system

timestamp, although each system timestamp is defined according to the standard (from 0: Elapsed

seconds), but the timestamp for each system will not be the same at the same time.

5.5.1.3.ROS timestamp

Each Node in the distributed system should run under the same timestamp. Therefore, in

order to solve the timestamp alignment of different systems, ROS2 sets a ROS timestamp, which

has the same reference time point between subsystems. Therefore, at the same time, the RflySim

timestamp ≠ the remote system timestamp, the remote system timestamp and the ROS

timestamp are equal only when there is only one subsystem in the distributed system, and they

are not equal in other cases.

5.5.2. Timestamp alignment across system

As for the timestamp definition view RflySim Timestamp, Remote System Timestamp, ROS

Timestamp of each system, the requirement of applying the RflySim platform to the ROS

distribution is to obtain the timestamp generated by the image and other sensor data with the ROS

timestamp as the reference. To do this, you need to get the timestamp of the start of the simulation

of the RflySim platform on the remote side, as well as the relative timestamp of the image and

other sensors under this timestamp. If the remote system timestamp is not considered, and only

the ROS timestamp and the RflySim platform timestamp are considered, a difference between the

ROS timestamp and the RflySim platform timestamp is calculated. Assuming that this difference is

DT (both positive and negative are possible), then the time under the ROS timestamp is data _ ROS

_ time = RflySim _ start _ time + RflySim _ data _ stmp + DT. The RflySim _ start _ time is the time

stamp when the RflySim platform starts simulation recording, while the RflySim _ data _ stmp is

the time when the sensor data generates the relative RflySim _ start _ time. About the Interface

File (VisionCaptureApi. Py) Implementing Reference Functions 错误!未找到引用源。and Functions

错误!未找到引用源。

6. RflySim3D control interface UE4CtrlAPI.py

6.1. Scene control interface (send command to control

RflySim3D)

6.1.1. sendUE4Pos (Set the pose, type, etc. To the object of the

specified copter _ ID in RflySim3D)

def sendUE4Pos(self,copterID=1,vehicleType=3,MotorRPMSMean=0,PosE=[0, 0, 0],AngEuler=[0,

0, 0],windowID=-1)

一、 Explanation of parameters:

1. CopterID: ID of the set Copter

2. VehicleType: The style of the Copter set (determined in the XML)

3. MotorRPMSMean: Indicates the average value of the 8-bit actuator data (the same value

for 8 actuators)

4. PosE: indicates the set position of the Copter (m, NE)

5. AngEuler: Represents the Euler angles (radians, roll, pitch, yaw) set for this Copter

6. WindowID: affects the sending target port, which can be taken as -1 during normal

multicast. If the designated RflySim3D on the designated computer is required to receive,

it can be set according to the target computer IP and the window title number of the

RflySim3D program. (This serial number corresponds to the 20 ports from 20010 to

20029 mentioned above. For example, RflySim3D-0 means that it is monitoring the

20010, and RflySim3D-3 means that it is monitoring the 20013.)

二、 Function interpretation:

Send the data of a Copter to all RflySim3D in the LAN. If there is no object with the

Copter ID, it will Create an object like this. . Where vehicleType denotes the style of the Copter,

PosE denotes the position of the Copter (m, NE), AngEuler denotes the Euler angles of the

Copters (radians, roll, pitch, yaw), MotorRPMSMean represents the average of the 8-bit

actuator data (the same value for 8 actuators).

6.1.2. sendUE4Cmd (To RflySim3D Send a "command")

def sendUE4Cmd(self, cmd, windowID=-1)

一、 Explanation of parameters:

1) Cmd: Byte string of the command sent

2) WindowsID: affects the sending target port, which can be taken as -1 during normal

multicast. If the designated RflySim3D on the designated computer is required to

receive, it can be set according to the target computer IP and the window title

number of the RflySim3D program. (This serial number corresponds to the 20 ports

from 20010 to 20029 mentioned above. For example, RflySim3D-0 means that it is

monitoring the 20010, and RflySim3D-3 means that it is monitoring the 20013.)

二、 Function interpretation:

This function is to send a "command" to RflySim3D, where cmd is a byte string,

representing the command sent to RflySim3D, and the structure sent out is as follows:

struct Ue4CMD{

int checksum;

char data[52];

}

For example

mav = PX4MavCtrl.PX4MavCtrler(20100)

mav.sendUE4Cmd(b'RflyChangeMapbyName Grasslands')

It sends a command, "RflyChangeMapbyName Grasslands", "which tells RflySim3D to

change the map to something called" Grasslands. ".

For other commands and their functions, please refer to "OneDrive \ RflySimDocs \ Advanced

Version Manuscript \ Development Version \ Chapter 3-3D Scene Modeling and Simulation \ Demo

_ Resources _ 3 \ E0 \ E0 _ 2 \ RflySim3D Command Interface.docx". Here they are listed and

briefly introduced:

1. RflyShowTextTime (String txt, float time) \ \ Make the UE display txt for time seconds

2. RflyShowText (String txt) \ \ Make the UE display txt for 5 seconds

3. RflyChangeMapbyID (int ID) \ \ Switch the RflySim3D scene map according to the map ID

4. RflyChangeMapbyName (String txt) \ \ Switch the RflySim3D scene map based on the map

name

5. RflyChangeView KeyCmd (String key, int num) \ \ Consistent with pressing a key + num in

RflySim3D

6. RflyCameraPosAngAdd (float X, float y, float Z, float roll, float pitch, float yaw) \ \ Adds an

offset value to the camera's position and angle

7. RflyCameraPosAng (float X, float y, float Z, float roll, float pitch, float yaw) \ \ Sets the position

and angle of the camera (world coordinates of the UE)

8. RflyCameraFovD egrees (float degrees) \ \ Sets the camera's view volume FOV angle

9. RflyChange3D Model (int CopterID, int veTypes = 0) \ \ Modify a UAV model style

10. RflyChangeVehicle Size (int CopterID, float size = 0) \ \ Modify the zoom size of a UAV

11. RflyMoveVehiclePosAng(int CopterID, int isFitGround, float x, float y, float z, float roll, float

pitch, Float yaw) \ \ Set an offset value for the position and angle of the drone, and isFitGround

sets whether the drone fits the ground

12. RflySetVehiclePosAng(int CopterID, int isFitGround, float x, float y, float z, float roll, float pitch,

Float yaw) \ \ Sets the position and angle of the drone

13. RflyScanTerrainH(float xLeftBottom(m), float yLeftBottom(m), float xRightTop(m), float

yRightTop(m), Float scanHeight (m), float scanInterval (m)) \ \ Scan the terrain to generate a

PNG height map and txt, which is needed by the CopterSim program to know what terrains

the UE has and their elevations

14. RflyCesium OriPos (double lat, double lon, double Alt) \ \ Modifies the origin position of

Cesium based on latitude and longitude

15. RflyClearCapture () \ \ Clear captured images

16. RflySetActuatorPWMs(int CopterID, float pwm1, float pwm2, float pwm3, float pwm4, float

pwm5, float pwm6, float pwm7, float pwm8); \ \ Pass in 8 values and trigger the interface

function of the target UAV's blueprint

17. RflySetActuatorPWMsExt(int CopterID, float pwm9, float pwm10, float pwm11, float pwm12,

float pwm13, float pwm14, float pwm15, float pwm16, float pwm17, float pwm18, float

pwm19, float pwm20, float pwm21, float pwm22, float pwm23, Float PWM 24); \ \ Pass in 16

values and trigger the blueprint interface function of the target UAV. This function requires

the full version to be functional

18. RflyReqVehicleData(FString isEnable); If the 'isEnable' is not 0, RflySim3D starts sending the

data of all Copters (reqVeCrashData as described above).

19. RflySetPosScale (float scale); \ \ Scale of global position

20. RflyLoad3DFile (FString FileName); \ \ Load and execute the TXT script file under the path

21. RflyReqObjData (int opFlag, FString objName, FString colorStr); \ \ Request to get data of

objects in 3D scene

22. RflySetIDLabel (int CopterID, FString Text, FString colorStr, float size); \ \ Set the top ID display

content of a Copter (default display CopterID)

23. RflySetMsgLabel(int CopterID, FString Text, FString colorStr, float size, float time, int flag); \ \

Set the contents of the Message display on the top of a Copter

24. RflyDelVehicles (FString CopterIDList); \ \ Remove some Copters (comma is a separator)

25. RflyDisableVe Move (FString CopterIDList, int disable); \ \ Rejects the message of the Copter

that receives the specified ID (comma is the delimiter)

26. In addition, there are some built-in commands of the UE that can be used, for example,

the'stat FPS 'can display the current frame rate, and the't. Maxfps 60' can set the maximum

frame rate to 60.

6.2. Data request interface (get all objects B ounding B

Properties such as ox ）

6.2.1. CoptReqData (aircraft data returned by RflySim3D, information of

a Copter sent)

I. _ _ init _ _.

 def __init__(self):

Self. Checksum = 0 # 1234567891 as check

Self. CopterID = 0 # Aircraft ID

 self.PosUE = [0,0,0]

 self.angEuler = [0,0,0]

 self.boxOrigin = [0,0,0]

 self.BoxExtent = [0,0,0]

 self.timestmp = 0

 self.hasUpdate=True

For the aircraft data returned by RflySim3D, after the PX4MavCtrler.reqCamCoptObj ()

function calls the "RflyReqObjData" command of RflySim3D, RflySim3d, according to the

parameters of the command, The information of a Copter sent (the ID of the Copter is attached

when sending the command to RflySim3D).

This is the constructor for this class, where:

1. Check sum: is the check bit of the data, which is used to check whether an exception

occurs during data transmission.

2. CopterID: indicates the copter ID corresponding to the message.

3. PosUE: indicates the location of the Copter (m, NE)

4. AngEuler: represents the angle of this Copter (radians, Roll, Pitch, Yaw)

5. BoxOrigin: Geometric center of bounding box (m, NE)

6. Box Extent: Half of the side length of the bounding box (meters, X axis (forward), Y axis

(right), Z axis (up))

7. Times TMP: timestamp

8. HasUpdate: If the data can be obtained normally, set it to True to provide external calls.

If it is True, it means that the data can be read, and then set it to False.

6.2.2. ObjReqData (data returned by RflySim3D, information about an

object sent)

二. __init__

 def __init__(self):

Self. Checksum = 0 # 1234567891 as check

 self.seqID = 0

 self.PosUE = [0,0,0]

 self.angEuler = [0,0,0]

 self.boxOrigin = [0,0,0]

 self.BoxExtent = [0,0,0]

 self.timestmp = 0

 self.ObjName=''

 self.hasUpdate=True

This class encapsulates the data returned by RflySim3D. After the

PX4MavCtrler.reqCamCoptObj () function calls the "RflyReqObjData" command of RflySim3D, The

information of an object sent (the Name of the object is attached when sending the command to

RflySim3D).

This is the constructor for this class, where:

1. Check sum: is the check bit of the data, which is used to check whether an exception

occurs during data transmission.

2. SeqID: always 0. (Obj is not a Copter, it has no ID to return)

3. PosUE: indicates the position of the object (m, NE)

4. AngEuler: represents the angle of this Obj (radians, Roll, Pitch, Yaw)

5. BoxOrigin: Geometric center of bounding box (m, NE)

6. Box Extent: Half of the side length of the bounding box (meters, X axis (forward), Y axis

(right), Z axis (up))

7. Timestmp: Time the current scene has been in existence (seconds, the time the scene

has been in existence (because it is not a Copter, there is no timestamp))

8. ObjName: the name or ID of the object;

9. HasUpdate: If the data can be obtained normally, set it to True to provide external calls.

If it is True, it means that the data can be read, and then set it to False.

6.2.3. CameraData (data returned by RflySim3D, information of a certain

camera (vision sensor) sent)

One __init__

def __init__(self):

Self. Checksum = 0 # 1234567891 as check

 self.SeqID = 0

 self.TypeID = 0

 self.DataHeight = 0

 self.DataWidth = 0

 self.CameraFOV = 0

 self.PosUE = [0,0,0]

 self.angEuler = [0,0,0]

 self.timestmp = 0

 self.hasUpdate=True

This class encapsulates the data returned by RflySim3D. After the

PX4MavCtrler.reqCamCoptObj () function calls the "RflyReqObjData" command of

RflySim3D, The information of a camera (vision sensor) sent (the SeqID of the camera (vision

sensor) is attached when the command is sent to RflySim3D).

This is the constructor for this class, where:

1. Check sum: is the check bit of the data, which is used to check whether an exception

occurs during data transmission.

2. SeqID: ID of the vision sensor

3. TypeID: The type of visual sensor (RPG, depth map, etc.)

4. DataHeight: Data height (pixels)

5. DataWidth: Data width (pixels)

6. CameraFOV: Camera field of view (in degrees)

7. PosUE: indicates the position of the object (m, NE)

8. AngEuler: indicates the angle of the Camera (radian, Roll, Pitch, Yaw)

9. Times TMP: timestamp

10. HasUpdate: If the data can be obtained normally, set it to True to provide external calls.

If it is True, it means that the data can be read, and then set it to False.

6.2.4. reqCamCoptObj (In the request RflySim3D scene)

def reqCamCoptObj(self,type=1,objName=1,windowID=0)

一、 Explanation of parameters:

1) Type: 0 for camera, 1 for airplane, 2 for object

2) ObjName: when representing an airplane, objName corresponds to CopterID; when

representing an object, objName corresponds to the object name or the ID of the

created object

3) WindowID: Indicates which RflySim3D you want to send a message to. The default is

window 0. (Do not send this data to all RflySim3D, because the value returned is the

same, and there is no need to consume additional performance.)

二、 Function interpretation:

Send a data request to RflySim3D to request data for objects in the scene (not to create

new objects, but to get data for existing objects). It can be a visual sensor, a Copter, and a

common object in the scene. See CoptReqData class, ObjReqData class and CameraData class

for details of the obtained data.

6.2.5. UE4MsgRecLoop (loop listening to data from RflySim3D)

def UE4MsgRecLoop(self)

一、 Explanation of parameters:

二、 Function interpretation:

It monitors 224.0.0.10: 20006 and its own 20006 port. It is used to process the messages

returned by RflySim3D or CopterSim. There are 6 kinds of messages in total:

1) CopterSimCrash with length of 12 bytes:

struct CopterSimCrash {

int checksum;

int CopterID;

int TargetID;

}

For the collision data returned by RflySim3D, RflySim3D will start the collision detection

mode when the P key is pressed in RflySim3D. If a collision occurs, the data will be returned. The

P + number can select the sending mode (0 local sending, 1 LAN sending, 2 LAN sending only in

case of collision). The default is local sending.

2) PX4SILIntFloat of length 120 bytes:

struct PX4SILIntFloat{

int checksum;//1234567897

int CopterID;

int inSILInts[8];

float inSILFLoats[20];

};

3) ReqVeCrashData of length 160 bytes:

struct reqVeCrashData {

int checksum; //Packet check code 1234567897.

int copterID; //ID number of the current aircraft

int vehicleType; //The style of the current aircraft

Int CrashType;//Collision object type, -2 indicates ground, -1 indicates scene static

object, 0 indicates no collision, and above 1 indicates ID number of the collided aircraft

double runnedTime; //Timestamp of the current aircraft

float VelE[3]; //Speed of the current aircraft

float PosE[3]; //Current aircraft position

Float CrashPos [3];//Coordinates of the collision point

Float targetPos [3];//the center coordinate of the touched object

float AngEuler[3]; //Euler angle of the current aircraft

float MotorRPMS[8]; //Current aircraft motor speed

float ray[6]; //front, back, left, right, up and down scan lines of the aircraft

Char CrashedName [20] = { 0 };//Name of the touched object

}

This class has been introduced before. When data return is enabled, RflySim3D will send

reqVeCrashData for all Copters (send when data changes, once per second).

4) CameraData with length of 56 bytes:

struct CameraData { //56

int checksum = 0;//1234567891

int SeqID; //camera serial number

Int TypeID;//camera type

Int Data Height;//pixel height

Int Data Width;//pixel width

Float Camera FOV;//camera field angle

float PosUE[3]; //Camera center position

Float angEuler [3];//camera Euler angle

Double times TMP;//timestamp

};

RflySim3D returns the structure regularly according to the command sent by the

reqCamCoptObj function, and the program will store it in the self. CamDataVect after receiving it.

5) CoptReqData with length of 64 bytes:

struct CoptReqData { //64

int checksum = 0; //123456 78 91 as check

Int CopterID;//Aircraft ID

float PosUE[3]; //Object center position (specified during artificial 3D modeling, the

attitude coordinate axis is not necessarily at the geometric center)

Float angEuler [3];//Euler angle of object

Float boxOrigin [3];//object geometric center coordinate

Float Box Extent [3];//half of the length, width and height of the object frame

Double times TMP;//timestamp

};

RflySim3D returns the structure regularly according to the command sent by the

reqCamCoptObj function, and the program will store it in the self. CoptDataVect after receiving it.

6) ObjReqData of length 96 bytes:

struct ObjReqData { //96

int checksum = 0; //123456 78 91 as check

int seqID = 0;

float PosUE[3]; //Object center position (specified during artificial 3D modeling, the

attitude coordinate axis is not necessarily at the geometric center)

Float angEuler [3];//Euler angle of object

Float boxOrigin [3];//object geometric center coordinate

Float Box Extent [3];//half of the length, width and height of the object frame

Double times TMP;//timestamp

Char ObjName [32] = { 0 };//Name of object touched

};

RflySim3D returns the structure regularly according to the command sent by the

reqCamCoptObj function, and the program will store it in the self. ObjDataVect after receiving it.

The received data can be retrieved using the getCamCoptObj function.

6.2.6. Get CamCoptObj (get the attributes of the specified target from

RflySim3D)

def getCamCoptObj(self,type=1,objName=1)

一、 Explanation of parameters:

1) Type: 0 for camera, 1 for airplane, 2 for object

二、 Function interpretation:

Obtain the specified data from RflySim3D. The UE4MsgRecLoop function enables the

monitoring of RflySim3D messages and stores the monitored three types in three lists. This

function searches the data in these lists. Therefore, you need to use the reqCamCoptObj

function to request the relevant data from RflySim3D.

6.2.7. reqCamCoptObj (Request for properties of the specified object

in RflySim3D)

def reqCamCoptObj(self,type=1,objName=1,windowID=0)

一、 Explanation of parameters:

1) Type: 0 for camera, 1 for airplane, 2 for object

2) ObjName: type represents camera seqID; when s represents aircraft, objName

corresponds to CopterID; when s represents object, objName corresponds to object

name

3) WindowID: Indicates which RflySim3D you want to send a message to. The default is

window 0. (Do not send this data to all RflySim3D, because the value returned is the

same, and there is no need to consume additional performance.)

二、 Function interpretation:

Send a data request to RflySim3D to request data for objects in the scene (not to create

new objects, but to get data for existing objects). It can be a visual sensor, a Copter, and a

common object in the scene. See CoptReqData class, ObjReqData class and CameraData class

for details of the obtained data.

6.3. Interface such as collision detection

6.3.1. ReqVeCrashData (the structure sent by RflySim3D, which mainly

contains data related to collision)

I. _ _ init _ _.

def __init__(self):

self.checksum = 1234567897

self.copterID = 0

self.vehicleType = 0

self.CrashType = 0

self.runnedTime = 0

self.VelE = [0, 0, 0]

self.PosE = [0, 0, 0]

self.CrashPos = [0, 0, 0]

self.targetPos = [0, 0, 0]

self.AngEuler = [0, 0, 0]

self.MotorRPMS = [0, 0, 0, 0, 0, 0, 0, 0]

self.ray = [0, 0, 0, 0, 0, 0]

self.CrashedName = ""

This class is the struct sent by RflySim3D. It is the struct that will be sent when RflySim3D

turns on the data return mode (using the "RflyReqVehicleData 1" command). It mainly

contains data related to collision, which will be sent to multicast IP "224.0.0.10: 20006".

1. CopterID: indicates the data of which copter the struct is.

2. VehicleType: Indicates the style of this Copter

3. CrashType: indicates the collision object type, -2 indicates the ground, -1 indicates the

scene static object, 0 indicates no collision, and above 1 indicates the ID number of the

collided aircraft

4. RunnedTime: Time stamp of the current aircraft

5. VelE: Current aircraft speed (m/s)

6. PosE: Current aircraft position (NE, in meters)

7. CrashPos: Coordinates of the impact point (NE, in meters)

8. TargetPos: coordinates of the center of the impacted object (northeast, unit: m)

9. AngEuler: Euler angle of the current aircraft (Roll, Pitch, Yaw, radians)

10. MotorRPMS: Current aircraft motor speed

11. Ray: Front, back, left, right, up and down scan lines of the aircraft

12. CrashedName: The name of the touched object

6.3.2. UE4MsgRecLoop (used to process messages returned by

RflySim3D or CopterSim)

def UE4MsgRecLoop(self)

一、 Explanation of parameters:

二、 Function interpretation:

It monitors 224.0.0.10: 20006 and its own 20006 port. It is used to process the messages

returned by RflySim3D or CopterSim. There are 6 kinds of messages in total:

1) CopterSimCrash with length of 12 bytes:

struct CopterSimCrash {

int checksum;

int CopterID;

int TargetID;

}

For the collision data returned by RflySim3D, RflySim3D will start the collision detection

mode when the P key is pressed in RflySim3D. If a collision occurs, the data will be returned. The

P + number can select the sending mode (0 local sending, 1 LAN sending, 2 LAN sending only in

case of collision). The default is local sending.

2) PX4SILIntFloat of length 120 bytes:

struct PX4SILIntFloat{

int checksum;//1234567897

int CopterID;

int inSILInts[8];

float inSILFLoats[20];

};

3) ReqVeCrashData of length 160 bytes:

struct reqVeCrashData {

int checksum; //Packet check code 1234567897.

int copterID; //ID number of the current aircraft

int vehicleType; //The style of the current aircraft

Int CrashType;//Collision object type, -2 indicates ground, -1 indicates scene static

object, 0 indicates no collision, and above 1 indicates ID number of the collided aircraft

double runnedTime; //Timestamp of the current aircraft

float VelE[3]; //Speed of the current aircraft

float PosE[3]; //Current aircraft position

Float CrashPos [3];//Coordinates of the collision point

Float targetPos [3];//the center coordinate of the touched object

float AngEuler[3]; //Euler angle of the current aircraft

float MotorRPMS[8]; //Current aircraft motor speed

float ray[6]; //front, back, left, right, up and down scan lines of the aircraft

Char CrashedName [20] = { 0 };//Name of the touched object

}

This class has been introduced before. When data return is enabled, RflySim3D will send

reqVeCrashData for all Copters (send when data changes, once per second).

4) CameraData with length of 56 bytes:

struct CameraData { //56

int checksum = 0;//1234567891

int SeqID; //camera serial number

Int TypeID;//camera type

Int Data Height;//pixel height

Int Data Width;//pixel width

Float Camera FOV;//camera field angle

float PosUE[3]; //Camera center position

Float angEuler [3];//camera Euler angle

Double times TMP;//timestamp

};

RflySim3D returns the structure regularly according to the command sent by the

reqCamCoptObj function, and the program will store it in the self. CamDataVect after receiving it.

5) CoptReqData with length of 64 bytes:

struct CoptReqData { //64

int checksum = 0; //123456 78 91 as check

Int CopterID;//Aircraft ID

float PosUE[3]; //Object center position (specified during artificial 3D modeling, the

attitude coordinate axis is not necessarily at the geometric center)

Float angEuler [3];//Euler angle of object

Float boxOrigin [3];//object geometric center coordinate

Float Box Extent [3];//half of the length, width and height of the object frame

Double times TMP;//timestamp

};

RflySim3D returns the structure regularly according to the command sent by the

reqCamCoptObj function, and the program will store it in the self. CoptDataVect after receiving it.

6) ObjReqData of length 96 bytes:

struct ObjReqData { //96

int checksum = 0; //123456 78 91 as check

int seqID = 0;

float PosUE[3]; //Object center position (specified during artificial 3D modeling, the

attitude coordinate axis is not necessarily at the geometric center)

Float angEuler [3];//Euler angle of object

Float boxOrigin [3];//object geometric center coordinate

Float Box Extent [3];//half of the length, width and height of the object frame

Double times TMP;//timestamp

Char ObjName [32] = { 0 };//Name of object touched

};

RflySim3D returns the structure regularly according to the command sent by the

reqCamCoptObj function, and the program will store it in the self. ObjDataVect after receiving it.

The received data can be retrieved using the getCamCoptObj function.

6.4. Terrain acquisition interface

6.4.1. sendUE4Cmd (To RflySim3D Send command)

def sendUE4Cmd(self, cmd, windowID=-1)

一、 Explanation of parameters:

1) Cmd: Byte string of the command sent

2) WindowsID: affects the sending target port, which can be taken as -1 during normal

multicast. If the designated RflySim3D on the designated computer is required to

receive, it can be set according to the target computer IP and the window title

number of the RflySim3D program. (This serial number corresponds to the 20 ports

from 20010 to 20029 mentioned above. For example, RflySim3D-0 means that it is

monitoring the 20010, and RflySim3D-3 means that it is monitoring the 20013.)

二、 Function interpretation:

This function is to send a "command" to RflySim3D, where cmd is a byte string,

representing the command sent to RflySim3D, and the structure sent out is as follows:

For example

struct Ue4CMD{

int checksum;

char data[52];

}

mav = PX4MavCtrl.PX4MavCtrler(20100)

mav.sendUE4Cmd(b'RflyChangeMapbyName Grasslands')

It sends a command, "RflyChangeMapbyName Grasslands", "which tells RflySim3D to

change the map to something called" Grasslands. ".

For other commands and their functions, please refer to "OneDrive \ RflySimDocs \ Advanced

Version Manuscript \ Development Version \ Chapter 3-3D Scene Modeling and Simulation \ Demo

_ Resources _ 3 \ E0 \ E0 _ 2 \ RflySim3D Command Interface.docx". Here they are listed and

briefly introduced:

1. RflyShowTextTime (String txt, float time) \ \ Make the UE display txt for time seconds

2. RflyShowText (String txt) \ \ Make the UE display txt for 5 seconds

3. RflyChangeMapbyID (int ID) \ \ Switch the RflySim3D scene map according to the map ID

4. RflyChangeMapbyName (String txt) \ \ Switch the RflySim3D scene map based on the map

name

5. RflyChangeView KeyCmd (String key, int num) \ \ Consistent with pressing a key + num in

RflySim3D

6. RflyCameraPosAngAdd (float X, float y, float Z, float roll, float pitch, float yaw) \ \ Adds an

offset value to the camera's position and angle

7. RflyCameraPosAng (float X, float y, float Z, float roll, float pitch, float yaw) \ \ Sets the position

and angle of the camera (world coordinates of the UE)

8. RflyCameraFovD egrees (float degrees) \ \ Sets the camera's view volume FOV angle

9. RflyChange3D Model (int CopterID, int veTypes = 0) \ \ Modify a UAV model style

10. RflyChangeVehicle Size (int CopterID, float size = 0) \ \ Modify the zoom size of a UAV

11. RflyMoveVehiclePosAng(int CopterID, int isFitGround, float x, float y, float z, float roll, float

pitch, Float yaw) \ \ Set an offset value for the position and angle of the drone, and isFitGround

sets whether the drone fits the ground

12. RflySetVehiclePosAng(int CopterID, int isFitGround, float x, float y, float z, float roll, float pitch,

Float yaw) \ \ Sets the position and angle of the drone

13. RflyScanTerrainH(float xLeftBottom(m), float yLeftBottom(m), float xRightTop(m), float

yRightTop(m), Float scanHeight (m), float scanInterval (m)) \ \ Scan the terrain to generate a

PNG height map and txt, which is needed by the CopterSim program to know what terrains

the UE has and their elevations

14. RflyCesium OriPos (double lat, double lon, double Alt) \ \ Modifies the origin position of

Cesium based on latitude and longitude

15. RflyClearCapture () \ \ Clear captured images

16. RflySetActuatorPWMs(int CopterID, float pwm1, float pwm2, float pwm3, float pwm4, float

pwm5, float pwm6, float pwm7, float pwm8); \ \ Pass in 8 values and trigger the interface

function of the target UAV's blueprint

17. RflySetActuatorPWMsExt(int CopterID, float pwm9, float pwm10, float pwm11, float pwm12,

float pwm13, float pwm14, float pwm15, float pwm16, float pwm17, float pwm18, float

pwm19, float pwm20, float pwm21, float pwm22, float pwm23, Float PWM 24); \ \ Pass in 16

values and trigger the blueprint interface function of the target UAV. This function requires

the full version to be functional

18. RflyReqVehicleData(FString isEnable); If the 'isEnable' is not 0, RflySim3D starts sending the

data of all Copters (reqVeCrashData as described above).

19. RflySetPosScale (float scale); \ \ Scale of global position

20. RflyLoad3DFile (FString FileName); \ \ Load and execute the TXT script file under the path

21. RflyReqObjData (int opFlag, FString objName, FString colorStr); \ \ Request to get data of

objects in 3D scene

22. RflySetIDLabel (int CopterID, FString Text, FString colorStr, float size); \ \ Set the top ID display

content of a Copter (default display CopterID)

23. RflySetMsgLabel(int CopterID, FString Text, FString colorStr, float size, float time, int flag); \ \

Set the contents of the Message display on the top of a Copter

24. RflyDelVehicles (FString CopterIDList); \ \ Remove some Copters (comma is a separator)

25. RflyDisableVe Move (FString CopterIDList, int disable); \ \ Rejects the message of the Copter

that receives the specified ID (comma is the delimiter)

26. In addition, there are some built-in commands of the UE that can be used, for example,

the'stat FPS 'can display the current frame rate, and the't. Maxfps 60' can set the maximum

frame rate to 60.

7. Vision sensor configuration protocol Config. JSON.

7.1. Config. General introduction to JSON protocol

7.1.1. Config. JSON File Parameter Description

Different sensors have different parameter configuration methods. For specific sensor

configuration methods Supported sensor list and configuration method , general configuration

parameters are described below

SeqID: The serial number of the sensor in RflySim3D. Multiple sensors are incremented from 0.

It is required to ensure that the seqid is incremented from 0 and is unique no matter it is a

distributed cluster or a single machine;

TypeID: RflySim3D distinguishes the specific sensor type from the TypeID value, such as 1: RGB

image, 2: depth image, etc., for detailed reference Supported sensor list and configuration

method ;

Target Copter: This value indicates which control carrier the currently configured sensor should

be attached to. The carrier can be an aircraft, a car, or even a tree, a grass, a stone, etc., as long

as there is a "copter _ ID" "in RflySim3D.

Target MountType: reference coordinate system selection, 0: fixed on the aircraft (relative to the

geometric center) 1: fixed on the aircraft (relative to the bottom center). 2: fixed on the ground;

3: fixed on the aircraft, but the camera attitude does not change with the aircraft (ground

coordinate system); 4 is fixed on a certain sensor. Currently, only ranging sensors are supported.

(If this value is used, Trarge tCopter should be the value of the SeqID of the fixed sensor. If the

currently set sensor is fixed on a sensor with a SeqID of 0, this value should be 0.) It is usually set

to 0, and the default setting of the pod is 3. It should be noted that if the value is 4, the parameter

configuration of the target sensor should be placed before the current sensor. As the saying goes,

"If there is no skin, how can there be hair". Therefore, the target sensor must be created first. If

the B sensor needs to be installed on the A sensor, the A sensor must be created first.

Note: 3 and 4 are not supported in older versions

DataHeight: The value is set according to the type of the specific sensor. For example, the image

indicates the height of the image, and the mechanical laser radar indicates the number of laser

beams in the vertical direction. For details, refer to Supported sensor list and configuration

method ;

DataWidth: This value is set according to the type of the specific sensor. For example, the image

indicates the width of the image, and the mechanical laser radar indicates the number of laser

beam points in the horizontal direction. For details, refer to Supported sensor list and

configuration method ;

DataCheckFreq: Set the data frequency, which is affected by the RflySim3D refresh rate. The

RflySim3D refresh rate must be greater than or equal to the maximum data frequency of all

configured sensors.

SendProtocol: communication protocol configuration, SendProtocol [0] value 0: shared memory

(the free version only supports shared memory), 1: UDP direct PNG compression, 2: UDP direct

image compression, 3: UDP direct IPG compression. If the lidar data is only 0 or 1 (shared

memory and UDP network transmission) SendProtocol [1-41]: IP address: SendProtocol [5] port

number

Note: The port number under the same destination address is unique.

CameraFOV: This value is set according to the type of the specific sensor. For example, the image

data indicates the field angle of the camera, and the mechanical laser radar indicates the

horizontal angle range. Refer to Supported sensor list and configuration method this for details;

SensorPosXYZ: the FRD coordinate system of the sensor in terms of its position in meters relative

to the center of the carrier

SensorAngEular: sensor installation angle (unit degree), the Euler angle sequence is roll, pitch,

yaw, relative to the carrier FRD coordinate system;

OtherParams: specific reference Supported sensor list and configuration method ;

Addition of the following new protocols:

EulerOrOuat: This is the representation of the installation angle. 0 means to use the Euler

angle, that is, SensorAngEular. 1 means to use the quaternion SensorAng Quat.

SensorAngEular: refers to the mounting angle of the sensor, and the unit can be changed.

SensorAng Quat: is the sensor mounting angle, expressed as a quaternion.

7.1.2. jsonLoad (Increase vision sensor by reading configuration file)

def jsonLoad(self, ChangeMode=-1, jsonPath="")

一、 Explanation of parameters:

1) Change Mode: overrides the SendProtocol [0] transfer mode in JSON

2) Json Path: Relative to the configuration file path, the actually read directory is

"Interface File Directory"/JSON path. If the JSON path is empty, the Config. JSON

under the interface file directory will be read.

二、 Function interpretation:

In the method Increase the vision sensor by reading the configuration file , after the

sensor parameters are added, a corresponding sensor can be applied to the UE for addition

through the sendReqToUE4 method. The effect is the same as 1addVisSensor, but multiple

vision sensor parameters can be saved in the configuration file.

7.1.3. addVisSensor (Object to add a vision sensor parameter)

def addVisSensor(self, vsr=VisionSensorReq())

一、 Explanation of parameters:

1) Vs R: Object for vision sensor parameters

二、 Function interpretation:

According to the method, an object of a visual sensor parameter is added, and after the

sensor parameter is added, a user equipment (UE) can apply for adding a corresponding

sensor through a sendReqToUE4 method. If the VSR parameter passed is not of type

VisionSensorReq, an exception is thrown.

7.2. Transmitting and receiving method

7.2.1. sendUpdateUEImage (Sent a vision sensor request, R flySim3D

This sensor will be created or updated when received)

 def sendUpdateUEImage(self, vs=VisionSensorReq(), windID=0, IP="127.0.0.1")

一、 Explanation of parameters:

1) Vs: VisionSensorReq () instance sent

2) WindID: affects the sending target port, and -1 is enough for normal multicast. If the

designated RflySim3D on the designated computer is required to receive, it can be set

according to the target computer IP and the window title number of the RflySim3D

program. (This serial number corresponds to the 20 ports from 20010 to 20029

mentioned above. For example, RflySim3D-0 means that it is monitoring the 20010, and

RflySim3D-3 means that it is monitoring the 20013. You can see that this winID defaults

to 0, which means that it defaults to unicast to the first RflySim3D program on the target

computer.

3) IP: IP address of the sending destination

二、 Function interpretation:

This function A vision sensor request is sent and RflySim3D receives it to create or update

the sensor (updated according to SeqID), this function is quite special, as mentioned in the

introduction of VisionSensorReq class, it is not UDP multicast but unicast. This is to prevent

repeated calculations (because the results obtained by the visual sensors on RflySim3D on the

same LAN are obviously the same, there is no need for each computer to calculate once and

then send it to the target computer, so that each computer can calculate different visual

sensors to improve performance and efficiency), and through this function, the properties of

the sensors can be changed in real time. Uch as field of view angle, rotation angle and the like.

7.2.2. sendReqToUE4 (Send a set of VisionSen sorReq)

def sendReqToUE4(self, windID=0, IP="")

一、 Explanation of parameters:

1) WindID: affects the sending target port, and -1 can be taken during normal multicast. If

the designated RflySim3D on the designated computer is required to receive, it can be

set according to the target computer IP and the window title number of the RflySim3D

program. (This serial number corresponds to the 20 ports from 20010 to 20029

mentioned above. For example, RflySim3D-0 means that it is monitoring the 20010, and

RflySim3D-3 means that it is monitoring the 20013

2) IP: IP address of the sending destination

3) Although there are no more formal parameters in the function, the function actually

refers to some member variables in the class:

4) Self. VisSensor: List of VisionSensorReqs. List of VisionSensorReqs sent by this function

5) Self.isUE4 DirectUDP: bool type, whether to use UDP to send

6) Self.mm0: The address of the shared memory (do not need to change it). When using

this function to send, it will also create a shared memory on the local machine and assign

it a value. It can only read the return information (the width and height of the image)

given by RflySim3D of the local machine, and then output a message indicating whether

the request is successful or not.

二、 Function interpretation:

It is to send a set of VisionSensorReqs, which need to be placed in the self. VisSensor, and

assign the value of self.isUE4 DirectUDP as appropriate.

7.3. Supported sensor list and configuration method

Sensor configuration for the RflySim simulation platform is set up through the Sensor

Configuration File Config. JSON file. Camera, depth camera, infrared, laser radar and other sensors

can be set.

7.3.1. Visible RGB image

"SeqID" represents the sensor number. This represents the 1st sensor (the free version only

supports 2 graphs).

"TypeID" represents the sensor type ID. 1: RGB map, 2: depth map, 3: grayscale map. Refer to PPT

for more configurations.

"The ID of the target aircraft loaded by the Target Copter" sensor can be changed. ".

"TargetMountType" stands for the type of coordinates, 0: fixed on the aircraft (relative to the

geometric center), 1: fixed on the aircraft (relative to the bottom center), 2: on the fixed ground

(monitoring) also variable, 3: pod camera relative to ground coordinate system, fixed on aircraft,

but camera attitude does not change with aircraft (ground coordinate system), 4: Attach a sensor

to another sensor, when MountType = 4, TargetCopter = SeqID in the Config. JSON (because

MountType = 4 is to attach a sensor to a sensor, So TargetCopter is used to give the vehicle ID, but

it's not used at this time, it's used to set the sensor ID, that is, SeqID.

DataWidth is the data or image width, here 640. DataHeight is the data or image height, here

480. The Data CheckFreq "check data update frequency is 30 HZ here.

"SendProtocol [8]" is the transmission mode and address, and the value of SendProtocol [0] is 0:

shared memory (the free version only supports shared memory), 1: UDP direct transmission PNG

compression, 2: UDP direct transmission image is not compressed, 3: UDPdirect transmission JPG

compression; SendProtocol [1-4]: IP address; SendProtocol [5] port number.

CameraFOV is the camera field of view (vision-type sensors only) and can also be changed in

degrees.

"EulerOrOuat" is the representation of the installation angle, 0 means to use Euler angle, that is,

SensorAngEular, and 1 means to use quaternion SensorAng Quat.

"SensorPosXYZ [3]" is the installation position of the sensor, and the unit can also be changed.

"SensorAngEular [3]" is the mounting angle of the sensor, and the unit can be changed.

"SensorAng Quat [4]" is the sensor mounting angle expressed in quaternions.

7.3.2. Grayscale image

"SeqID" represents the sensor number. This represents the first sensor.

"TypeID" 1: RGB map, 2: depth map, 3: grayscale map. Refer to PPT for more configurations.

"The ID of the target aircraft loaded by the Target Copter" sensor can be changed. ".

"TargetMountType" stands for the type of coordinates, 0: fixed on the aircraft (relative to the

geometric center), 1: fixed on the aircraft (relative to the bottom center), 2: on the fixed ground

(monitoring) also variable, 3: pod camera relative to ground coordinate system, fixed on aircraft,

but camera attitude does not change with aircraft (ground coordinate system), 4: Attach a sensor

to another sensor, when MountType = 4, TargetCopter = SeqID in the Config. JSON (because

MountType = 4 is to attach a sensor to a sensor, So TargetCopter is used to give the vehicle ID, but

it's not used at this time, it's used to set the sensor ID, that is, SeqID.

DataWidth is the data or image width, here 640. DataHeight is the data or image height, here

480. The Data CheckFreq "check data update frequency is 30 HZ here.

"SendProtocol [8]" is the transmission mode and address, and the value of SendProtocol [0] is 0:

shared memory (the free version only supports shared memory), 1: UDP direct transmission PNG

compression, 2: UDP direct transmission image is not compressed, 3: UDPdirect transmission JPG

compression; SendProtocol [1-4]: IP address; SendProtocol [5] port number.

CameraFOV is the camera field of view (vision-type sensors only) and can also be changed in

degrees.

"EulerOrOuat" is the representation of the installation angle, 0 means to use Euler angle, that is,

SensorAngEular, and 1 means to use quaternion SensorAng Quat.

"SensorPosXYZ [3]" is the installation position of the sensor, and the unit can also be changed.

"SensorAngEular [3]" is the mounting angle of the sensor, and the unit can also be changed.

"SensorAng Quat [4]" is the sensor mounting angle expressed in quaternions.

7.3.3. Depth image

“ SeqID ” Represents the number of the sensor. This represents the first sensor.

"TypeID" 1: RGB map, 2: depth map, 3: grayscale map, refer to PPT for more configuration

"The ID of the target aircraft loaded by the Target Copter" sensor can be changed. ".

"TargetMountType" represents the coordinate type, 0: fixed on the aircraft (relative to the

geometric center), 1: fixed on the aircraft (relative to the bottom center), 2: fixed on ground

(monitoring) can also be changed.

DataWidth is the data or image width, here 640. DataHeight is the data or image height, here

480.“ DataCheckFreq ”Check that the data update frequency is 30 HZ here.

"SendProtocol [8]" is the transmission mode and address, and the value of SendProtocol [0] is 0:

shared memory (the free version only supports shared memory), 1: UDP direct transmission PNG

compression, 2: UDP direct transmission image is not compressed, 3: UDPdirect transmission JPG

compression; SendProtocol [1-4]: IP address; SendProtocol [5] port number.

CameraFOV is the camera field of view (vision-type sensors only) and can also be changed in

degrees.

"EulerOrOuat" is the representation of the installation angle, 0 means to use Euler angle, that is,

SensorAngEular, and 1 means to use quaternion SensorAng Quat.

"SensorPosXYZ [3]" is the installation position of the sensor, and the unit can also be changed.

"SensorAngEular [3]" is the mounting angle of the sensor, and the unit can also be changed.

"SensorAng Quat [4]" is the sensor mounting angle expressed in quaternions.

The output data of depth camera is stored and transmitted in uinit16, and its data range is 0 to

65535. By default, one unit represents 1mm (controlled by otherParams [2]), which means that

the maximum range is 0 to 65.535 meters. However, the data range does not represent the actual

detection distance of the camera. You also need otherParams [0] to set the minimum detection

distance and otherParams [1] to set the maximum detection distance. OtherParams [0]: The

minimum recognition distance of the depth camera (unit: m). If the depth distance is less than

this value, the 65535 corresponding to NaN will be output. OtherParams [1]: The maximum

recognition distance of the depth camera (unit: m). If the depth distance is greater than this

value, the 65535 corresponding to NaN will be output. OtherParams [2]: The scale unit (in

meters) of the output value of the depth camera uint16. By default, the depth value is in

millimeters, so 0.001 is required. Note: If the default value is 0, it will be replaced by otherParams

[2] = 0.001. Actual depth value (in meters) = depth picture value (uint16 range) * otherParams

[2].

7.3.4. Partition map

"SeqID" represents the sensor number. This represents the 1st sensor (the free version only

supports 2 graphs).

"TypeID" represents the sensor type ID. 1: RGB map, 2: depth map, 3: grayscale map. Refer to PPT

for more configurations.

"The ID of the target aircraft loaded by the Target Copter" sensor can be changed. ".

"TargetMountType" stands for the type of coordinates, 0: fixed on the aircraft (relative to the

geometric center), 1: fixed on the aircraft (relative to the bottom center), 2: on the fixed ground

(monitoring) also variable, 3: pod camera relative to ground coordinate system, fixed on aircraft,

but camera attitude does not change with aircraft (ground coordinate system), 4: Attach a sensor

to another sensor, when MountType = 4, TargetCopter = SeqID in the Config. JSON (because

MountType = 4 is to attach a sensor to a sensor, So TargetCopter is used to give the vehicle ID, but

it's not used at this time, it's used to set the sensor ID, that is, SeqID.

DataWidth is the data or image width, here 640. DataHeight is the data or image height, here

480. The Data CheckFreq "check data update frequency is 30 HZ here.

"SendProtocol [8]" is the transmission mode and address, and the value of SendProtocol [0] is 0:

shared memory (the free version only supports shared memory), 1: UDP direct transmission PNG

compression, 2: UDP direct transmission image is not compressed, 3: UDPdirect transmission JPG

compression; SendProtocol [1-4]: IP address; SendProtocol [5] port number.

CameraFOV is the camera field of view (vision-type sensors only) and can also be changed in

degrees.

"EulerOrOuat" is the representation of the installation angle, 0 means to use Euler angle, that is,

SensorAngEular, and 1 means to use quaternion SensorAng Quat.

"SensorPosXYZ [3]" is the installation position of the sensor, and the unit can also be changed.

"SensorAngEular [3]" is the mounting angle of the sensor, and the unit can also be changed.

"SensorAng Quat [4]" is the sensor mounting angle expressed in quaternions.

7.3.5. Ranging sensor

Ranging sensor, emits a ray to the current sensor orientation (if it is attached to the sensor, that is,

MountType = = 4 and PosXYZ and AngEular are both zero, the image center target distance is

returned). For the ranging sensor, the two parameters DataWidth and DataHeight are invalid, and

otherParams [0] represents the maximum distance that the ranging sensor can measure. It should

be noted that when TargetMountType is 4, it means that it is installed on other sensors. The Config.

JSON file needs to be configured on the installed sensor first, and "SensorPosXYZ" and

"SensorAngEular" are both set to 0.

"SeqID" represents the sensor number. This represents the 1st sensor (the free version only

supports 2 graphs).

"TypeID" represents the sensor type ID, and the ranging sensor is 5. Refer to PPT for more

configurations.

"The ID of the target aircraft loaded by the Target Copter" sensor can be changed. ". (If it is

installed on other sensors, it needs to be changed to sensor ID).

"TargetMountType" stands for the type of coordinates, 0: fixed on the aircraft (relative to the

geometric center), 1: fixed on the aircraft (relative to the bottom center), 2: on the fixed ground

(monitoring) also variable, 3: pod camera relative to ground coordinate system, fixed on aircraft,

but camera attitude does not change with aircraft (ground coordinate system), 4: Attach a sensor

to another sensor, when MountType = 4, TargetCopter = SeqID in the Config. JSON (because

MountType = 4 is to attach a sensor to a sensor, So TargetCopter is used to give the vehicle ID, but

it is not used at this time. It is used to set the ID of the sensor, that is, SeqID, and the sensor to be

installed needs to be configured first.

DataWidth and DataHeight are not valid in a ranging sensor.

"SendProtocol [8]" provides the transport address. SendProtocol [1-4]: IP address; SendProtocol

[5]: port number.

"EulerOrOuat" is the representation of the installation angle, 0 means to use Euler angle, that is,

SensorAngEular, and 1 means to use quaternion SensorAng Quat.

"SensorPosXYZ [3]" is the installation position of the sensor, and the unit can also be changed.

"SensorAngEular [3]" is the mounting angle of the sensor, and the unit can also be changed.

"SensorAng Quat [4]" is the sensor mounting angle expressed in quaternions.

7.3.6. Mechanical scanning laser radar

"SeqID" represents the sensor number.

Values of "TypeID" are 20, 21, 22; 20: the output point cloud is the lidar coordinate system; 21: the

output point cloud is the world coordinate system; 22: livox lidar

"The ID of the target aircraft loaded by the Target Copter" sensor can be changed. ".

"TargetMountType" stands for the type of coordinates, 0: fixed on the aircraft (relative to the

geometric center), 1: fixed on the aircraft (relative to the bottom center), 2: on the fixed ground

(monitoring) also variable, 3: pod camera relative to ground coordinate system, fixed on aircraft,

but camera attitude does not change with aircraft (ground coordinate system), 4: Attach a sensor

to another sensor, when MountType = 4, TargetCopter = SeqID in the Config. JSON (because

MountType = 4 is to attach a sensor to a sensor, So TargetCopter is used to give the vehicle ID, but

it's not used at this time, it's used to set the sensor ID, that is, SeqID.

"DataWidth" is the number of point clouds within a ring of the laser radar, and "DataHeight" is

the number of laser radar harnesses.

The Data CheckFreq "Point Cloud Publish Frequency (Hz) is 30 HZ here.

"SendProtocol [8]" is the transmission mode and address. The value of SendProtocol [0] is 0,

indicating the shared memory output mode, and the value is 1, indicating the UDP direct

transmission mode.

"CameraFOV": No effect on the LIDAR sensor.

"EulerOrOuat" is the representation of the installation angle, 0 means to use Euler angle, that is,

SensorAngEular, and 1 means to use quaternion SensorAng Quat.

"SensorPosXYZ [3]" is the installation position of the sensor, and the unit can also be changed.

"SensorAngEular [3]" is the mounting angle of the sensor, and the unit can also be changed.

"SensorAng Quat [4]" is the sensor mounting angle expressed in quaternions.

OtherParams: [maximum laser distance (m), precision (m), lower limit of horizontal scanning

angle (degree), upper limit of horizontal scanning angle (degree), lower limit of vertical scanning

angle (degrees), upper limit of vertical scanning angle [degrees], reservation, reservation];

The horizontal resolution of the lidar is represented by the DataWidth and the horizontal

scanning angle range, and the vertical resolution is represented by the vertical scanning angle (as

shown in the figure, horizontal resolution = 90/900, vertical resolution = 40/32). The above angle

values are expressed by degree.

7.3.7. Fancy scanning laser radar

Reference Routine 8.RflySimVision \ 2.AdvExps \ E0 _ AdvApiExps \ 6.LidarLivoxDemo

"SeqID" represents the sensor number. This represents the first sensor.

Values of "TypeID" are 20, 21, 22; 20-: represents that the output point cloud is the lidar coordinate

system; 21: represents that the output point cloud is the world coordinate system; 22: represents

livox lidar.

"The ID of the target aircraft loaded by the Target Copter" sensor can be changed. ".

"TargetMountType" stands for the type of coordinates, 0: fixed on the aircraft (relative to the

geometric center), 1: fixed on the aircraft (relative to the bottom center), 2: on the fixed ground

(monitoring) also variable, 3: pod camera relative to ground coordinate system, fixed on aircraft,

but camera attitude does not change with aircraft (ground coordinate system), 4: Attach a sensor

to another sensor, when MountType = 4, TargetCopter = SeqID in the Config. JSON (because

MountType = 4 is to attach a sensor to a sensor, So TargetCopter is used to give the vehicle ID, but

it's not used at this time, it's used to set the sensor ID, that is, SeqID.

Number of points for the "Data Width" half petal (corresponding to the red area above)

DataHeight indicates how many petal halves need to be scanned in a frame.

"DataCheckFreq" represents the number of data frames sent per second.

"SendProtocol [8]" is the transmission mode and address. The value of SendProtocol [0] is 0,

indicating the shared memory output mode, and the value is 1, indicating the UDP direct

transmission mode.

2 times the length of the half petal of "CameraFOV". Unit degree.

"EulerOrOuat" is the representation of the installation angle, 0 means to use Euler angle, that is,

SensorAngEular, and 1 means to use quaternion SensorAng Quat.

"SensorPosXYZ [3]" is the installation position of the sensor, and the unit can also be changed.

"SensorAngEular [3]" is the mounting angle of the sensor, and the unit can also be changed.

"SensorAng Quat [4]" is the sensor mounting angle expressed in quaternions.

OtherParams [0]: The maximum scanning distance of the lidar (in meters), for example, 600

meters here. Note

The point cloud data is finally published in int16 format, and this value is coupled with the

otherParams [0] parameter.

For example, X _ float is the x-axis floating point value of the point cloud measured by the lidar

(in meters, the value is less than

OtherParams [0]), then X _ int = X _ float/otherParams [0] * 32767. So, get.

After the point cloud data, you need to make a reverse mapping according to the farthest

distance otherParams [0]: X _ float = X _ int

/ 32767 * otherParams[0].

OtherParams [1]: corresponds to the petal height (unit degree) in the above figure. This reflects

the bending of the scanning petals.

Degree.

OtherParams [1]: corresponds to the petal height (unit degree) in the above figure. This reflects

the bending of the scanning petals.

Degree.

OtherParams [3]: calibration index of the arc to the left of the red petal, 1.18 by default.

OtherParams [4]: Several figures of eight (a figure of eight is two symmetrical petals with four arcs)

form a flower

Flower, as shown in the figure above, is the 0.1s data of DJI lidar, that is, 10 eight characters (20

petals) form a flower.

Flower. Thus otherParams [4] = 10. That is, the angle between two adjacent petals is 180/10 = 18

degrees.

7.3.8. Infrared grayscale image

"SeqID" represents the sensor number. This represents the first sensor.

"TypeID" 40 indicates an infrared grayscale map

"The ID of the target aircraft loaded by the Target Copter" sensor can be changed. ".

"TargetMountType" stands for the type of coordinates, 0: fixed on the aircraft (relative to the

geometric center), 1: fixed on the aircraft (relative to the bottom center), 2: on the fixed ground

(monitoring) also variable, 3: pod camera relative to ground coordinate system, fixed on aircraft,

but camera attitude does not change with aircraft (ground coordinate system), 4: Attach a sensor

to another sensor, when MountType = 4, TargetCopter = SeqID in the Config. JSON (because

MountType = 4 is to attach a sensor to a sensor, So TargetCopter is used to give the vehicle ID, but

it's not used at this time, it's used to set the sensor ID, that is, SeqID.

DataWidth is the data or image width, here 640. DataHeight is the data or image height, here

480. The Data CheckFreq "check data update frequency is 30 HZ here.

"SendProtocol [8]" is the transmission mode and address, and the value of SendProtocol [0] is 0:

shared memory (the free version only supports shared memory), 1: UDP direct transmission PNG

compression, 2: UDP direct transmission image is not compressed, 3: UDPdirect transmission JPG

compression; SendProtocol [1-4]: IP address; SendProtocol [5] port number.

CameraFOV is the camera field of view (vision-type sensors only) and can also be changed in

degrees.

"EulerOrOuat" is the representation of the installation angle, 0 means to use Euler angle, that is,

SensorAngEular, and 1 means to use quaternion SensorAng Quat.

"SensorPosXYZ [3]" is the installation position of the sensor, and the unit can also be changed.

"SensorAngEular [3]" is the mounting angle of the sensor, and the unit can also be changed.

"SensorAng Quat [4]" is the sensor mounting angle expressed in quaternions.

7.3.9. Thermodynamic color map

"SeqID" represents the sensor number. This represents the

first sensor.

"TypeID" uses 41 for thermal color map

"The ID of the target aircraft loaded by the Target Copter"

sensor can be changed. ".

"TargetMountType" stands for the type of coordinates, 0:

fixed on the aircraft (relative to the geometric center), 1:

fixed on the aircraft (relative to the bottom center), 2: on the fixed ground (monitoring) also

variable, 3: pod camera relative to ground coordinate system, fixed on aircraft, but camera

attitude does not change with aircraft (ground coordinate system), 4: Attach a sensor to another

sensor, when MountType = 4, TargetCopter = SeqID in the Config. JSON (because MountType = 4

is to attach a sensor to a sensor, So TargetCopter is used to give the vehicle ID, but it's not used at

this time, it's used to set the sensor ID, that is, SeqID.

DataWidth is the data or image width, here 640. DataHeight is the data or image height, here

480. The Data CheckFreq "check data update frequency is 30 HZ here.

"SendProtocol [8]" is the transmission mode and address, and the value of SendProtocol [0] is 0:

shared memory (the free version only supports shared memory), 1: UDP direct transmission PNG

compression, 2: UDP direct transmission image is not compressed, 3: UDPdirect transmission JPG

compression; SendProtocol [1-4]: IP address; SendProtocol [5] port number.

CameraFOV is the camera field of view (vision-type sensors only) and can also be changed in

degrees.

"EulerOrOuat" is the representation of the installation angle, 0 means to use Euler angle, that is,

SensorAngEular, and 1 means to use quaternion SensorAng Quat.

"SensorPosXYZ [3]" is the installation position of the sensor, and the unit can also be changed.

"SensorAngEular [3]" is the mounting angle of the sensor, and the unit can also be changed.

"SensorAng Quat [4]" is the sensor mounting angle expressed in quaternions.

8. The Python visual interface is VisionCaptureApi. Py.

8.1. Related classes and data structures

The VisionCaptureApi. Py is the interface file of the platform, including JSON loading,

image request, image forwarding, etc. It contains a number of classes related to vision.

➢ Queue: This class uses a python list to abstract a first-in, first-out queue.

def enqueue(self, item):

一、 Explanation of parameters:

1) Item: pending enqueue item

二、 Function interpretation:

This method inserts the item into the head of the queue.

def dequeue(self):

一、 Explanation of parameters:

二、 Function interpretation:

This method removes the element at the end of the queue and returns, throwing an

IndexError exception if the queue is empty.

def is_empty(self):

一、 Explanation of parameters:

二、 Function interpretation:

This method is used to determine whether the queue is empty. It is usually called before

the dequeue method to avoid dequeuing exceptions when the queue is empty.

def size(self):

一、 Explanation of parameters:

二、 Function interpretation:

This method reads and returns the queue length. Can be used to control the maximum

and minimum length of the queue.

➢ RflyTimeStmp: This class encapsulates the message sent to the port 20005 of the specified

remote computer, mainly stores the timestamp of the terminal computer and the simulation,

and detects whether the connection between the terminal computer and the simulation program

is normal through heartbeat.

 def __init__(self):

self.checksum = 1234567897

self.copterID = 0

self.SysStartTime = 0

self.SysCurrentTime = 0

self.HeartCount = 0

1. Check sum: is the check bit of the data, which is used to check whether an exception

occurs during data transmission.

2. CopterID: indicates the copter ID corresponding to the message.

3. SysStartTime: is the timestamp to start the simulation under Windows, in milliseconds,

using the Greenwich standard starting point.

4. SysCurrentTime: The current timestamp under Windows, in milliseconds, using the

Greenwich Mean starting point.

5. Heart Count: The counter of the heartbeat packet.

➢ Class VisionSensorReq: This class is a struct sent to the UE. RflySim3D will create a vision

sensor after receiving it and start to output image data. This struct is usually not sent by

multicast. Moreover, a RflySim3D window will be designated to receive the structure (that is

to say, only one RflySim3D on one computer receives the structure). The assignment of the

structure has different configuration methods according to different sensors. Please refer to

Supported sensor list and configuration method for details.

 def __init__(self):

 self.checksum = 12345

 self.SeqID = 0

 self.TypeID = 1

 self.TargetCopter = 1

 self.TargetMountType = 0

 self.DataWidth = 0

 self.DataHeight = 0

 self.DataCheckFreq = 0

 self.SendProtocol = [0, 0, 0, 0, 0, 0, 0, 0]

 self.CameraFOV = 90

 self.SensorPosXYZ = [0, 0, 0]

 self.SensorAngEular = [0, 0, 0]

 self.otherParams = [0, 0, 0, 0, 0, 0, 0, 0]

This is the initialization function where the individual parameters determine the state of the

sensor.

1. SeqID: is the ID of the sensor, which must be unique in the LAN. Each computer can

have at most 32 visual sensors (if there are n computers, then 32 * n sensors can be

realized). The sensor IDs on the same computer must belong to the same group (for

example, the ID of the sensor on computer A is 0 ~ 31, and the ID on computer B is 32 ~

63).

2. TypeID: indicates the type of sensor (determines what kind of data RflySim3D returns),

which can be [1,6], 1: RGB map (the free version only supports RGB map), 2: depth map,

3: grayscale map, 4: point cloud relative to the body coordinate system, 5: point cloud

relative to the geodetic coordinate system, 6: Petal scanning point cloud relative to the

body coordinate system.

3. Target Copter: ID of the Copter on which the sensor is mounted. //variable

4. Target MountType: coordinate type, 0: fixed on aircraft (relative to geometric center), 1:

fixed on aircraft (relative to bottom center), 2: fixed on ground (monitoring)//variable

5. DataWidth: Data or image width

6. DataHeight: Data or image height

7. Data CheckFreq: Check the data update frequency (unit: Hz)

8. SendProtocol [8]: transmission mode and address, where SendProtocol [0] takes the value

of 0: shared memory (the free version only supports shared memory), 1: UDP direct PNG

compression, 2: UDP direct image compression, 3: UDP JPG compression. SendProtocol

[1-4]: IP address, SendProtocol [5] port number. The IP address here refers to the

destination address of the image data sent by RflySim3D.

9. CameraFOV: Camera field of view (vision sensor only), unit degree//changeable

10. SensorPosXYZ [3]: mounting position of sensor, unit: m//changeable

11. SensorAngEular [3]: sensor installation angle, unit ° °//changeable

12. OtherParams [8]: parameter configuration reserved for different sensors, refer to

Supported sensor list and configuration method for details.

➢ Class imuDataCopter: This class encapsulates the IMU packets returned by CopterSim and

provides translation to ROS messages.

 def __init__(self, imu_name="/rflysim/imu", node=None):

global isEnableRosTrans

global is_use_ros1

self.checksum = 1234567898

self.seq = 0

self.timestmp = 0

self.acc = [0, 0, 0]

self.rate = [0, 0, 0]

if isEnableRosTrans:

self.time_record = -1

Self. IsUseTime Align = True # Whether to publish the data in the same way as the image

time.

if len(imu_name) == 0:

imu_name = "/rflysim/imu"

if is_use_ros1:

self.imu_pub = rospy.Publisher(imu_name, sensor.Imu, queue_size=1)

self.rostime = rospy.Time.now()

else:

self.rostime = node.get_clock().now()

self.imu_pub = node.create_publisher(sensor.Imu, imu_name, 1)

self.time_queue = Queue()

self.newest_time_img = -1

self.test_imu_time = 0

self.test_sum = 0

self.count = 0

self.ros_imu = sensor.Imu()

self.imu_frame_id = "imu"

self.ros_imu.header.frame_id = self.imu_frame_id

1. Check sum: data check bit.

2. Seq: indicates the sequence number of the message.

3. Times TMP: Message timestamp.

4. ACC: indicates IMU acceleration

5. Rate: represents the angular velocity of the IMU

➢ Class SensorReqCopterSim: This class encapsulates the data packets sent to the CopterSim

request sensor to request various sensor data.

def __init__(self):

self.checksum = 12345

self.sensorType = 0

self.updateFreq = 100

self.port = 9998

self.IP = [127, 0, 0, 1]

self.Params = [0, 0, 0, 0, 0, 0]

1. Check sum: check digit.

2. SensorType: sensor types 0 ~ 6 respectively represent Imu, RGB map, depth map,

grayscale map, laser point cloud in radar coordinate system, laser point cloud in world

coordinate system, and livox point cloud.

3. Update Freq: Frequency of the requested sensor data.

4. Port: The port number to receive the data.

5. IP: The IP address to receive the data.

6. Params: Reserved parameters.

➢ Class reqVeCrashData: This class is the struct sent by RflySim3D. It is the struct that will be

sent when RflySim3D enables the data return mode (using the "RflyReqVehicleData 1"

command). It mainly contains data related to collision, which will be sent to multicast IP

"224.0.0.10: 20006".

def __init__(self):

self.checksum = 1234567897

self.copterID = 0

self.vehicleType = 0

self.CrashType = 0

self.runnedTime = 0

self.VelE = [0, 0, 0]

self.PosE = [0, 0, 0]

self.CrashPos = [0, 0, 0]

self.targetPos = [0, 0, 0]

self.AngEuler = [0, 0, 0]

self.MotorRPMS = [0, 0, 0, 0, 0, 0, 0, 0]

self.ray = [0, 0, 0, 0, 0, 0]

self.CrashedName = ""

1. CopterID: indicates the data of which copter the struct is

2. VehicleType: Indicates the style of this Copter

3. CrashType: indicates the collision object type, -2 indicates the ground, -1 indicates the

scene static object, 0 indicates no collision, and above 1 indicates the ID number of the

collided aircraft

4. RunnedTime: Time stamp of the current aircraft

5. VelE: Current aircraft speed (m/s)

6. PosE: Current aircraft position (NE, in meters)

7. CrashPos: Coordinates of the impact point (NE, in meters)

8. TargetPos: coordinates of the center of the impacted object (northeast, unit: m)

9. AngEuler: Euler angle of the current aircraft (Roll, Pitch, Yaw, radians)

10. MotorRPMS: Current aircraft motor speed

11. Ray: Front, back, left, right, up and down scan lines of the aircraft

12. CrashedName: The name of the touched object

➢ Class PX4 SILIntFloat: This class encapsulates the SILInts and SILFloats data output to the

CopterSim DLL model.

 def __init__(self):

self.checksum = 0

self.CopterID = 0

self.inSILInts = [0, 0, 0, 0, 0, 0, 0, 0]

self.inSILFLoats = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

def __init__(self, iv):

self.checksum = iv[0]

self.CopterID = iv[1]

self.inSILInts = iv[2:10]

self.inSILFLoats = iv[10:30]

1. Check sum: check digit

2. CopterID: Copter ID corresponding to the message

3. InSILInts: SILInts data output to the CopterSim DLL model

4. InSILFLoats: SILFoats data output to the CopterSim DLL model

➢ Class VisionCaptureApi: This class is the main body of the whole file, and all the functions are

written in it. Here is the content related to UE.

For UE-related functions, please refer to "OneDrive \ RflySimDocs \ Advanced Version

Manuscript \ Development Version \ Chapter 3-3D Scene Modeling and Simulation \ Demo _

Resources _ 3 \ E0 \ E0 _ 4 \ Python Interface Related to RflySim3D.docx". Functions, but also

prepared a number of routines.

Begin with a brief introduction to the network of RflySim3D:

1. It mainly receives UDP data, and its main listening address is 224.0.0.10: the multicast

address of the 20009, and the unicast address of its own 20009 port.

2. It can also accept multicast address 224.0.0.11: 20008 and its own unicast port 20008,

but this multicast only accepts data from the local loopback address.

3. It can also receive 20010 ~ 20029 one of these 20 ports, because if multiple RflySim3D

programs are opened on the same computer, they will compete for unicast ports, so

according to the order of creation, they will allocate these unicast ports in turn.

4. These ports handle data in exactly the same way.

8.2. Transmitting and receiving image related interface

8.2.1. sendReqToUE4 (Send one group VisionSensorReq ）

def sendReqToUE4(self, windID=0, IP="")

一、 Explanation of parameters:

1) WindID: affects the sending target port, and -1 can be taken during normal multicast. If

the designated RflySim3D on the designated computer is required to receive, it can be

set according to the target computer IP and the window title number of the RflySim3D

program. (This serial number corresponds to the 20 ports from 20010 to 20029

mentioned above. For example, RflySim3D-0 means that it is monitoring the 20010, and

RflySim3D-3 means that it is monitoring the 20013

2) IP: IP address of the sending destination

3) Although there are no more formal parameters in the function, the function actually

refers to some member variables in the class:

4) Self. VisSensor: List of VisionSensorReqs. List of VisionSensorReqs sent by this function

5) Self.isUE4 DirectUDP: bool type, whether to use UDP to send

6) Self.mm0: The address of the shared memory (do not need to change it). When using

this function to send, it will also create a shared memory on the local machine and assign

it a value. It can only read the return information (the width and height of the image)

given by RflySim3D of the local machine, and then output a message indicating whether

the request is successful or not.

二、 Function interpretation:

That is Send a set of VisionSen sorReq , these VisionSensorReqs need to be placed in the

self. VisSensor, with the value self.isUE4DirectUDP assigned as appropriate.

8.2.2. jsonLoad (Increase vision sensor by reading configuration file)

def jsonLoad(self, ChangeMode=-1, jsonPath="")

一、 Explanation of parameters:

1) Change Mode: overrides the SendProtocol [0] transfer mode in JSON

2) Json Path: Relative to the configuration file path, the actually read directory is

"Interface File Directory"/JSON path. If the JSON path is empty, the Config. JSON

under the interface file directory will be read.

二、 Function interpretation:

According to the method, a visual sensor is added by reading a configuration file, and

after a sensor parameter is added, a user equipment (UE) can be applied for adding a

corresponding sensor through a sendReqToUE4 method. The effect is the same as

1addVisSensor, but multiple vision sensor parameters can be saved in the configuration file.

8.2.3. sendReqToCopterSim (Send U DP Data to C opterSim

Request sensor data. E.g. IMU)

def sendReqToCopterSim(self, srcs=SensorReqCopterSim(), copterID=1)

一、 Explanation of parameters:

1) Srcs: SensorReqCopterSim instance sent, refer to 3.3.5

2) CopterID: The requested CopterSim index

二、 Function interpretation:

This method requests sensor data from CopterSim by sending UDP data. Uch as

requesting Imu, RGB image data, and the like.

8.2.4. img_mem_thrd (Image of receiving RflySim3D return by reading

shared memory)

def img_mem_thrd(self, idxList)

一、 Explanation of parameters:

1) IdxList: Sensor serial number list

二、 Function interpretation:

This method The image data returned by CopterSim is received by reading the shared

memory and is parsed into a numpy format, also fills in the parsed data in the built-in variables

hasData and Img, through which the user program can access the image. At the same time,

when the global variable isEnableRosTrans is True, the image content will be published in the

form of ROS message.

8.2.5. startImgCap (Turn on the thread that grabs images in shared

memory)

def startImgCap(self, isRemoteSend=False)

一、 Explanation of parameters:

1) IsRemoteSend: If true, then Images retrieved from shared memory are forwarded to UDP

二、 Function interpretation:

Start to capture images, according to the transmission mode indicated in the self.

VisSensor list, start the receiving thread of UDP "self. IMG _ UDP _ thrdNew" "or Start the

thread to grab the image in the shared memory " self. IMG _ mem _ thrd "". The receiving

thread for this UDP will open multiple, one for each sensor.

8.2.6. sendImgUDPNew (Pass the picture returned by RflySim3D

through u dp Send to the specified ip And port number)

def sendImgUDPNew(self, idx)

一、 Explanation of parameters:

1) Idx: serial number of sensor

二、 Function interpretation:

This method sends the image returned by CopterSim to the specified IP and port number

through UDP. The setting of IP and port number refers to SendProtocol of VisionSensorReq

class. Or set it in jsonLoad's configuration file.

8.2.7. img_udp_thrdNew (Receive the image data returned by

RflySim3D)

def img_udp_thrdNew(self, udpSok, idx, typeID)

一、 Explanation of parameters:

1) UpdSok: UDP socket

2) Idx: serial number of sensor

3) TypeID: sensor type

二、 Function interpretation:

This method receives the image data returned by CopterSim through UDP and parses it

into numpy format. Fill in the parsed data in the built-in variables hasData and Img, and the

user program can access the image through these two variables. For example

for i in range(len(vis.hasData)):

if vis.hasData[i]:

cv2.imshow('Img'+str(i),vis.Img[i])

cv2.waitKey(1)

At the same time, when the global variable isEnableRosTrans is True, the image content will

be published in the form of ROS message.

8.3. IMU obtains relevant interface

8.3.1. sendImuReqCopterSim (By sending S ensorReqCopterSim

Instance to request I mu Data

def sendImuReqCopterSim(self,copterID=1,IP="", port=31000, freq=200)

一、 Explanation of parameters:

1) CopterID: The requested CopterSim index

2) IP: The IP of the data receiving end. The default is the local IP in the null time.

3) Port: The port number on which CopterSim sends data

4) Freq: The frequency at which data is requested

二、 Function interpretation:

This method requests Imu data by sending a SensorReqCopterSim instance, and then

starts a thread to monitor and process the Imu data returned by CopterSim.

8.3.2. sendImuReqClient (Send S ensorReqCopterSim Instance to

request I mu Data

def sendImuReqClient(self, copterID=1, IP="", port=31000, freq=200)

一、 Explanation of parameters:

1) CopterID: The requested CopterSim index

2) IP: The IP of the data receiving end. The default is the local IP in the null time.

3) Port: The port number on which CopterSim sends data

4) Freq: The frequency at which data is requested

二、 Function interpretation:

This method requests Imu data by sending a SensorReqCopterSim instance.

8.3.3. sendImuReqServe (Receive C in thread opterSim Back to

pass Imu Data

def sendImuReqClient(self, copterID=1, IP="", port=31000, freq=200)

一、 Explanation of parameters:

1) CopterID: CopterSim index of Imu data returned

2) Port: The port number on which CopterSim sends data

二、 Function interpretation:

This method creates a thread in which the Imu data returned by CopterSim is received

without blocking the main thread.

8.3.4. AlignTime (Guarantee I mu Maintain stable frequency

during data release (release)

def AlignTime(self, img_time):

一、 Explanation of parameters:

1) IMG _ time: Timestamp

二、 Function interpretation:

This method is used to ensure the stable frequency release in the process of Imu data

release, and is not disturbed by the unstable frequency of image release. This is done by

aligning the time before the program starts.

8.4. ROS-related interfaces

8.4.1. Imu2ros （C opterSim Back to pass imu Message to R

os Built-in I mu Message format conversion)

def Imu2ros(self, node=None)

一、 Explanation of parameters:

1) Node: ROS node

二、 Function interpretation:

This method provides conversion of IMU messages returned by CopterSim to the ROS

built-in IMU message format. When isEnableRosTrans is True, this method converts the IMU

message received from CopterSim into a ROS message, and publishes it to the topic named

IMU _ name through the IMU _ pub, which is convenient for docking with mature modules in

ROS.

8.4.2. getIMUDataLoop (Will be Imu Data conversion to ROS I

mu And send it to the specified topic)

def getIMUDataLoop(self)

一、 Explanation of parameters:

二、 Function interpretation:

This method is used to process the received Imu data. If isEnableRosTrans is True, it will

also convert the Imu data to the Imu message in ROS and send it to the specified topic.

8.4.3. img_mem_thrd (When the global variable isEnableRosTrans is

True, the image content will be published in the form of ROS

message.)

def img_mem_thrd(self, idxList)

一、 Explanation of parameters:

1) IdxList: Sensor serial number list

二、 Function interpretation:

This method receives the image data returned by CopterSim by reading the shared

memory and parses it into numpy format, and fills the parsed data in the built-in variables

hasData and Img. The user program can access the image through these two variables.

Method is consistent with 3.3.8.23. At the same time, when the global variable

isEnableRosTrans is True, the image content will be published in the form of ROS message.

8.4.4. img_udp_thrdNew (Global variable I sEnableRosTrans T

rue Is used, the R os Publish the picture content in the form

of a message)

def img_udp_thrdNew(self, udpSok, idx, typeID)

一、 Explanation of parameters:

1) UpdSok: UDP socket

2) Idx: serial number of sensor

3) TypeID: sensor type

二、 Function interpretation:

This method receives the image data returned by CopterSim through UDP and parses it

into numpy format. Fill in the parsed data in the built-in variables hasData and Img, and the

user program can access the image through these two variables. For example

for i in range(len(vis.hasData)):

if vis.hasData[i]:

cv2.imshow('Img'+str(i),vis.Img[i])

cv2.waitKey(1)

At the same time, when the global variable isEnableRosTrans is True, the image content will

be published in the form of ROS message.

8.5. Other intrinsic functions

8.5.1. sendImgBuffer (Encapsulate the data to be sent into one or

more messages according to the fixed size, and send the message

through u. dp Send to Specified I p And port number)

def sendImgBuffer(self, idx, data)

一、 Explanation of parameters:

1) Idx: serial number of sensor

2) Data: data to be sent

二、 Function interpretation:

This method Ncapsulate that data to be sent into one or more messages accord to a fixed

size, and sending the messages to a specified IP and port number through UDP .

8.5.2. initUE4MsgRec (Start a t 4(self.UE4MsgRecLoop) Start

listening 2 24.0.0.10：20006）

def initUE4MsgRec(self)

一、 Explanation of parameters:

二、 Function interpretation:

Initialize the self. UDP _ socket UE4 Start a thread T4 (self.UE4MsgRecLoop) to start

listening to 224.0.0.10: 20006. and its own 20006 port.

8.5.3. endUE4MsgRec (Stop thread t 4(self.UE4MsgRecLoop)

Monitoring of)

def endUE4MsgRec(self)

一、 Explanation of parameters:

二、 Function interpretation:

Stop listening for thread T4 (self.UE4MsgRecLoop).

8.5.4. UE4MsgRecLoop (For processing R fly Sim3D Or C

opterSim Message returned)

def UE4MsgRecLoop(self)

一、 Explanation of parameters:

二、 Function interpretation:

It monitors 224.0.0.10: 20006 and its own 20006 port. It is used to process messages

returned by RflySim3D or CopterSim. There are three types of messages:

1) CopterSimCrash with length of 12 bytes:

struct CopterSimCrash {

int checksum;

int CopterID;

int TargetID;

}

For the collision data returned by RflySim3D, RflySim3D will start the collision detection mode

when the P key is pressed in RflySim3D. If a collision occurs, the data will be returned. The P +

number can select the sending mode (0 local sending, 1 LAN sending, 2 LAN sending only in case

of collision). The default is local sending.

2) PX4SILIntFloat of length 120 bytes:

struct PX4SILIntFloat{

int checksum;//1234567897

int CopterID;

int inSILInts[8];

float inSILFLoats[20];

};

3) ReqVeCrashData of length 160 bytes:

struct reqVeCrashData {

int checksum; //Packet check code 1234567897.

int copterID; //ID number of the current aircraft

int vehicleType; //The style of the current aircraft

Int CrashType;//Collision object type, -2 indicates ground, -1 indicates scene static

object, 0 indicates no collision, and above 1 indicates ID number of the collided aircraft

double runnedTime; //Timestamp of the current aircraft

float VelE[3]; //Speed of the current aircraft

float PosE[3]; //Current aircraft position

Float CrashPos [3];//Coordinates of the collision point

Float targetPos [3];//the center coordinate of the touched object

float AngEuler[3]; //Euler angle of the current aircraft

float MotorRPMS[8]; //Current aircraft motor speed

float ray[6]; //front, back, left, right, up and down scan lines of the aircraft

Char CrashedName [20] = { 0 };//Name of the touched object

}

This class has been introduced before. When data return is enabled, RflySim3D will send

reqVeCrashData for all Copters (send when data changes, once per second).

8.5.5. getUE4Pos (Obtain Co pter At Rf lySim3D Position in the)

def getUE4Pos(self, CopterID=1)

一、 Explanation of parameters:

1) CopterID: Indicates which copter's location data is obtained.

二、 Function interpretation:

This function gets the position of the Copter in RflySim3D.

8.5.6. getUE4Data (Obtain C opter In R flySim3D Data in)

def getUE4Data(self, CopterID=1)

一、 Explanation of parameters:

1) CopterID: Indicates which copter's data is obtained.

二、 Function interpretation:

This function can obtain the data of Copter in RflySim3D, which is also the

reqVeCrashData structure.

8.5.7. TimeStmploop (Receive C opterSim The returned heartbeat

and timestamp data ensures that the terminal and C. opterSim

The connection of is normal)

def TimeStmploop(self)

一、 Explanation of parameters:

二、 Function interpretation:

The method is used for receiving the heartbeat and timestamp data returned by the

CopterSim to ensure that the connection between the terminal and the CopterSim is normal.

And the assignment operation of each system for time alignment

8.5.8. StartTimeStmplisten (Receive C in child thread opterSim

Heartbeat and timestamp data returned to ensure C opterSim

The connection is normal

def StartTimeStmplisten(self, cpID=1)

一、 Explanation of parameters:

1) CpID: CopterSim index

二、 Function interpretation:

The method binds a 20005 port of a local machine, receives heartbeat and timestamp

data returned by the CopterSim in a child thread, ensures that a terminal is normally

connected with the CopterSim, and does not block a main thread. Where cpID denotes the ID

of CopterSim.

8.5.9. sendUE4Attatch (Other C opter Attach to other C opter

Plus, "append" means to follow the move)

def sendUE4Attatch(self, CopterIDs, AttatchIDs, AttatchTypes, windowID=-1)

一、 Explanation of parameters:

1) CopterIDs: The ID of a Copter attached to another Copter, either a value or a list of up to

25 values

2) AttatchIDs: The ID of a Copter that is attached to another Copter, either a value or a list

of up to 25 values

3) AttatchTypes: The value of each group of attachment methods is [0, 3], where 0 indicates

normal mode (no attachment), 1 indicates that only the position is attached and the

attitude is not modified, 2 indicates that the position and yaw angle are attached, and 3

indicates that both the position and attitude are attached.

4) WindowsID: affects the sending target port, which can be taken as -1 during normal

multicast. If the designated RflySim3D on the designated computer is required to receive,

it can be set according to the target computer IP and the window title number of the

RflySim3D program. (This serial number corresponds to the 20 ports from 20010 to

20029 mentioned above. For example, RflySim3D-0 means that it is monitoring the

20010, and RflySim3D-3 means that it is monitoring the 20013.)

5) The number of CopterIDs, AttatchIDs, and AttatchTypes must be consistent. They mean

"attach CopterIDs [I] to AttatchIDs [I] in the manner of AttatchTypes [I], up to 25 groups."

二、 Function interpretation:

This function sends a structure like this to RflySim3D, with three parameters

corresponding to three members in the structure:

struct VehicleAttatch25 {

int checksum;//1234567892

int CopterIDs[25];

int AttatchIDs[25];

int AttatchTypes [25];//0: normal mode, 1: relative position not relative attitude, 2:

relative position + yaw (not relative pitch and roll), 3: relative position + full attitude

(pitch roll yaw)

 # }

It can attach up to 25 copters at a time to other copters. "Attaching" means that it will

follow the movement. If A is attached to B, then when B moves, A will move with it. The

document mentioned at the beginning has already written a routine to test its effect.

8.5.10. sendUE4PosScalePwm20 (Set the status attributes of 20 groups

of UAVs and set the motor data)

def sendUE4PosScalePwm20(self,copterID,vehicleType,PosE,AngEuler ,Scale,PWMs,isFitGround=

False,windowID=-1)

一、 Explanation of parameters:

1) CopterID: ID of the set copter, which must be a list with a length of 20

2) VehicleType: The style of the Copter set (determined in the XML), which must be a list of

length 20

3) PosE: indicates the set position of the Copter (m, NE), which must be a list of length 60

(each Copter needs three values XYZ to indicate the position)

4) AngEuler: Represents the Euler angles (radians, roll, pitch, yaw) set for this Copter, which

must be a list of length 60 (each Copter requires three values XYZ to represent the pose)

5) Scale: indicates the set scaling factor of the Copter, which is (1, 1, 1) by default. The

Copter can be zoomed in or out along each axis. (Dimensionless, representing the X, y, Z

axes of the UAV's local coordinates, respectively), which must be a list of length 60 (each

Copter requires three values XYZ to represent scaling)

6) PWMs: represent 8-bit actuator data. , which must be a list of length 160 (each Copter

requires 8 values of motor data)

7) IsFitGround: Indicates whether the UAV is close to the ground. It must be a list of length

20

8) WindowID: affects the sending target port, which can be taken as -1 during normal

multicast. If the designated RflySim3D on the designated computer is required to receive,

it can be set according to the target computer IP and the window title number of the

RflySim3D program. (This serial number corresponds to the 20 ports from 20010 to

20029 mentioned above. For example, RflySim3D-0 means that it is monitoring the

20010, and RflySim3D-3 means that it is monitoring the 20013

二、 Function interpretation:

Send the data of 100 copters. RflySim3D will update the Copter after receiving it. Each

set of data in the list constitutes the data of a UAV. There are 20 Group in total. It can set 8

motor data for each Copter.

8.5.11. sendUE4Pos (To all in the LAN R f lySim3D Send a C

opter If it does not exist, one will be created)

def sendUE4Pos(self,copterID=1,vehicleType=3,MotorRPMSMean=0,PosE=[0, 0, 0],AngEuler=

[0, 0, 0],windowID=-1)

一、 Explanation of parameters:

1) CopterID: ID of the set Copter

2) VehicleType: The style of the Copter set (determined in the XML)

3) MotorRPMSMean: Indicates the average value of the 8-bit actuator data (the same

value for 8 actuators)

4) PosE: indicates the set position of the Copter (m, NE)

5) AngEuler: Represents the Euler angles (radians, roll, pitch, yaw) set for this Copter

6) WindowID: affects the sending target port, which can be taken as -1 during normal

multicast. If the designated RflySim3D on the designated computer is required to

receive, it can be set according to the target computer IP and the window title

number of the RflySim3D program. (This serial number corresponds to the 20 ports

from 20010 to 20029 mentioned above. For example, RflySim3D-0 means that it is

monitoring the 20010, and RflySim3D-3 means that it is monitoring the 20013.)

二、 Function interpretation:

Send the data of a Copter to all RflySim3D in the LAN. If there is no object with the Copter

ID, one will be created. Where vehicleType denotes the style of the Copter, PosE denotes the

position of the Copter (m, NE), AngEuler denotes the Euler angles of the Copters (radians, roll,

pitch, yaw), MotorRPMSMean represents the average of the 8-bit actuator data (the same

value for 8 actuators).

8.5.12. sendUE4PosScale100 (Set 100 groups of UAV status attributes)

def sendUE4PosScale100(self,copterID,vehicleType,PosE,AngEuler,MotorRPMSMean,Scale,

isFitGround=False,windowID=-1)

一、 Explanation of parameters:

1) CopterID: ID of the set copter, which must be a list with a length of 100

2) VehicleType: The style of the Copter set (determined in the XML), which must be a list of

length 100

3) PosE: indicates the set position of the Copter (m, NE), which must be a list of length 300

(each Copter needs three values XYZ to indicate the position)

4) AngEuler: Represents the Euler angles (radians, roll, pitch, yaw) set for this Copter, which

must be a list of length 300 (each Copter requires three values XYZ to represent the angle)

5) MotorRPMSMean: Indicates the average value of 8-bit actuator data (the value of 8

actuators is the same). It must be a list of length 100.

6) Scale: indicates the set scaling factor of the Copter, which is (1, 1, 1) by default. The

Copter can be zoomed in or out along each axis. (Dimensionless, representing the X, y, Z

axes of the UAV's local coordinates, respectively), which must be a list of length 300 (each

Copter requires three values XYZ to represent scaling)

7) IsFitGround: Indicates whether the UAV is close to the ground. It must be a list of length

100

8) WindowID: affects the sending target port, which can be taken as -1 during normal

multicast. If the designated RflySim3D on the designated computer is required to receive,

it can be set according to the target computer IP and the window title number of the

RflySim3D program. (This serial number corresponds to the 20 ports from 20010 to

20029 mentioned above. For example, RflySim3D-0 means that it is monitoring the

20010, and RflySim3D-3 means that it is monitoring the 20013

二、 Function interpretation:

Send the data of 100 copters. RflySim3D will update the Copter after receiving it. Each

group of data in the list constitutes the data of a UAV. There are 100 groups in total.

8.5.13. sendUE4PosScale (Send a C opter The data for, R

flySim3D Update the Co upon receipt pter , with a scaling

factor)

def sendUE4PosScale(self,copterID=1,vehicleType=3,MotorRPMSMean=0,PosE=[0, 0, 0],AngEuler=

[0, 0, 0],Scale=[1, 1, 1],windowID=-1)

一、 Explanation of parameters:

1) CopterID: ID of the set Copter

2) VehicleType: The style of the Copter set (determined in the XML)

3) MotorRPMSMean: Indicates the average value of the 8-bit actuator data (the same value

for 8 actuators)

4) PosE: indicates the set position of the Copter (m, NE)

5) AngEuler: Represents the Euler angles (radians, roll, pitch, yaw) set for this Copter

6) Scale: indicates the set scaling factor of the Copter, which is (1, 1, 1) by default. The

Copter can be zoomed in or out along each axis. (Dimensionless, representing the local

X, y, Z axes of the UAV, respectively)

7) WindowID: affects the sending target port, which can be taken as -1 during normal

multicast. If the designated RflySim3D on the designated computer is required to receive,

it can be set according to the target computer IP and the window title number of the

RflySim3D program. (This serial number corresponds to the 20 ports from 20010 to

20029 mentioned above. For example, RflySim3D-0 means that it is monitoring the

20010, and RflySim3D-3 means that it is monitoring the 20013

二、 Function interpretation:

Send the data of a Copter, and RflySim3D will update the Copter after receiving it, but

with a parameter of scaling factor.

8.5.14. sendUE4Pos2Ground (Send a C opter The data for, R

flySim3D The Co will be updated upon receipt pter , but it can

make C opter Close to the ground)

def sendUE4Pos2Ground(self,copterID=1,vehicleType=3,MotorRPMSMean=0,PosE=[0,0, 0],

AngEuler=[0, 0, 0],windowID=-1)

一、 Explanation of parameters:

1) CopterID: ID of the set Copter

2) VehicleType: The style of the Copter set (determined in the XML)

3) MotorRPMSMean: Indicates the average value of the 8-bit actuator data (the same

value for 8 actuators)

4) PosE: indicates the set position of the Copter (m, NE)

5) AngEuler: Represents the Euler angles (radians, roll, pitch, yaw) set for this Copter

6) WindowID: affects the sending target port, which can be taken as -1 during normal

multicast. If the designated RflySim3D on the designated computer is required to

receive, it can be set according to the target computer IP and the window title

number of the RflySim3D program. (This serial number corresponds to the 20 ports

from 20010 to 20029 mentioned above. For example, RflySim3D-0 means that it is

monitoring the 20010, and RflySim3D-3 means that it is monitoring the 20013.)

二、 Function interpretation:

Send the data of a Copter to all RflySim3D in the LAN. If there is no object with the Copter

ID, one will be created. Where vehicleType denotes the style of the Copter, PosE denotes the

position of the Copter (m, NE), AngEuler denotes the Euler angles of the Copters (radians, roll,

pitch, yaw), MotorRPMSMean represents the average of the 8-bit actuator data (the same

value for 8 actuators). The main difference with other functions that send Copter data is that

the Z coordinate (i.e. PosE [2]) will not work and will keep the Copter close to the ground until

there is new Copter data.

8.5.15. sendUE4PosScale2Ground (Send a C opter , update the Co

pter , with a zoom factor, and set the aircraft to ground contact)

def sendUE4PosScale2Ground(self,copterID=1,vehicleType=3,MotorRPMSMean=0,PosE=[0,0,0],

AngEuler=[0, 0, 0],Scale=[1, 1, 1],windowID=-1)

一、 Explanation of parameters:

1) CopterID: ID of the set Copter

2) VehicleType: The style of the Copter set (determined in the XML)

3) MotorRPMSMean: Indicates the average value of the 8-bit actuator data (the same value

for 8 actuators)

4) PosE: indicates the set position of the Copter (m, NE)

5) AngEuler: Represents the Euler angles (radians, roll, pitch, yaw) set for this Copter

6) Scale: indicates the set scaling factor of the Copter, which is (1, 1, 1) by default. The

Copter can be zoomed in or out along each axis. (Dimensionless, representing the local

X, y, Z axes of the UAV, respectively)

7) WindowID: affects the sending target port, which can be taken as -1 during normal

multicast. If the designated RflySim3D on the designated computer is required to receive,

it can be set according to the target computer IP and the window title number of the

RflySim3D program. (This serial number corresponds to the 20 ports from 20010 to

20029 mentioned above. For example, RflySim3D-0 means that it is monitoring the

20010, and RflySim3D-3 means that it is monitoring the 20013

二、 Function interpretation:

Send the data of a Copter, and RflySim3D will update the Copter after receiving it, but

with a parameter of scaling factor, and the aircraft is set to be close to the ground.

8.5.16. sendUE4PosNew (Send the data of a Copter, and RflySim3D

will update the Copter after receiving it)

def sendUE4PosNew(self,copterID=1,vehicleType=3,PosE=[0,0,0],AngEuler=[0,0,0],

VelE=[0,0,0],PWMs=[0]*8,runnedTime=-1,windowID=-1)

一、 Explanation of parameters:

1) CopterID: ID of the set Copter

2) VehicleType: The style of the Copter set (determined in the XML)

3) PosE: indicates the set position of the Copter (m, NE)

4) AngEuler: Represents the Euler angles (radians, roll, pitch, yaw) set for this Copter

5) VelE: represents the speed of the UAV (m/s, NE)

6) PWMs: represent 8-bit actuator data

7) RunnedTime: indicates the time stamp of the UAV (no actual effect at present)

8) WindowID: affects the sending target port, which can be taken as -1 during normal

multicast. If the designated RflySim3D on the designated computer is required to receive,

it can be set according to the target computer IP and the window title number of the

RflySim3D program. (This serial number corresponds to the 20 ports from 20010 to

20029 mentioned above. For example, RflySim3D-0 means that it is monitoring the

20010, and RflySim3D-3 means that it is monitoring the 20013

二、 Function interpretation:

Send the data of a Copter, and RflySim3D will update the Copter after receiving it, but

the parameters are different.

8.5.17. sendUE4PosSimple (Send the data of a Copter, and RflySim3D

will update the Copter after receiving it)

def sendUE4PosSimple(self,copterID,vehicleType,PWMs,VelE,PosE,AngEuler,runnedTime=-1,

windowID=-1)

一、 Explanation of parameters:

1) CopterID: ID of the set Copter

2) VehicleType: The style of the Copter set (determined in the XML)

3) PWMs: represent 8-bit actuator data

4) VelE: represents the speed of the UAV (m/s, NE)

5) PosE: indicates the set position of the Copter (m, NE)

6) AngEuler: Represents the Euler angles (radians, roll, pitch, yaw) set for this Copter

7) RunnedTime: indicates the time stamp of the UAV (no actual effect at present)

8) WindowID: affects the sending target port, which can be taken as -1 during normal

multicast. If the designated RflySim3D on the designated computer is required to receive,

it can be set according to the target computer IP and the window title number of the

RflySim3D program. (This serial number corresponds to the 20 ports from 20010 to

20029 mentioned above. For example, RflySim3D-0 means that it is monitoring the

20010, and RflySim3D-3 means that it is monitoring the 20013

二、 Function interpretation:

 Send the data of a Copter, and RflySim3D will update the Copter after receiving it, but

the parameters are different.

8.5.18. sendUE4PosFull (Send a C opter The data for, R flySim3D

The Co will be updated upon receipt pter ）

def sendUE4PosFull(self, copterID, vehicleType, MotorRPMS, VelE, PosE, RateB, AngEuler,

windowID=-1)

一、 Explanation of parameters:

1) CopterID: ID of the set Copter

2) VehicleType: The style of the Copter set (determined in the XML)

3) MotorRPMS: represents 8-bit actuator data

4) VelE: represents the speed of the UAV (m/s, NE)

5) PosE: indicates the set position of the Copter (m, NE)

6) RateB: represents the angular velocity of the drone in radians per second

7) AngEuler: Represents the Euler angles (radians, roll, pitch, yaw) set for this Copter

8) WindowID: affects the sending target port, which can be taken as -1 during normal

multicast. If the designated RflySim3D on the designated computer is required to receive,

it can be set according to the target computer IP and the window title number of the

RflySim3D program. (This serial number corresponds to the 20 ports from 20010 to

20029 mentioned above. For example, RflySim3D-0 means that it is monitoring the

20010, and RflySim3D-3 means that it is monitoring the 20013

二、 Function interpretation:

 Send the data of a Copter, and RflySim3D will update the Copter after receiving it Just a

few more parameters to set.

8.5.19. sendUE4ExtAct (To target C opter Send a set of data to be

processed by the user-defined function of the target to achieve

various user-defined effects)

def sendUE4ExtAct(self,copterID=1,ActExt=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0],windowID=-1)

一、 Explanation of parameters:

1) CopterID: ID of the set Copter

2) ActExt: a 16-dimensional blueprint interface parameter whose value is related to the

target UAV's blueprint (the target UAV must have implemented the relevant blueprint

function).

3) WindowID: affects the sending target port, which can be taken as -1 during normal

multicast. If the designated RflySim3D on the designated computer is required to receive,

it can be set according to the target computer IP and the window title number of the

RflySim3D program. (This serial number corresponds to the 20 ports from 20010 to

20029 mentioned above. For example, RflySim3D-0 means that it is monitoring the

20010, and RflySim3D-3 means that it is monitoring the 20013

二、 Function interpretation:

A set of data is sent to the target Copter and processed by the target's user-defined

function to achieve various user-defined effects.

9. Python Aircraft Control Interface PX4MavCtrlV4.py

The following shows a piece of code that connects to CopeterSim through the PX4MavCtrlV4.py

interface and then controls the aircraft to take off.

import PX4MavCtrlV4 as PX4MavCtrl

mav = PX4MavCtrl.PX4MavCtrler(20100, '255.255.255.255')

time.sleep(2)

mav.InitMavLopp()

time.sleep(2)

mav. initOffboard()

time.sleep(2)

mav.SendMavArm(True)

mav.SendPosNED(0, 0, -1, 0)

9.1. Initialize

9.1.1. InitMavLoop (Enable MAVLink to monitor CopterSim data and

update it in real time)

def InitMavLoop(self,UDPMode=2)

一、 Explanation of parameters:

1) UDPMode: UDP Mode

二、 Function interpretation:

Enable MAVLink to monitor CopterSim data and update it in real time. Where the UDP Model value

is:

0: Corresponding to UDP _ Full mode, Python transmits complete UDP data to CopterSim, and the

amount of transmitted data is small; after receiving the data, CopterSim converts it into Mavlink

and transmits it to PX4 flight control; it is suitable for simulation of small and medium-sized clusters

(the number is less than 10).

1: Corresponding to UDP _ Simple mode, the packet size and sending frequency are smaller than

UDP _ Full mode; suitable for large-scale cluster simulation, the number of UAVs is less than 100.

2. Corresponding to the Mavlink _ Full mode (default mode), Python directly sends MAVLink

message to CopterSim, and then forwards it to PX4. The large amount of data is suitable for single

machine control; it is suitable for single machine or a small number of aircraft simulation, and the

number of UAVs is less than 4;

3. Corresponding to the Mavlink _ Simple mode, part of MAVLink message packets will be shielded,

and the data frequency will be reduced. The amount of data sent is much smaller than that in the

MAVLink _ Full, which is suitable for multi-aircraft cluster control; it is suitable for small-scale

cluster simulation, and the number of UAVs is less than 8.

4: Corresponding to the Mavlink _ NoSend mode, CopterSim will not send MAVLink data to the

outside. This mode needs to cooperate with hardware-in-the-loop simulation + data transmission

serial communication. MAVLink is transmitted by wired mode. The data volume in the LAN of this

mode is the smallest. It is suitable for distributed vision hardware-in-the-loop simulation. The

number of UAVs is not limited.

9.1.2. endMavLoop (Stop receiving CopterSim data, consistent with

stopRun)

def endMavLoop(self)

一、 Explanation of parameters:

二、 Function interpretation:

Stop receiving CopterSim data, consistent with stopRun.

9.1.3. stopRun (Quit MAVLink Data reception mode)

def stopRun(self)

一、 Explanation of parameters:

二、 Function interpretation:

Exit the MAVLink data receiving mode. The effect is the same as that of endMavLoop.

9.2. The offboard exits at the end

9.2.1. initOffboard (On offboard Mode, and start the thread to

send o in a loop ffboard News

def initOffboard(self)

一、 Explanation of parameters:

二、 Function interpretation:

Turn on the offboard mode, start the thread, and send the offboard message in a loop.

9.2.2. initOffboard2 (On offboard Mode, and start the thread to

send o in a loop ffboard News

def initOffboard2(self)

一、 Explanation of parameters:

二、 Function interpretation:

Turn on the offboard mode, start the thread, and send the offboard message in a loop.

9.2.3. OffboardSendMode (Send offboard data cyclically)

def OffboardSendMode(self)

一、 Explanation of parameters:

二、 Function interpretation:

Send offboard data in a loop.

9.2.4. endOffboard (Send MAV _ CMD _ NAV _ GUIDED _ ENABLE

command to exit offboard mode and stop sending offboard

messages)

def endOffboard(self)

一、 Explanation of parameters:

二、 Function interpretation:

Send the MAV _ CMD _ NAV _ GUIDED _ ENABLE command to exit offboard mode and

stop sending offboard messages.

9.3. Unlock

9.3.1. SendMavArm (Unlock or lock the UAV)

def endOffboard(self)

一、 Explanation of parameters:

1) IsArm: 0: locked; 1: unlocked

二、 Function interpretation:

Send the MAV _ CMD _ COMPONENT _ ARM _ DISARM command to unlock or lock.

9.4. Aircraft Pointing Flight Interface

9.4.1. SendPosNED (Send the target position and heading angle

interface in the northeast earth coordinate system)

def SendPosNED(self,x=0,y=0,z=0,yaw=0)

一、 Explanation of parameters:

1) X: X coordinate (m)

2) Y: y coordinate (m)

3) Z: Z coordinate (m), when the aircraft is above the ground, Z is less than 0

4) Yaw: course angle (radian)

二、 Function interpretation:

 Sending the target position and course angle in the northeast earth coordinate system

To PX4.

9.4.2. SendPosNEDNoYaw (Sending the target position in the North-

East coordinate system)

def SendPosNEDNoYaw(self,x=0,y=0,z=0)

一、 Explanation of parameters:

1) X: X coordinate (m)

2) Y: y coordinate (m)

3) Z: Z coordinate (m), when the aircraft is above the ground, Z is less than 0

二、 Function interpretation:

Send the target position in the NE coordinate system to PX4.

9.4.3. SendPosNEDExt (Select Northeasterly or lower right forebody

coordinate system to send target position to PX4)

def SendPosNEDExt(self,x=0,y=0,z=0,mode=3,isNED=True)

一、 Explanation of parameters:

1) X: X coordinate (m)

2) Y: y coordinate (m)

3) Z: z-coordinate (m)

4) Mode: mode flag bit

5) IsNED: when True, the coordinate system is northeast, and when False, it is the

lower right front coordinate system of the airframe.

二、 Function interpretation:

Send the target position to PX4.

9.4.4. SendPosGlobal (Earth coordinate system (latitude, longitude,

altitude) with yaw pointing flight interface)

def SendPosGlobal(self,lat=0,lon=0,alt=0,yawValue=0,yawType=0)

一、 Explanation of parameters:

1) Lat: Longitude

2) Lon: Latitude

3) Alt: Height

4) YawValue: course angle or course angular velocity

5) YawType: flag bit (0: no course angle and course angular velocity; 1: course angle

control; 2: course angular velocity control)

二、 Function interpretation:

Send the target position and heading in the northeast earth coordinate system to PX4.

9.4.5. sendMavLand (Send Three-dimensional coordinates 、

MAV_CMD_NAV_LAND Command the aircraft to land at the

target position)

def sendMavLand(self,xM,yM,zM)

一、 Explanation of parameters:

1) XM: X coordinate (m)

2) YM: y coordinate (m)

3) ZM: z-coordinate (m)

二、 Function interpretation:

Send the MAV _ CMD _ NAV _ LAND command to land the aircraft at the target position.

9.4.6. sendMavTakeOffLocal (Send 3D coordinates, course angle, pitch

angle, take-off speed MAV_CMD_NAV_TAKEOFF_LOCAL

Command the aircraft to fly to the target position)

def sendMavTakeOffLocal(self,xM=0,yM=0,zM=0,YawRad=0,PitchRad=0,AscendRate=2)

一、 Explanation of parameters:

1) XM: X coordinate (m)

2) YM: y coordinate (m)

3) ZM: z-coordinate (m)

4) YawRad: Heading angle (radians)

5) PitchRad: Pitch angle (radians)

6) AscendRate： Takeoff speed

二、 Function interpretation:

Send the MAV _ CMD _ NAV _ TAKEOFF _ LOCAL command to fly the aircraft to the target

position.

9.4.7. sendMavTakeOff (Send 3D coordinates, course angle, pitch

angle, MAV_CMD_NAV_TAKEOFF Command the aircraft to

take off to the target position)

def sendMavTakeOff(self,xM=0,yM=0,zM=0,YawRad=0,PitchRad=0)

一、 Explanation of parameters:

1) XM: X coordinate (m, NE)

2) YM: y coordinate (m, NE)

3) ZM: Z coordinate (m, NE)

4) YawRad: Heading angle (radians)

5) PitchRad: Pitch Angle (radians)

二、 Function interpretation:

Send the MAV _ CMD _ NAV _ TAKEOFF command to take off the aircraft to the target

position.

9.4.8. F RD Pointing flight interface in coordinate system

9.4.8.1.SendPosFRD (target position and heading angle in airframe

coordinate system (lower right front))

def SendPosFRD(self,x=0,y=0,z=0,yaw=0)

一、 Explanation of parameters:

1) X: X coordinate (m)

2) Y: y coordinate (m)

3) Z: z-coordinate (m)

4) Yaw: course angle (radian)

二、 Function interpretation:

Send Target position and heading angle in airframe coordinate system (lower right front)

to PX4.

9.4.8.2.SendPosFRDNoYaw (target position in airframe coordinate system

(lower right front) to PX4)

def SendPosFRDNoYaw(self,x=0,y=0,z=0)

一、 Explanation of parameters:

1) X: X coordinate (m)

2) Y: y coordinate (m)

3) Z: z-coordinate (m)

二、 Function interpretation:

Send Target position in airframe coordinate system (lower right front) to PX4 .

9.4.8.3.SendPosNEDExt (select the North-East or the lower right front

coordinate system to send the target position to PX4)

def SendPosNEDExt(self,x=0,y=0,z=0,mode=3,isNED=True)

一、 Explanation of parameters:

1) X: X coordinate (m)

2) Y: y coordinate (m)

3) Z: z-coordinate (m)

4) Mode: mode flag bit

5) IsNED: when True, the coordinate system is northeast, and when False, it is the

lower right front coordinate system of the airframe.

二、 Function interpretation:

Send the target position to PX4.

9.4.9. F RD Pointing flight interface without yaw angle in coordinate

system

9.4.9.1.SendPosFRDNoYaw (target position in airframe coordinate system

(lower right front) to PX4)

def SendPosFRDNoYaw(self,x=0,y=0,z=0)

一、 Explanation of parameters:

1) X: X coordinate (m)

2) Y: y coordinate (m)

3) Z: z-coordinate (m)

二、 Function interpretation:

Send the target position in the airframe coordinate system (lower right front) to PX4.

9.4.9.2. SendPosNEDExt (Select Northeasterly or lower right forebody

coordinate system to send target position to PX4)

def SendPosNEDExt(self,x=0,y=0,z=0,mode=3, isNED=True)

一、 Explanation of parameters:

1) X: X coordinate (m)

2) Y: y coordinate (m)

3) Z: z-coordinate (m)

4) Mode: mode flag bit

5) IsNED: when True, the coordinate system is northeast, and when False, it is the

lower right front coordinate system of the airframe.

二、 Function interpretation:

Send the target position to PX4.

9.5. Aircraft Speed Control Interface

9.5.1. F RD Speed control interface in coordinate system

9.5.1.1.SendVelFRD (target velocity and course angular velocity in airframe

coordinate system (lower right front))

def SendVelFRD(self,vx=0,vy=0,vz=0,yawrate=0)

一、 Explanation of parameters:

1) VX: X direction velocity (m/s, front lower right)

2) Vy: velocity in y direction (m/s, lower right front)

3) VZ: velocity in Z direction (m/s, lower right front), VZ is less than 0 when flying

upward

4) Yawrate: course angular velocity (radians/second)

二、 Function interpretation:

Send the target speed and course angular velocity in the airframe coordinate system

(lower right front).

9.5.1.2.SendVelNoYaw (airframe target velocity)

def SendVelNoYaw(self,vx,vy,vz)

一、 Explanation of parameters:

1) VX: velocity in X direction (m/s)

2) Vy: velocity in y direction (m/s)

3) VZ: velocity in Z direction (m/s), when flying upward, VZ is less than 0

二、 Function interpretation:

Send Body coordinate system the target speed under (lower right front) to PX4.

9.5.2. Speed control interface for uncontrolled aircraft yaw

9.5.2.1.SendVelNEDNoYaw (speed control in North East coordinate system)

def SendVelNEDNoYaw(self,vx,vy,vz)

一、 Explanation of parameters:

1) VX: velocity in X direction (m/s, NE)

2) Vy: velocity in y direction (m/s, NE)

3) VZ: velocity in Z direction (m/s, NE), VZ is less than 0 when flying upward

二、 Function interpretation:

Send the speed control in the northeast coordinate system.

9.5.2.2.Send Ground Speed (send a command to modify the GND _ SPEED

_ TRIM and set the ground speed of the aircraft)

def SendGroundSpeed(self,Speed=0)

一、 Explanation of parameters:

1) Speed: Ground speed (m/s)

二、 Function interpretation:

Send commands to modify the GND _ SPEED _ TRIM and set the ground speed of the

aircraft.

9.5.2.3.SendCopterSpeed (send a command to modify the MPC _ XY _ VEL

_ MAX and set the maximum speed of the aircraft)

def SendCopterSpeed(self,Speed=0)

一、 Explanation of parameters:

1) Speed: Maximum speed (m/s)

二、 Function interpretation:

Send commands to modify the MPC _ XY _ VEL _ MAX and set the maximum speed of

the aircraft.

9.5.2.4.SendCruiseSpeed (send a command to modify the FW _ AIRSPD _

TRIM parameters and set the cruising speed of the aircraft)

def SendCruiseSpeed(self,Speed=0)

一、 Explanation of parameters:

1) Speed: cruising speed (m/s)

二、 Function interpretation:

Send commands to modify the FW _ AIRSPD _ TRIM parameters and set the cruising

speed of the aircraft.

9.5.3. With yaw rate and altitude control interface

9.5.3.1. SendVelYawAlt (Target speed, course angle and altitude to PX4 in

northeast coordinate system)

def SendVelYawAlt(self,vel=10,yaw=6.28,alt=-100)

一、 Explanation of parameters:

1) Vel: Speed

2) Yaw: course angle

3) Alt: Height

二、 Function interpretation:

Send the target speed, course angle and altitude in the northeast coordinate system to

PX4.

9.5.3.2.SendPosGlobal (course angular velocity and altitude control in

northeast earth coordinate system)

def SendPosGlobal(self,lat=0,lon=0,alt=0,yawValue=0,yawType=0)

一、 Explanation of parameters:

1) Lat: Longitude

2) Lon: Latitude

3) Alt: Height

4) YawValue: course angle or course angular velocity

5) YawType: flag bit (0: no course angle and course angular velocity; 1: course angle

control; 2: course angular velocity control)

二、 Function interpretation:

Send the target position and heading in the northeast earth coordinate system to PX4.

9.5.3.3.SendMavLandGPS (sends a Longitude, latitude, altitude, MAV _ CMD

_ NAV _ LAND command to land the aircraft to the target position)

def sendMavLandGPS(self,lat,lon,alt)

一、 Explanation of parameters:

1) Lat: Longitude

2) Lon: Latitude

3) Alt: Height

二、 Function interpretation:

Send the MAV _ CMD _ NAV _ LAND command to land the aircraft at the target position.

9.5.3.4.SendMavTakeOffGPS (send commands of longitude, latitude, altitude,

heading angle, pitch angle and MAV _ CMD _ NAV _ TAKEOFF to fly

the aircraft to the target position)

def sendMavTakeOffGPS(self,lat,lon,alt,yawDeg=0,pitchDeg=15)

一、 Explanation of parameters:

1) Lat: Longitude

2) Lon: Latitude

3) Alt: Height

4) YawDeg: heading angle (degrees)

5) PitchDeg: Pitch angle (degree)

二、 Function interpretation:

 Send MAV_CMD_NAV_TAKEOFF Order the aircraft to fly to the target position 。

9.5.3.5.SendTakeoffMode (send the takeoff altitude command to change the

flight control to takeoff mode to make the aircraft take off)

def sendTakeoffMode(self,alt=0)

一、 Explanation of parameters:

1) Alt: takeoff altitude

二、 Function interpretation:

Send the command to change the flight control to takeoff mode to make the aircraft take

off.

9.6. Aircraft attitude control interface

9.6.1. SendAttPX4 （F RD Attitude Control Interface in Coordinate

System ）

def SendAttPX4(self,att=[0,0,0,0],thrust=0.5,CtrlFlag=0,AltFlg=0)

一、 Explanation of parameters:

1) Att: Attitude input

2) Thrust: Throttle

3) CtrlFlag: control flag (0: att is 3D Euler angle in degrees, 1: att is 3D Euler angle in

radians, 2: att is a quaternion, 3: attis 3D angular velocity in radians/second, 4: attis

3D angular velocity in degrees/second)

4) AltFlg: height flag

二、 Function interpretation:

Send the target attitude in the airframe coordinate system (lower right front) to PX4.

9.7. Aircraft Acceleration Control Interface

9.7.1. SendAccPX4 (Send target acceleration to P X4 ）

def SendAccPX4(self,afx=0,afy=0,afz=0,yawValue=0,yawType=0,frameType=0)

一、 Explanation of parameters:

1) Afx: x-direction acceleration

2) Afy: y-direction acceleration

3) Afz: acceleration in Z direction

4) YawValue: course angle or course angular velocity

5) YawType: acceleration control mode (0: no course angle and course angular velocity;

1: course angle control; 2: course angular velocity control)

6) FrameType: coordinate system (0: north east; 1: lower right front of airframe)

二、 Function interpretation:

 Send target acceleration to PX4 。

9.8. Carrier, carrier vision sensor, target and other

attribute interfaces

9.8.1. Request Carrier Aircraft Attribute

9.8.1.1.GetUE4Data (get Copter data in RflySim3D)

def SendAccPX4(self,afx=0,afy=0,afz=0,yawValue=0,yawType=0,frameType=0)

一、 Explanation of parameters:

1) CopterID: Indicates which copter's data is obtained.

二、 Function interpretation:

This function can obtain the data of Copter in RflySim3D, which is also the

reqVeCrashData structure.

9.8.1.2.GetUE4Pos (get Copter's position in RflySim3D)

def getUE4Pos(self, CopterID=1)

一、 Explanation of parameters:

1) CopterID: Indicates which copter's location data is obtained.

二、 Function interpretation:

The function can Get Co pter At Rf lySim3D Location in

9.8.2. Request carrier vision sensor interface

9.8.2.1.CameraData (data returned by RflySim3D, information of a certain

camera (vision sensor) sent)

One __init__

def __init__(self):

Self. Checksum = 0 # 1234567891 as check

 self.SeqID = 0

 self.TypeID = 0

 self.DataHeight = 0

 self.DataWidth = 0

 self.CameraFOV = 0

 self.PosUE = [0,0,0]

 self.angEuler = [0,0,0]

 self.timestmp = 0

 self.hasUpdate=True

For the data returned by RflySim3D, after the PX4MavCtrler.reqCamCoptObj () function calls

the "RflyReqObjData" command of RflySim3D, Rflymim3d, according to the parameters of the

command, The information of a camera (vision sensor) sent (the SeqID of the camera (vision sensor)

is attached when the command is sent to RflySim3D).

This is the constructor for this class, where:

11. Check sum: is the check bit of the data, which is used to check whether an exception

occurs during data transmission.

12. SeqID: ID of the vision sensor

13. TypeID: The type of visual sensor (RPG, depth map, etc.)

14. DataHeight: Data height (pixels)

15. DataWidth: Data width (pixels)

16. CameraFOV: horizontal field of view of camera (unit: degree)

17. PosUE: indicates the position of the object (m, NE)

18. AngEuler: indicates the angle of the Camera (radian, Roll, Pitch, Yaw)

19. Times TMP: timestamp

20. HasUpdate: This value is not sent by RflySim3D

9.8.3. Request intra-scene target data interface

9.8.3.1.Get CamCoptObj (get the specified data from RflySim3D and store the

monitored three types in three lists)

def getCamCoptObj(self,type=1,objName=1)

一、 Explanation of parameters:

1) Type: 0 for camera, 1 for airplane, 2 for object

二、 Function interpretation:

Obtain the specified data from RflySim3D. The UE4MsgRecLoop function enables the

monitoring of RflySim3D messages and stores the monitored three types in three lists. This

function searches the data in these lists. Therefore, you need to use the reqCamCoptObj function

to request the relevant data from RflySim3D.

9.8.3.2.ReqCamCoptObj (requests data for objects in the scene (does not

create new objects, but gets data for existing objects))

def reqCamCoptObj(self,type=1,objName=1,windowID=0)

一、 Explanation of parameters:

1) Type: 0 for camera, 1 for airplane, 2 for object

2) ObjName: type represents camera seqID; when s represents aircraft, objName

corresponds to CopterID; when s represents object, objName corresponds to object

name

3) WindowID: Indicates which RflySim3D you want to send a message to. The default is

window 0. (Do not send this data to all RflySim3D, because the value returned is the

same, and there is no need to consume additional performance.)

二、 Function interpretation:

Send a data request to RflySim3D to request data for objects in the scene (not to create

new objects, but to get data for existing objects). It can be a visual sensor, a Copter, and a

common object in the scene. See CoptReqData class, ObjReqData class and CameraData class

for details of the obtained data.

9.9. Other intrinsic functions

9.9.1. sendStartMsg (Wake up all aircraft)

def sendStartMsg(self,copterID=-1)

一、 Explanation of parameters:

1) CopterID: Copter ID to be awakened

二、 Function interpretation:

Send a message to "224.0.0.10" through UDP, "20007" to wake up and execute

waitForStartMSG, when copterID is -1, all aircraft will be woken up, message format:

struct startSignal{

int checksum; // set to 1234567890 to verify the data

int isStart; // should start to run

int copterID; // the copter's ID to start

 }

9.9.2. waitForStartMsg Program blocks until received sendStartMsg

Message of)

def waitForStartMsg(self)

一、 Explanation of parameters:

二、 Function interpretation:

The program blocks until it receives a message from sendStartMsg.

9.9.3. initPointMassModel (Create a particle drone model)

def initPointMassModel(self,intAlt=0,intState=[0,0,0])

一、 Explanation of parameters:

1) IntAlt: initial height

2) IntState: Initial X (m), Y (m), Yaw (angle)

二、 Function interpretation:

Create a particle UAV model, set the initial ground height, XY position and yaw angle, and

create a thread to listen for position and velocity commands. The particle UAV model can

provide similar dynamic effects of UAV in hardware and software, but greatly reduce the

occupancy of computer performance and improve the stability of aircraft.

9.9.4. EndPointMassModel (End particle model)

def EndPointMassModel(self)

一、 Explanation of parameters:

二、 Function interpretation:

Ends the particle model and terminates the thread created in initPointMassModel.

9.9.5. yawSat (Back- PI To P I The heading angle between)

def yawSat(self,yaw)

一、 Explanation of parameters:

1) Yaw: course angle

二、 Function interpretation:

Return-Heading angle from PI to PI.

9.9.6. PointMassModelLoop (An endless loop in which the particle

model processes messages)

def PointMassModelLoop(self)

一、 Explanation of parameters:

二、 Function interpretation:

The particle model processes the endless loop of messages, calculates the motion of the

aircraft through the target position or velocity, and sends the position and attitude messages

to the UE to achieve the effect of particle model simulation.

9.9.7. InitTrueDataLoop (Start two threads, each receiving C

opterSim Real data and PX4 Data

def InitTrueDataLoop(self)

一、 Explanation of parameters:

二、 Function interpretation:

Start two threads to receive the real data from CopterSim and the PX4 data.

9.9.8. EndTrueDataLoop (Stop I nitTrueDataLoop Thread listening

for)

def EndTrueDataLoop(self)

一、 Explanation of parameters:

二、 Function interpretation:

Stop thread listening for InitTrueDataLoop.

9.9.9. initUE4MsgRec (Start a t 4(self.UE4MsgRecLoop) Start

listening 2 24.0.0.10：20006）

def initUE4MsgRec(self)

三、 Explanation of parameters:

四、 Function interpretation:

Initialize the self. UDP _ socketUE4, and start a thread T4 (self.UE4MsgRecLoop) to listen

to the 224.0.0.10 20006 and its own 20006 port.

9.9.10. endUE4MsgRec (Stop thread t 4(self.UE4MsgRecLoop)

Monitoring of)

def endUE4MsgRec(self)

三、 Explanation of parameters:

四、 Function interpretation:

Stop listening for thread T4 (self.UE4MsgRecLoop).

9.9.11. UE4MsgRecLoop (used to process messages returned by

RflySim3D or CopterSim)

def UE4MsgRecLoop(self)

三、 Explanation of parameters:

四、 Function interpretation:

It monitors 224.0.0.10: 20006 and its own 20006 port. It is used to process the messages

returned by RflySim3D or CopterSim. There are 6 kinds of messages in total:

7) CopterSimCrash with length of 12 bytes:

struct CopterSimCrash {

int checksum;

int CopterID;

int TargetID;

}

For the collision data returned by RflySim3D, RflySim3D will start the collision detection

mode when the P key is pressed in RflySim3D. If a collision occurs, the data will be returned. The

P + number can select the sending mode (0 local sending, 1 LAN sending, 2 LAN sending only in

case of collision). The default is local sending.

8) PX4SILIntFloat of length 120 bytes:

struct PX4SILIntFloat{

int checksum;//1234567897

int CopterID;

int inSILInts[8];

float inSILFLoats[20];

};

9) ReqVeCrashData of length 160 bytes:

struct reqVeCrashData {

int checksum; //Packet check code 1234567897.

int copterID; //ID number of the current aircraft

int vehicleType; //The style of the current aircraft

Int CrashType;//Collision object type, -2 indicates ground, -1 indicates scene static

object, 0 indicates no collision, and above 1 indicates ID number of the collided aircraft

double runnedTime; //Timestamp of the current aircraft

float VelE[3]; //Speed of the current aircraft

float PosE[3]; //Current aircraft position

Float CrashPos [3];//Coordinates of the collision point

Float targetPos [3];//the center coordinate of the touched object

float AngEuler[3]; //Euler angle of the current aircraft

float MotorRPMS[8]; //Current aircraft motor speed

float ray[6]; //front, back, left, right, up and down scan lines of the aircraft

Char CrashedName [20] = { 0 };//Name of the touched object

}

This class has been introduced before. When data return is enabled, RflySim3D will send

reqVeCrashData for all Copters (send when data changes, once per second).

10) CameraData with length of 56 bytes:

struct CameraData { //56

int checksum = 0;//1234567891

int SeqID; //camera serial number

Int TypeID;//camera type

Int Data Height;//pixel height

Int Data Width;//pixel width

Float Camera FOV;//camera field angle

float PosUE[3]; //Camera center position

Float angEuler [3];//camera Euler angle

Double times TMP;//timestamp

};

RflySim3D returns the structure regularly according to the command sent by the

reqCamCoptObj function, and the program will store it in the self. CamDataVect after receiving it.

11) CoptReqData with length of 64 bytes:

struct CoptReqData { //64

int checksum = 0; //123456 78 91 as check

Int CopterID;//Aircraft ID

float PosUE[3]; //Object center position (specified during artificial 3D modeling, the

attitude coordinate axis is not necessarily at the geometric center)

Float angEuler [3];//Euler angle of object

Float boxOrigin [3];//object geometric center coordinate

Float Box Extent [3];//half of the length, width and height of the object frame

Double times TMP;//timestamp

};

RflySim3D returns the structure regularly according to the command sent by the

reqCamCoptObj function, and the program will store it in the self. CoptDataVect after receiving it.

12) ObjReqData of length 96 bytes:

struct ObjReqData { //96

int checksum = 0; //123456 78 91 as check

int seqID = 0;

float PosUE[3]; //Object center position (specified during artificial 3D modeling, the

attitude coordinate axis is not necessarily at the geometric center)

Float angEuler [3];//Euler angle of object

Float boxOrigin [3];//object geometric center coordinate

Float Box Extent [3];//half of the length, width and height of the object frame

Double times TMP;//timestamp

Char ObjName [32] = { 0 };//Name of object touched

};

RflySim3D returns the structure regularly according to the command sent by the

reqCamCoptObj function, and the program will store it in the self. ObjDataVect after receiving it.

The received data can be retrieved using the getCamCoptObj function.

9.9.12. sat (InPWM clipping)

def sat(self,inPwm=0,thres=1):

一、 Explanation of parameters:

1) In Pwm: Enter a value

2) Thres: Upper absolute value

二、 Function interpretation:

If inPwm is less than -thres, it returns -thres; if inPwm is greater than thres, it returns

thres; the rest of the case returns inpwm.

9.9.13. SendMavCmdLong (Send M AVLINK The C of the message

ommand_long Message, which may request the drone to

perform some action)

def SendMavCmdLong(self, command, param1=0, param2=0, param3=0, param4=0, param5=0,

param6=0, param7=0):

一、 Explanation of parameters:

1) Command: command type

2) Param 1: command argument 1

3) Param2: Command parameter 2

4) Param3: Command parameter 3

5) Param4: Command parameter 4

6) Param5: Command parameter 5

7) Param 6: command argument 6

8) Param 7: command argument 7

二、 Function interpretation:

The command _ long message that sends the MAVLINK message can request the UAV to

perform certain operations. Detailed introduction refers to:

https://mavlink.io/en/messages/common.html#COMMAND_LONG

https://mavlink.io/en/messages/common.html#MAV_CMD

9.9.14. send MavOffboardCmd (Send o ffboard Command to

Flight Control)

def sendMavOffboardCmd(self,type_mask,coordinate_frame, x, y, z, vx, vy, vz, afx, afy, afz,

yaw, yaw_rate):

一、 Explanation of parameters:

1) Type _ mask: a mask indicating which items should be ignored

2) Coordinate _ frame: coordinate system

3) X: X coordinate (m, NE)

4) Y: y coordinate (m, NE)

5) Z: Z coordinate (m, NE)

6) VX: velocity in X direction (m/s, NE)

7) Vy: velocity in y direction (m/s, NE)

8) VZ: velocity in Z direction (m/s, NE)

9) Afx: x-direction acceleration or force (m/s ^ 2 or N, NE)

10) Afy: y-direction acceleration or force (m/s ^ 2 or N, NE)

11) Afz: acceleration or force in the Z direction (m/s ^ 2 or N, NE)

12) Yaw: course angle (radian)

13) Yaw _ rate: course angular velocity (rad/sec)

二、 Function interpretation:

https://mavlink.io/en/messages/common.html#COMMAND_LONG

Send the offboard command to the flight control to enter the offboard mode. Detailed

reference:

https://mavlink.io/en/messages/common.html#SET_POSITION_TARGET_LOCAL_NED

9.9.15. TypeMask (Get o ffboard The message requires

typemask ）

def TypeMask(self,EnList)

一、 Explanation of parameters:

1) Enlist: a list of valid items, 0 ~ 5 represent position, speed, acceleration, force,

course angle and course angular velocity respectively.

二、 Function interpretation:

Get the typemask needed for the offboard message to determine what information is

valid. Reference:

https://mavlink.io/en/messages/common.html#POSITION_TARGET_TYPEMASK

9.9.16. sendM a vOffboardAPI (Update off board Data of the

message)

def sendMavOffboardAPI(self,type_mask=0,coordinate_frame=0,pos=[0,0,0],vel=[0,0,0],acc=

[0,0,0],yaw=0,yawrate=0):

一、 Explanation of parameters:

1) Type _ mask: a mask indicating which items should be ignored

2) Coordinate _ frame: coordinate system

3) Pos: Location

4) Vel: Speed

5) ACC: Acceleration

6) Yaw: course angle

7) Yawrate: course angular velocity

二、 Function interpretation:

Update the data of the offboard message (the data will be sent at a certain frequency).

9.9.17. sendUDPSimpData (Set control mode and control quantity)

def sendUDPSimpData(self,ctrlMode,ctrls):

一、 Explanation of parameters:

1) Ctrl Mode: Control Mode

2) Ctrls: control quantity

二、 Function interpretation:

Sends a UDP message, where IP and port are specified when creating a new instance of

this class. The message structure is:

struct inOffboardShortData{
int checksum;

int ctrlMode;

float controls[4];

 # };

9.9.18. sendMavSetParam (Send command to P X4 Modify the

specified parameter)

def sendMavSetParam(self,param_id, param_value, param_type):

一、 Explanation of parameters:

1) Param _ ID: parameter ID

2) Param _ value: parameter values

3) Param _ type: parameter type

二、 Function interpretation:

Send the command to PX4 to modify the specified parameters. Refer to the parameter

introduction:

https://mavlink.io/en/messages/common.html#PARAM_SET

9.9.19. SendSetMode (Send M AV_CMD_DO_SET_MOD Set

airplane mode)

def SendSetMode(self,mainmode,cusmode=0)

一、 Explanation of parameters:

1) Main mode: main mode

2) Cusmode: Submode

二、 Function interpretation:

Send the MAV _ CMD _ DO _ SET _ MOD to set the airplane mode. Refer to:

https://mavlink.io/en/messages/common.html#MAV_CMD_DO_SET_MODE

9.9.20. getTrueDataMsg (Loop listens to real data and updates built-in

state)

def getTrueDataMsg(self)

一、 Explanation of parameters:

二、 Function interpretation:

Loop listens to the real data and updates the built-in state.

https://mavlink.io/en/messages/common.html#PARAM_SET

9.9.21. getPX4DataMsg (Loop monitor PX4 Data, and update the

built-in status)

def getPX4DataMsg(self)

一、 Explanation of parameters:

二、 Function interpretation:

Loop listens to the PX4 data and updates the built-in status.

9.9.22. getMavMsg (Cyclic update M AVLink Received data)

def getMavMsg(self):

一、 Explanation of parameters:

二、 Function interpretation:

The data received by MAVLink is cyclically updated.

9.9.23. sendCustomData (Send a 1 6 Dimension data to the specified

port. This interface can be used with the S imulink

Communication)

def sendCustomData(self,CopterID,data=[0]*16,checksum=123456,port=50000,IP='127.0.0.1'):

一、 Explanation of parameters:

1) copterID：copter ID

2) Data: data content

3) Check sum: check digit

4) Port: port number

5) IP: IP addr

二、 Function interpretation:

Sends a 16-dimensional data to a designated port. This interface can be used to communicate with

Simulink. The corresponding data structure is:

struct CustomData{

int checksum;

int CopterID;

double data

} ii16d 136 package length

2.3.12.64 2.3.12.65 2.3.12.67 2.3.12.68 2.3.12.69 2.3.12.70 2.3.12.71

2.3.12.72 2.3.12.79 2.3.12.85

9.10. Aircraft status information

9.10.1. uavAngEular Euler angle returned by flight control (obtained

from flight control and can be used for real experiment)

9.10.2. uavAngRate Angular velocity returned by flight control

(obtained from flight control and can be used for real experiment)

9.10.3. uavPosNED The estimated local position (NED coordinate

system) of the PX4 relative to the takeoff position returned by the

flight control (obtained from the flight control and can be used for

real experiments)

9.10.4. uavVelNED Estimated local velocity (NED coordinate system)

returned by the flight control (derived from the flight control for

real experiments)

9.10.5. isVehicleCrash Is it colliding with another vehicle?

9.10.6. IsVehicleCrashIDThe number of the vehicle involved in the crash

9.10.7. uavPosGPS GPS position returned from PX4, using the NED

coordinate system, including latitude, longitude, altitude, relative

altitude, velocity component, heading angle (derived from flight

control for real experiments)

9.10.8. uavPosGPSHome GPS origin (takeoff) position returned from

PX4, using the NED coordinate system (derived from flight control

for real experiments)

9.10.9. uavGlobalPos The global position returned from PX4 is

converted into UE4 map coordinate system (obtained from flight

control and can be used for real experiments).

9.10.10. uavAngQuatern Euler angle quaternion returned from PX4

(derived from flight control for real experiments)

9.10.11. uavMotorRPMS Motor PWM signal returned from PX4

(obtained from flight control and can be used for real experiment)

9.10.12. uavAccB = [0, 0, 0] Acceleration returned from PX4 (derived

from flight control for real experiments)

9.10.13. UavGyro = [0,0,0] Gyro data returned from PX4 (obtained from

flight control and can be used for real experiments)

9.10.14. uavMag = [0, 0, 0] Magnetometer data returned from PX4

(obtained from flight control for real experiments)

9.10.15. uavVibr = [0, 0, 0] Vibration data returned from PX4

(obtained from flight control and can be used for real experiment)

9.10.16. trueAngEular Real Euler angles simulated in CopterSim's DLL

model (simulation data)

9.10.17. trueAngRate Real angular rate simulated in CopterSim's DLL

model (simulation data)

9.10.18. truePosNED Real position simulated in the DLL model of

CopterSim (in relation to the UE4 map center), using the NED

coordinate system (simulation data)

9.10.19. trueVelNED Real speed of simulation in DLL model of

CopterSim, using NED coordinate system (simulation data)

9.10.20. trueAngQuatern Real Euler angle quaternions simulated in

CopterSim's DLL model (simulation data)

9.10.21. trueMotorRPMS Real motor speed simulated in

CopterSim's DLL model (simulation data)

9.10.22. trueAccB Real acceleration simulated in CopterSim's DLL

model (simulation data)

10. Related interfaces of mavros/ROS required in

development

10.1. Introduction of Common Communication Modes in

ROS

10.1.1. Message topic communication

ROS is a multi-process robot operating system. Each process is usually called ROS node, and

the data communication between nodes can be through the communication mode of message

topics. Topic communication is based on a publish-subscribe model that allows nodes to send and

receive messages in an asynchronous manner.

Publisher: a ROS node can act as a publisher, responsible for publishing data to one or more

Topics. A publisher publishes a message to a specific topic, and other nodes can receive the

message by subscribing to the topic.

Subscriber: Another ROS node can act as a subscriber, which can subscribe to one or more

topics. Subscribers receive messages sent from publishers by listening to topics. When new

messages are posted to a topic, subscribers receive and process them asynchronously.

Topic: a topic is a message communication channel used to publish and subscribe to messages.

Topics have unique names by which ROS nodes can identify and connect to them. Publishers post

messages to topics, and subscribers receive messages from topics.

Message: a message is a structured data unit used to transmit data in the ROS. ROS uses

message definitions to describe the structure and data types of messages. The same type of

message is shared between the publisher and the subscriber to ensure data consistency.

ROS Master: The ROS Master is a core component in an ROS system that manages

communication between nodes. It maintains a registry of all nodes, topics, and services. Publishers

and subscribers use ROS Master to discover and connect to each other.

Publisher-subscriber relationship: a publisher node publishes a message on a specific topic,

and a subscriber node registers a subscription relationship by telling the ROS Master which topics

it is interested in. When a new message is posted on a topic of interest to a subscriber, ROS Master

routes the message to the appropriate subscriber.

Basically, the principle of ROS topic communication is that a publisher publishes a message to

a topic, and a subscriber listens to the topic to receive the message. The advantage of this publish-

subscribe model is that it allows asynchronous communication between nodes, which improves

the flexibility and scalability of the system. Nodes can publish or subscribe to different topics as

needed to meet various communication needs.

10.1.2. Service type communication

Service communication in ROS (Robot Operating System) is a communication mechanism for

requesting and providing stateful operations or services between nodes. Unlike topic

communication, service communication is a request-response pattern in which one node requests

another node to perform a specific task and waits for a response.

Service Provider: a service provider is a ROS node that implements one or more services. The

service provider is responsible for receiving service requests from other nodes and performing the

corresponding tasks. Typically, the service provider registers the services it provides when the node

is started.

Service Requester: a service requester is also a ROS node that needs to perform a specific task

and send a service request to the service provider. The service requester initiates the request by

invoking the client interface of the service.

Service: a service is an ROS communication mechanism that defines request and response

messages. The service consists of two parts: Request Message and Response Message. The request

message is used to pass the parameters of the service request, and the response message is used

to return the result of the service execution.

ROS Master: The ROS Master also plays an important role in service communication and is

responsible for service registration and discovery. Service providers register their services with the

ROS Master at startup, and service requesters find and connect to the required services through

the ROS Master.

The principle of service communication is to establish a communication pattern of request

and response, allowing stateful interaction between nodes. Service communication is suitable for

situations where tasks need to be performed cooperatively between nodes, such as the request

and processing of sensor data, the adjustment of motion control, or other tasks requiring

synchronous processing.

10.2. Application of ROS on RflySim platform

10.2.1. Interface for obtaining visual sensor data through topic

The RflySim platform supports the acquisition of RGB images, depth images,

grayscale images, laser point clouds, infrared images, segmentation maps, etc

Supported sensor list and configuration method . In the corresponding topic name/rflysim/sensro

*/type, sensor * in the topic name, where * is the seq _ ID in the Config. JSON file, and type is the

data type. For example, the RGB image corresponds to the IMG _ RGB, the similar depth

corresponds to the IMG _ depth, and the grayscale image corresponds to the IMG _ gray. For details,

please refer to Python VisionAPI \ 1-APIUsageDemos \ 12-VisCapture MergeROSAPI

10.2.2. Interface for obtaining IMU data through topic

The default published topic name for RflySim is/rflysim/IMU, which makes

it possible to use IMU data published by mavros (/mavros/IMU/data _ raw)

if mavros emulation is used. When using the IMU data published by RflySim,

there is a corresponding interface reference 错误!未定义书签。错误!未找到

引用源。in the VisionCaptureAPI. Py interface. The corresponding routine

is in Python VisionAPI \ 1-APIUsageDemos \ 12-VisCaptureMergeROSAPI

10.3. MavROS common interface

10.3.1. Topic/mavros/state Obtain flight control status information

Through this topic, we can check the flight control status information, such

as whether the flight control is successfully connected, the current mode of

flight control, whether the flight control has been unlocked, etc. Usually, we

send instructions to the value of flight control, and often need to monitor the

data of this topic, such as flight mode switching, unlocking command. The

service communication has two fields, request and feedback. Generally, if

the feedback is not successful, it means that the command is not executed,

but the successful feedback does not mean that the command is executed,

so we need to judge the state of flight control after sending the command.

10.3.2. Topic/mavros/local _ position/pose Get flight control pose data

Through this topic, the pose of the flight control system in the world

coordinate system "map" can be obtained, including position information

and attitude information. Therefore, if the attitude of the aircraft needs to be

obtained, the IMU data can be used (through the topic/mavros/IMU/data _

raw). Generally, it is more direct to use the IMU data to obtain the pose.

10.3.3. Topic/mavros/IMU/data _ raw Obtain flight control IMU data

For the original IMU data, the coordinate system is related to the setting of

flight control parameters, and the FLU coordinate system is generally used.

Related to this is the/mavros/IMU/data topic, which is the filtered data.

10.3.4. Topic/mavros/setpoint _ raw/local Send position, speed,

acceleration, control command interface

Send the interface of position control, speed control and acceleration

control to the flight control. You can select the control mode through the

type _ mask variable. View in detail.错误!未找到引用源。

10.3.5. Topic mavros/setpoint _ raw/attitude Send Attitude Control

Interface

Flight control by means of attitude control Detailed Reference Attitude loop

control

10.3.6. Service/mavros/set _ mode flight control mode switching

interface

Switch the flight mode of the flight control through this service name. Of

course, whether the mode switching is successful or not is limited by the

flight control settings. For example, some flight controls shield the switching

of some modes. For details about mode switching, please refer to Switch

flight control Flight mode

10.3.7. Service/mavros/cmd/arming flight control unlocking interface

The flight control can be unlocked through the service name. Of course,

unlocking is also subject to the constraints of flight control settings. Refer

to for details. Unlock the flight control

10.4. Application of MavROS on RflySim Platform

10.4.1. MavROS Software in the Loop

 Used in the RflySim platform MavROS ，Configuration of software bat script and MavROS

startup script is required. Since MavROS is running Linux virtual machine or on-board computer in,

first set the communication port number SET/a UDP _ START _ PORT = 20100 in the software in-

the-loop script, Then look at the IP address of the Linux virtual machine for example

192.168.31.155 and change the setting in the script SET IS _ BROADCAST = 192.168.31.155. The

20100 is the external communication port provided by CopterSim, and the 20101 is the external

communication port provided by MavROS.

The corresponding port settings are also made in the MavROS startup script as follows:

Where//: The middle of the symbol should be the IP address in the Linux virtual machine or on-

board computer, but since MavROS is started in it, it defaults to its corresponding IP address, but

it can also be added manually. The port 20101 is the external communication port of MavROS, and

192.168.31.117 is the IP address under the platform window.

10.4.2. MavROS Hardware-in-the-Loop

When MavROS is used for hardware-in-the-loop in the RflySim platform, the corresponding

hardware-in-the-loop script shall be used. The flight control shall be connected to the computer

through the USB port using the USB data line for communication with CopterSim, and connected

to the computer through the TELEM1 using the USB to TTL line for communication between the

computer and the flight control. Then set the corresponding port in the startup script of MavROS

as follows:

10.4.3. MavROS and Flight Control Communication

10.4.3.1.Obtain the flight control status

state_sub = rospy.Subscriber('/mavros/state', State, state_callback)

In mavros, to get the status of the Flight Control Unit (FCU), you can use the mavros/state

topic to get the current flight status information. The mavros/state topic is used to publish the

status information of the current flight controller. The message type for this topic is The mavros _

msgs/State contains information such as flight mode, connection status, and unlock status. The

flight control status listener is defined as above.

10.4.3.2.Obtain the aircraft attitude

rospy.Subscriber('/mavros/imu/data', Imu, imu_callback)

Obtain the attitude information of the aircraft in mavros, which can be obtained by using

mavros/imu/data topics. These topics provide the attitude data of the aircraft, including

information such as angle and angular velocity. The topic published the inertial measurement unit

(IMU) data of the aircraft, including the angle and angular velocity. You can use ROS to subscribe

to this topic to get attitude information. The message type for this topic is the sensor _

msgs/MSG/Imu message type. The aircraft attitude monitor is defined as above.

10.4.3.3.Acquire the flight control pose

Local pose:

local_pose_sub=rospy.Subscriber('/mavros/local_position/pose',PoseStamped,local_pose_call

back)

In mavros, to get the pose information of the flight controller, you can use the mavros/local _

position/pose topic to get the local position and pose information of the current aircraft. The topic

is used to publish the local pose information of the current flight controller, including the position

coordinates (such as the position in the northeast sky coordinate system) and the attitude

information (such as the attitude represented by Euler angles or quaternions). The message type

for this topic is geometry _ msgs/PoseStamped.

Global pose:

global_pose_sub=rospy.Subscriber('/mavros/global_position/global',NavSatFix,global_pose_c

allback)

In mavros, to get the global pose information of the flight controller (usually expressed in

longitude and latitude coordinates), you can use the mavros/global _ position/global topic to get

the global position information of the current aircraft. This topic is used to publish the global

position information of the current flight controller, including longitude and latitude coordinates

and altitude. The message type for this topic is the sensor _ msgs/NavSatFix message type.

10.4.3.4. Switch flight control Flight mode

set_mode_client = rospy.ServiceProxy('/mavros/set_mode', SetMode)

In mavros, to set the flight mode of the flight controller, you can use the mavros/set _ mode

service. The mavros/set _ mode service is used to request changes to the flight mode of the flight

controller. By calling this service, you can request to switch the aircraft to different flight modes,

such as manual mode, self-stabilization mode, positioning mode, etc. You can use the ROS service

client to call the mavros/set _ mode service to request a change in flight mode. You need to create

a service request message, usually using the mavros _ msgs/SetMode message type. In particular,

the flight controller needs to send a target command before switching the offboard mode. For

detailed examples, refer to the official website

http://docs.px4.io/main/zh/ros/mavros_offboard_python.html.

10.4.3.5. Unlock the flight control

arming_client = rospy.ServiceProxy('/mavros/cmd/arming', CommandBool)

In mavros, to unlock the flight control unit (FCU), the commonly used interface is a service

named mavros/cmd/arming service, which allows you to control the arming and disarming of the

flight control unit. Unlocking means that the motor of the flight controller is enabled so that it is

ready to fly, while locking means that the motor is disabled so that it stops working. To invoke the

mavros/cmd/arming service, you need to create a service request message, typically using the

mavros _ msgs/CommandBool message type. Usually the real plane flies, for the sake of safety, we

use the remote control to send the unlocking command, and only use the service type to unlock

the flight control during the simulation. For unlocking examples, refer to the

http://docs.px4.io/main/zh/ros/mavros_offboard_python.html on the PX4 official website.

10.4.4. Flight control mode of MavROS

There are many topics of mavros control and flight control, but it is enough to learn to use two of

them. We only need to publish one or a combination of these two topics to achieve the control of

the aircraft. Other mavros control topics of the aircraft are used by disassembling the functions of

these two topics, so we will not describe each sub-function topic here. Note that the control

frequency of each topic should be above 5 Hz, and if you need to combine multiple topics to control

the effect, you'd better understand the underlying code of flight control.

Topic name Explain

/mavros/setpoint_raw/local

Position control, speed control, acceleration

control, or combination control can be achieved

through this topic (this topic has a disassembly

topic for the entire control function, which will

not be introduced here. Interested friends can read

the official documents).

/mavros/setpoint_raw/attitude Attitude control can be achieved through this topic

(this topic has a topic of disassembly of the entire

control function, which will not be introduced here.

Interested friends can read the official

documentation).

10.4.4.1. Attitude loop control

attitude_pub=rospy.Publisher('/mavros/setpoint_raw/attitude',AttitudeTarget,queue_size=10)

Content description for mavros _ msgs/AttitudeTarget message type:

uint8 IGNORE_ROLL_RATE=1

uint8 IGNORE_PITCH_RATE=2

uint8 IGNORE_YAW_RATE=4

uint8 IGNORE_THRUST=64

uint8 IGNORE_ATTITUDE=128

std_msgs/Header header

 uint32 seq

 time stamp

 string frame_id

uint8 type_mask

geometry_msgs/Quaternion orientation

 float64 x

 float64 y

 float64 z

 float64 w

geometry_msgs/Vector3 body_rate

 float64 x

 float64 y

 float64 z

float32 thrust

Variable name Explain How to use

type_mask

The type mask is used to mask whether to

use the desired function. Its value can be

directly used in the message type. The

value is not a static constant value. The

value description is as follows:

1: angular velocity of shield roll

2: angular velocity of shield pitch

4: angular velocity of shielding yaw

64: Shielding throttle amount control

128: Shielding attitude amount control

The value can be directly assigned to

the typt _ mask, and the combination

of values (binary, hexadecimal, and

decimal) can be used. It is

recommended to use the constant name

to directly add and assign the value.

If the AttitudeTarget variable att is

defined, this method is recommended.

att.type_mask = att. IGNORE_ROLL_RATE

+ att.IGNORE_PITCH_RATE +

Using this method is more intuitive and easier

to read and use than binary or hexadecimal. Of

course, you can also redefine variables for

combined values;

orientation The values needed to control the attitude

of the aircraft are represented here by

quaternions.

att.orientation.x = ‘value’

body_rate Controls the angular velocity of each

component of the attitude, where X, y, Z

correspond to roll _ rate, pitch _ rate, yaw

_ rate

att.body_rate.x = ‘value’

thrust A given amount of throttle Value range (0 ~ 1). Usually, when the throttle

value is 0.6, the aircraft keeps hovering.

It should be noted that when giving flight control commands, it is often necessary to set the time,

generally using (ROS: time: now () in C + +; Rospy. Time. Now ()) in Python, and then use the

publishing topic/mavros/setpoint _ raw/attitude to publish the set attitude control data.

10.4.4.2.Acceleration loop control

accel_pub=rospy.Publisher('/mavros/setpoint_raw/local',PositionTarget ,queue_size=10)

 In mavros, you can use the/mavros/setpoint _ raw/local topic for flight control

Acceleration Loop control Publish 。 This topic allows you to send the desired Acceleration

command on X, y, Z axes For flight control, so as to achieve Acceleration Control. The

message type for this topic is PositionTarget Message type The details are as follows:

uint8 FRAME_LOCAL_NED =1

uint8 FRAME_LOCAL_OFFSET_NED=7

uint8 FRAME_BODY_NED=8

uint8 FRAME_BODY_OFFSET_NED=9

uint16 IGNORE_PX=1

uint16 IGNORE_PY=2

uint16 IGNORE_PZ=4

uint16 IGNORE_VX=8

uint16 IGNORE_VY=16

uint16 IGNORE_VZ=32

uint16 IGNORE_AFX=64

uint16 IGNORE_AFY=128

uint16 IGNORE_AFZ=256

uint16 FORCE=512

uint16 IGNORE_YAW=1024

uint16 IGNORE_YAW_RATE=2048

std_msgs/Header header

 uint32 seq

 time stamp

 string frame_id

uint8 coordinate_frame

uint16 type_mask

geometry_msgs/Point position

 float64 x

 float64 y

 float64 z

geometry_msgs/Vector3 velocity

 float64 x

 float64 y

 float64 z

geometry_msgs/Vector3 acceleration_or_force

 float64 x

 float64 y

 float64 z

float32 yaw

float32 yaw_rate

Variable name Explain How to use

coordinate_frame Select what coordinate system to

control based on. The optional values

Because only one of the

coordinate systems on which

are as follow

1: Although the static variable name

is FRAME _ LOCAL _ NED, it actually

uses the global ENU coordinate

system, which has a yaw angle of 90

degrees with the coordinate system in

RflySim3D. For details, please refer to

Problems needing attention in

using RflySim and mavros

2: FRAME _ LOCAL _ OFFSET _ NED

this value is not supported by PX4

3: FRAME _ BODY _ NED Also

although NED is indicated here, FLU is

actually used relative to the airframe

coordinate system;

4: FRAME _ BODY _ OFFSET _ NED

this value is not supported by px4

Note: The coordinate system

definition of the ROS version

melodic is different from that of

the previous version melodic, so

I will not introduce it here.

the control quantity is based

can be used, numerical

assignment can be used, and

the following method can also

be used.

tar. coordinate_frame = tar.

FRAME _ LOCAL _ NED, speed

control, or acceleration

control generally uses the

body coordinate system, or

tar. coordinate_frame = tar.

FRAME_BODY_NED

type_mask Select the control type, which can be

based on position control, based on

speed control, based on acceleration

control, or can be used in

combination. When used in

combination, the effect is the

combination effect of each control

quantity. Interested readers can read

the underlying source code of flight

control by themselves (this is

necessary for smooth control).

The optional values are:

1: Shielding position control

coordinate point X component

2: Shield position control coordinate

point y component

4: Shield the Z component of the

position control coordinate point

8: Shielding speed control X direction

component

16: shield velocity control y-direction

component

The assignment of type _ mask is generally

in the form of numeric value, such as

(binary, hexadecimal). However, it is

recommended to use static variable name

assignment, which is more intuitive. The

following assignment method is

recommended:

If it is a single control mode:

Tar. Type _ mask = ~ (0);//set all to 1, shield

all

//Then release the shield for a single

control mode, such as acceleration control

only here

tar.type_mask = ~tar. IGNORE_AFX & ~tar.

IGNORE_AFY & ~tar. IGNORE_AFZ & ~

tar.FORCE; //Don't forget to block Force at

the end.

If multiple control modes are used in

combination

The control mode is assumed to be a

combination of acceleration and velocity.

Tar. Type _ mask = 0//set all to 0 to enable

Similarly, in addition to controlling the quantity assignment, you also need to take the timestamp

with you, generally using (ROS: Time: now () in C + +; Rospy. Time. Now ()) in Python, and then use

the publishing topic/mavros/setpoint _ raw/local to publish the set acceleration control data.

10.4.4.3.Speed loop control

vel_pub=rospy.Publisher('/mavros/setpoint_raw/local',PositionTarget ,queue_size=10)

Speed control and the use of acceleration and position control are the same topic control. The

topic combines speed control, acceleration control and position control mode, and is selected by

type _ mask. The Position Target data type is described in detail below:

uint8 FRAME_LOCAL_NED =1

32: Shielding velocity controls z-

direction component

64: Shielding acceleration or thrust

control X direction component

128: shield acceleration or thrust

control y-direction component

256: Shield acceleration or thrust

control z-direction component

512: Select to use thrust control

1024: Shield yaw control

2048: Shield yaw _ rate control

all controls, except Force. Froce is 0, which

means masking. Then mask bit value

control with pertinence;

tar.type_mask = tar. IGNORE_PX |

tar.IGNORE_PY | tar.IGNORE_PZ;

velocity Speed control, where X, y, Z

correspond to the values of the

respective components based on the

coordinate _ frame coordinate system

acceleration_or_force Acceleration or thrust control, where

X, y, and Z correspond to the values of

each component based on the

coordinate _ frame coordinate

system. When the Force flag in the

type _ mask is 1, it indicates that

thrust control is used, and when it is

0, it indicates that acceleration

control is used. Not all flight controls

support force control.

yaw The yaw angle control quantity is valid

only when the IIGNORE _ YAW of the

flag bit in the type _ mask is 0

yaw_rate The yaw-rate control quantity is valid

only when the IIGNORE _ YAW _ RATE

of the flag bit in the type _ mask is 0

uint8 FRAME_LOCAL_OFFSET_NED=7

uint8 FRAME_BODY_NED=8

uint8 FRAME_BODY_OFFSET_NED=9

uint16 IGNORE_PX=1

uint16 IGNORE_PY=2

uint16 IGNORE_PZ=4

uint16 IGNORE_VX=8

uint16 IGNORE_VY=16

uint16 IGNORE_VZ=32

uint16 IGNORE_AFX=64

uint16 IGNORE_AFY=128

uint16 IGNORE_AFZ=256

uint16 FORCE=512

uint16 IGNORE_YAW=1024

uint16 IGNORE_YAW_RATE=2048

std_msgs/Header header

 uint32 seq

 time stamp

 string frame_id

uint8 coordinate_frame

uint16 type_mask

geometry_msgs/Point position

 float64 x

 float64 y

 float64 z

geometry_msgs/Vector3 velocity

 float64 x

 float64 y

 float64 z

geometry_msgs/Vector3 acceleration_or_force

 float64 x

 float64 y

 float64 z

float32 yaw

float32 yaw_rate

Variable name Explain How to use

coordinate_frame Select what coordinate system to

control based on. The optional values

are as follow

1: Although the static variable name is

FRAME _ LOCAL _ NED, it actually uses

the global ENU coordinate system,

Because only one of the

coordinate systems on which

the control quantity is based

can be used, numerical

assignment can be used, and

the following method can also

which has a yaw angle of 90 degrees

with the coordinate system in

RflySim3D. For details, please refer to

Problems needing attention in

using RflySim and mavros

7: FRAME _ LOCAL _ OFFSET _ NED that

this value is temporarily not supported

by PX4

8: FRAME _ BODY _ NED Also although

NED is indicated here, FLU is actually

used relative to the airframe coordinate

system;

9: FRAME _ BODY _ OFFSET _ NED this

value is not supported by px4

Note: The coordinate system

definition of the ROS version

melodic is different from that of

the previous version melodic, so I

will not introduce it here.

be used.

tar. coordinate_frame = tar.

FRAME _ LOCAL _ NED, speed

control, or acceleration

control generally uses the

body coordinate system, or

tar. coordinate_frame = tar.

FRAME_BODY_NED

type_mask Select the control type, which can be

based on position control, based on

speed control, based on acceleration

control, or can be used in combination.

When used in combination, the effect is

the combination effect of each control

quantity. Interested readers can read

the underlying source code of flight

control by themselves (this is necessary

for smooth control).

The optional values are:

1: Shielding position control coordinate

point X component

2: Shield position control coordinate

point y component

4: Shield the Z component of the

position control coordinate point

8: Shielding speed control X direction

component

16: shield velocity control y-direction

component

32: Shielding velocity controls z-

direction component

64: Shielding acceleration or thrust

control X direction component

The assignment of type _ mask is

generally in the form of numeric value,

such as (binary, hexadecimal). However, it

is recommended to use static variable

name assignment, which is more

intuitive. The following assignment

method is recommended:

If it is a single control mode:

Tar. Type _ mask = ~ (0);//set all to 1,

shield all

//then release the mask for a single

control mode, such as speed control only

here

tar.type_mask = ~tar. IGNORE_VX & ~tar.

IGNORE_VX & ~tar. IGNORE_VX &

~tar.FORCE

If multiple control modes are used in

combination

The control mode is assumed to be a

combination of acceleration and velocity.

Tar. Type _ mask = 0//set all to 0 to

enable all controls; and targeted mask bit

value control;

tar.type_mask = tar. IGNORE_PX |

tar.IGNORE_PY | tar.IGNORE_PZ;

128: shield acceleration or thrust

control y-direction component

256: Shield acceleration or thrust

control z-direction component

512: Select to use thrust control

1024: Shield yaw control

2048: Shield yaw _ rate control

velocity Speed control, where X, y, Z correspond

to the values of the respective

components based on the coordinate _

frame coordinate system

acceleration_or_force Acceleration or thrust control, where X,

y, and Z correspond to the values of

each component based on the

coordinate _ frame coordinate system.

When the Force flag in the type _ mask

is 1, it indicates that thrust control is

used, and when it is 0, it indicates that

acceleration control is used. Not all

flight controls support force control.

yaw The yaw angle control quantity is valid

only when the IIGNORE _ YAW of the

flag bit in the type _ mask is 0

yaw_rate The yaw-rate control quantity is valid

only when the IIGNORE _ YAW _ RATE of

the flag bit in the type _ mask is 0

Similarly, in addition to controlling the quantity assignment, you also need to take the timestamp

with you, generally using (ROS: Time: now () in C + +; Rospy. Time. Now ()) in Python, and then use

the publishing topic/mavros/setpoint _ raw/local to publish the set speed control data.

10.4.4.4.Position loop control

Pose_pub=rospy.Publisher('/mavros/setpoint_position/local',PoseStamped,queue_size=10)

In mavros, you can use the mavros/setpoint _ position/local topic to publish the position loop

control of the flight control. This topic allows you to send the desired position (X, y, Z) command in

the NED coordinate system to the flight control to achieve position control. The message type for

this topic is the geometry _ msgs/PoseStamped message type. The position loop control issuer is

defined as above.

This is common because of its simplicity, but it is more recommended to use the

topic/mavros/setpoint _ raw/local to control the location

Pose_pub=rospy.Publisher('/mavros/setpoint_raw/local ', PositionTarget,queue_size=10)

Position control, speed control, acceleration control/thrust control can be

performed through topic/mavros/setpoint _ raw/local. Therefore, efficient
control requires multiple combinations of controls. The following describes the
data type PositionTarget and the position control method in detail

uint8 FRAME_LOCAL_NED =1

uint8 FRAME_LOCAL_OFFSET_NED=7

uint8 FRAME_BODY_NED=8

uint8 FRAME_BODY_OFFSET_NED=9

uint16 IGNORE_PX=1

uint16 IGNORE_PY=2

uint16 IGNORE_PZ=4

uint16 IGNORE_VX=8

uint16 IGNORE_VY=16

uint16 IGNORE_VZ=32

uint16 IGNORE_AFX=64

uint16 IGNORE_AFY=128

uint16 IGNORE_AFZ=256

uint16 FORCE=512

uint16 IGNORE_YAW=1024

uint16 IGNORE_YAW_RATE=2048

std_msgs/Header header

 uint32 seq

 time stamp

 string frame_id

uint8 coordinate_frame

uint16 type_mask

geometry_msgs/Point position

 float64 x

 float64 y

 float64 z

geometry_msgs/Vector3 velocity

 float64 x

 float64 y

 float64 z

geometry_msgs/Vector3 acceleration_or_force

 float64 x

 float64 y

 float64 z

float32 yaw

float32 yaw_rate

Variable name Explain How to use

coordinate_frame Select what coordinate system to

control based on. The optional values

are as follow

Because only one of the

coordinate systems on which

the control quantity is based

1: Although the static variable name is

FRAME _ LOCAL _ NED, it actually uses

the global ENU coordinate system,

which has a yaw angle of 90 degrees

with the coordinate system in

RflySim3D. For details, please refer to

Problems needing attention in

using RflySim and mavros

7: FRAME _ LOCAL _ OFFSET _ NED that

this value is temporarily not supported

by PX4

8: FRAME _ BODY _ NED Also although

NED is indicated here, FLU is actually

used relative to the airframe coordinate

system;

9: FRAME _ BODY _ OFFSET _ NED this

value is not supported by px4

Note: The coordinate system

definition of the ROS version

melodic is different from that of

the previous version melodic, so I

will not introduce it here.

can be used, numerical

assignment can be used, and

the following method can also

be used.

tar. coordinate_frame = tar.

FRAME _ LOCAL _ NED, speed

control, or acceleration

control generally uses the

body coordinate system, or

tar. coordinate_frame = tar.

FRAME_BODY_NED

type_mask Select the control type, which can be

based on position control, based on

speed control, based on acceleration

control, or can be used in combination.

When used in combination, the effect is

the combination effect of each control

quantity. Interested readers can read

the underlying source code of flight

control by themselves (this is necessary

for smooth control).

The optional values are:

1: Shielding position control coordinate

point X component

2: Shield position control coordinate

point y component

4: Shield the Z component of the

position control coordinate point

8: Shielding speed control X direction

component

16: shield velocity control y-direction

component

32: Shielding velocity controls z-

The assignment of type _ mask is

generally in the form of numeric value,

such as (binary, hexadecimal). However, it

is recommended to use static variable

name assignment, which is more

intuitive. The following assignment

method is recommended:

If it is a single control mode:

Tar. Type _ mask = ~ (0);//set all to 1,

shield all

//then release the shield for a single

control mode, such as position control

only here

tar.type_mask = ~tar. IGNORE_PX & ~tar.

IGNORE_PY & ~tar. IGNORE_PZ &

~tar.FORCE

If multiple control modes are used in

combination

The control mode is assumed to be a

combination of position and velocity

Tar. Type _ mask = 0//set all to 0, enabling

all controls; and targeted shielding of

direction component

64: Shielding acceleration or thrust

control X direction component

128: shield acceleration or thrust

control y-direction component

256: Shield acceleration or thrust

control z-direction component

512: Select to use thrust control

1024: Shield yaw control

2048: Shield yaw _ rate control

acceleration control;

tar.type_mask = tar. IGNORE_AFX |

tar.IGNORE_AFY | tar.IGNORE_AFZ;

velocity Speed control, where X, y, Z correspond

to the values of the respective

components based on the coordinate _

frame coordinate system

acceleration_or_force Acceleration or thrust control, where X,

y, and Z correspond to the values of

each component based on the

coordinate _ frame coordinate system.

When the Force flag in the type _ mask

is 1, it indicates that thrust control is

used, and when it is 0, it indicates that

acceleration control is used. Not all

flight controls support force control.

yaw The yaw angle control quantity is valid

only when the IIGNORE _ YAW of the

flag bit in the type _ mask is 0

yaw_rate The yaw-rate control quantity is valid

only when the IIGNORE _ YAW _ RATE of

the flag bit in the type _ mask is 0

Similarly, in addition to controlling the quantity assignment, you also need to take the timestamp

with you, generally using (ROS: Time: now () in C + +; Rospy. Time. Now ()) in Python, and then use

the publishing topic/mavros/setpoint _ raw/local to publish the set location control data.

10.5. RflySim Multi-machine ROS Distributed Deployment

10.5.1. Configuration of flight control parameters

Connect each hardware flight control with NX through USB cable and open QGroundControl

software to set ID number. This is for the CopterSimID to be consistent with the Flight Control ID.

The settings are as follows:

10.5.2. MavROS parameter configuration

For the MAVROS node running on each machine, the following parameters need to be configured:

The parameter FCU _ URL is the connection mode of the flight control, the parameter GCS _ URL is

that the IP of the host where the QGC is located has been defaulted, The parameter TGT _ system

is the ID number of the flight control, the parameter TGT _ component specifies that the target

component ID of the MAVLink message is the autopilot, and the parameter log _ output is that the

log output mode is configured. The parameter FCU _ protocol is used to specify the MAVLink

protocol version used to communicate with the flight controller, and the parameter namespace

specifies the namespace of the node.

10.5.3. TF tree building

10.5.3.1.Brief description of the TF tree

The TF tree is used to manage the coordinate transformation between the robot joint and the two

links connected to it in the ROS. The joint can be fixed or float. Taking the robot arm as an example,

if the position of the fingertip is known, the position of the fingertip to the base coordinate system

should be known. Multiple transformation matrices need to be multiplied. If each joint needs to

know that the fingertip is in the link coordinate system of the current joint connection, it needs to

be multiplied, which is too cumbersome. Therefore, ROS introduces TF tree to manage this complex

conversion relationship. At any time, we can directly obtain the coordinates in the desired

coordinate system through link. In this technology, ROS has introduced a series of convenient

debugging tools, such as Rviz, TF _ graph, etc. So is it necessary to deliberately build a TF tree? This

depends on the requirements. In many algorithms, the TF tree is not used for coordinate

conversion. The operation of coordinate conversion is completed inside the algorithm, and then

the debugging visualization uses a local TF tree frame. In this case, it is not necessary to build the

entire TF tree.

10.5.3.2.Application of TF tree between RflySim and mavros

We know that there are three basic coordinate systems in ROS, map coordinate system, body

coordinate system and sensor coordinate system. Usually, the corresponding frame _ ID in the TF

tree are map, base _ link, (lidar _ link, camera _ link..) and so on. Often a complex system will

introduce other coordinate systems between the three, such as Odom, base _ link _ foot, etc.

The sensors provided by RflySim use the frame _ ID of Map by default in order to facilitate

visualization. Users can configure the frame _ ID of each sensor data by referring to the routine

RflySimAPIs \ Python VisionAPI \ 1-APIUsageDemos \ 18-ConfigROSTFAPIDemo. Usually, the sensor

coordinate system needs to be converted to the body coordinate system (base _ link), and the base

_ link needs to be converted to the world coordinate system (map) for algorithm processing such

as control, while the conversion from base _ link to map coordinate system needs to be given by

the positioning system. So the simplest TF tree is as follows:

We run mavros to connect the flight control and then use the rqt _ TF (command: rosrun rqt _

graph rqt _ graph) tool to see what the current TF tree looks like

sensor_link

base_link

map

At this point, the TF tree is fragmentary, and we can connect base _ link to map through the

external location source, or connect base _ link to Odom and then Odom to map. Form a complete

Tf tree. Of course, we generally do not use the NED coordinate system, so we do not need to

consider XXX _ Ned.

There are three common ways to build a TF tree:

1. The Tf tree can be built by loading the prepared urdf file, referring urdf/XML/link -

ROS Wiki to how to build the URDF file, and then loading the file in the following way, as called

in the launch file:

<launch>

<param name="robot_description" textfile="$(find mbot_description)/urdf/mbot_base.urdf" />

<!-- 运行 joint_state_publisher 节点，发布机器人的关节状态 -->

<node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" />

<!-- 运行 robot_state_publisher 节点，发布 tf -->

<node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher" />

</launch>

Use the node joint _ state _ publisher to load the TF data in the urdf file, and use the node robot _

state _ publisher to publish the TF tree. This method is suitable for constructing the TF tree of a

complex system. It is very convenient to construct all TF data structures in the urdf file.

2. For the simple TF tree structure, of course, it is only for those that are static, that is, the

coordinate systems are rigidly connected. It is only necessary to add such a line of content in the

launch startup file. For example, to build a TF tree result from the lidar _ link to the base _ link, it

is only necessary to do the following:

<node pkg="tf" type="static_transform_publisher" name="base_link_to_laser"

args="0.14 0.0 0.0 0.0 0.0 0.0 base_link laser_link 40" />

Args: amount of translation (X, y, Z), quaternion rotation Q (offset _ X, offset _ y, offset _ Z, Q _ X,

Q _ y, Q _ Z, Q _ w), frame _ ID, child _ frame _ ID, frequency;

3. For two coordinate systems that are not rigidly connected, it is necessary to publish the

http://wiki.ros.org/urdf/XML/link
http://wiki.ros.org/urdf/XML/link

corresponding conversion relationship in real time through the code, such as:

#include <ros/ros.h>

include < TF/transform _ broadcaster. H >//Add the library header file of TF transformation

#include <geometry_msgs/PoseStamped.h>

void poseCallback(const geometry_msgs::PoseStamped::ConstPtr& msg){

 static tf::TransformBroadcaster br;

 tf::Transform transform;

transform.setOrigin(tf::Vector3(msg->pose.position.x,msg->pose.position.y,msg->pose.position.z)

);

 //tf::Quaternion quaternion;

 transform.setRotation(tf::Quaternion(msg->pose.orientation.x, msg->pose.orientation.y,

msg->pose.orientation.z, msg->pose.orientation.w));

 br.sendTransform(tf::StampedTransform(transform, ros::Time::now(), "map", "base_link"));

}

int main(int argc, char** argv){

 ros::init(argc, argv, "my_tf_broadcaster");

 ros::NodeHandle node;

 ros::Subscriber sub = node.subscribe("/mavros/vision_pose/pose", 10, &poseCallback);

 ros::spin();

 return 0;

};

The above code establishes the connection from map to base _ link by subscribing to the visual

location source from outside the flight control, because the carrier will move in real time, so the

connection between base _ link and map cannot be rigid.

11. Introduction to coordinate systems such as MavROS

and RflySim

11.1. RflySim3D coordinate system

11.1.1. RflySim3D Map coordinate system

RflySim3D coordinate system is the FRD or NED of North East (X North, Y East,

Z Down).

The coordinates of the CopterSim interface are the North-East coordinate

system (NEU).

y

x z

z
y

11.1.2. Carrier coordinate system

Only when the coordinate system of the carrier is determined, the

installation position and angle of the sensor can be determined. It should

be noted that the object in the Rflysim 3D model can be scaled, so generally

speaking, the installation position of the sensor also needs to be scaled

according to the requirements. For example, if the model is magnified by

10 times, the sensor before magnification is (1,0,0) at the head position in

the carrier coordinate system. If the sensor is still required to be at the head

position after magnification, You need to change the sensor configuration

file, setting (10,0,0).

The carrier coordinate system is also NED (coordinate system) in RflySim3D, so the installation

position and attitude of the sensor need to be configured with reference to this coordinate system.

11.1.3. RflySim IMU coordinate system

RflySim outputs the FRD (X Forward, Y Right, Z Down) coordinate system by default,

but in order to unify with mavros, it is currently changed to the FLU (X Forward,

Y Left, Z Up) coordinate system

11.1.4. Sensor coordinate system

The coordinate system of the camera is: (UWN), that is, the Z axis points to the

north, the X axis points to the sky, and the Y axis point to the west

Lidar coordinate system: FLU (X Forward, Y Left, Z Up)

11.2. MavROS coordinate system

11.2.1. MavROS IMU coordinate system

11.2.1.1.Software-in-the-loop simulation

The IMU coordinate system output by mavros is FLU by default. Note: In order

to unify the coordinate system, the IMU coordinate system output by the new

version of VisionCaptureAPI interface no longer uses the previous FRD (X

Forward, Y Right, Z Down) coordinate system. Use FLU consistently with

MavROS.

11.2.1.2.Hardware-in-the-loop simulation

Before using the IMU of mavros, first determine the IMU coordinate system. If

it is the northeast earth, then change the coordinate system to the northeast

sky. The specific steps are as follows:

1) Open QGC (QGround Control) and connect the flight control;

2) Select the Gear icon (Body Settings) in the toolbar, then select

Sensor in the sidebar

3) Select the Set Orientations or Orientations button, as shown in the

following figure, and select the coordinate system option of rotating

to the north and east according to the coordinate system output by

IMU;

Then click OK, and remember that the flight control needs to be powered on again to take effect.

11.2.2. MavROS map coordinate system

11.2.2.1. Problems needing attention in using RflySim and mavros

When using RflySim simulation combined with mavros, it should be noted that

the map coordinate system used in ROS is also ENU coordinate system, but in

the process of development based on mavros, it will be found that the

coordinate system in RflySim3D is NED, except that the Z axis is different, there

is a 90-degree yaw angle between the two. So when we send the coordinates

via/mavros/setpoint _ position/local or via/mavros/setpoint _ raw/local to take

off, the aircraft will rotate 90 degrees clockwise to the XY plane during takeoff.

So if we want to directly use the coordinates of a certain point in RflySim3D to

send through mavros, we need to interchange X and y, X is negative, and Z is

negative. If we use attitude control, we also need to pay attention to this

difference. Another detail to note here is that if our plane is flying in a corridor,

according to custom, we want the nose direction to point to the other end of the

corridor, while the X direction in RflySim3D is parallel to the corridor wall, and

the X direction goes straight to the other end of the corridor. We control the

plane from (0,0,0) to the other end of the corridor (100,0,0) by mavros, and we

take off the plane. And send a take-off target point (0,0,2) via the

topic/mavros/setpoint _ position/local or/mavros/setpoint _ raw/local. When you

take off, you will find that the plane is facing the left wall. This is not the desired

effect, so we need to send the target punctuation with a 90-degree yaw (position:

0, 0, 2; Orientation: (0.707, 0, 0, 0.707)), a yaw angle needs to be added every

time the target point is sent. Of course, there is no problem to use this way to

point the flight, but if we control the attitude, this method can not be used, at

this time, we need to start the bat script initialization angle of RflySim to a 90-

degree value "SET/a ORIGIN _ YAW = 90", through the description of the

above example, When we use mavros to simulate in RflySim, we need to pay

attention to the following points: determine the control mode (pose control,

speed control, attitude control), the direction of the nose in the scene (for

example, in the above example, if the target point does not give a yaw angle, it

is not impossible for the aircraft to "face the wall and think"). If the corridor

direction in the scene is the y direction of RflySim3D, then after the aircraft takes

off, the nose direction is just the corridor direction, so it needs to be set flexibly

according to the needs. In particular, when applied to the SLAM scenario, the

initialization angle in the bat script for starting RflySim should be set to SET/a

ORIGIN _ YAW = 90, because if this value is not set, it may cause a large error

in the initialization of the SLAM algorithm due to excessive angular velocity

during takeoff rotation.

	1. Introduction to the RflySim Visual Architecture
	2. Configuration of visual function development environment
	2.1. Windows Development Environment
	2.1.1. The platform comes with a VS Code development environment
	2.1.2. Pycharm Development Environment

	2.2. Ubuntu Virtual Machine Development Environment
	2.3. Ubuntu Development Environment

	3. Introduction to development tools that rely on the development of visual algorithms
	3.1. MAVLink/mavros/pymavlink
	3.2. ROS/ROS2
	3.3. OpenCV

	4. RflySim platform visual configuration steps
	4.1. bat Script Configuration Method (Configuration for Vision)
	4.1.1. bat Script Template Selection (Select an existing script template based on your needs)
	4.1.1.1. SITLRun.bat software-in-the-loop simulation base script
	4.1.1.2. SITLPos.bat Initialize the position control software in the loop script
	4.1.1.3. Initialize the position control software in the loop script SITLPosStr.bat the form of a string
	4.1.1.4. HITLRun.bat Hardware-in-the-loop simulation base script
	4.1.1.5. HITLPos.bat Initialize Position Control Hardware-in-the-Loop Script
	4.1.1.6. Initialize the Position Control Hardware-in-the-Loop Script HITLPosStr.bat Strings
	4.1.1.7. HITLPosSysID.bat configure the initial position sequence hardware-in-the-loop script
	4.1.1.8. The value of CopterID is determined by SysID HITLPosSysIDStr.bat, and the initial position sequence can be configured

	4.1.2. START_INDEX(Coptic starting number in Copticsim)
	4.1.3. UDP_START_PORT (Port number for MavLink UDP communication in CopterSim)
	4.1.4. SimMode (Hardware/Software Emulation Mode Selection)
	4.1.5. UE4_MAP (Specifying the scene map in RflySim3D)
	4.1.6. IS_BROADCAST (Select CopterSim MavLink message communication method ）
	4.1.7. UDPSIMMODE （ MavLink Messaging Communication UDP Emulation Mode Settings ）
	4.1.8. TOTOAL_COPTER （ The total number of aircraft ）
	4.1.9. VEHICLE_INTERVAL （ Initialize the aircraft position interval ）
	4.1.10. Flight Controller Initialization Pose Settings (Pos, Yaw, and Distributed Multi-Machine Settings)
	4.1.11. IsSysID （Hardware-in-the-loop unique parameters determine whether CopterID uses the sys_id of the flight controller）
	4.1.12. More BAT Script Template Descriptions (e.g. Independently Set Pose for Each Aircraft, etc.)

	4.2. PX4 software-in-the-loop simulation steps
	4.2.1. Bat Script Settings

	4.3. PX4 Hardware-in-the-Loop Simulation Steps (Flight Controller Needs to Restore Official Firmware)
	4.4. PX4 Software-in-the-Loop + Virtual Machine in the Loop
	4.4.1. Bat script configuration

	4.5. PX4 Software-in-the-Loop + NX Hardware-in-the-Loop
	4.5.1. Bat script configuration
	4.5.2. NX side configuration

	4.6. PX4 Hardware-in-the-Loop + Virtual Machine in the Loop
	4.6.1. Bat script configuration
	4.6.2. Virtual Machine Configuration

	4.7. PX4 Hardware-in-the-Loop + NX Hardware-in-the-Loop
	4.7.1. Bat Script Configuration
	4.7.2. NX Configuration

	4.8. Multi-PX4+ Multi-NX Hardware-in-the-Loop
	4.8.1. Bat Script Configuration
	4.8.2. Flight Control Parameter Settings
	4.8.3. NX Configuration

	5. Introduction to vision-related communication ports
	5.1. Description of UDP mutual communication port between the visual interface and CopterSim and RflySim
	5.1.1. Port 20010 (default single RflySim3D window, the port where the vision interface communicates with RflySim3D for requests, such as collision detection, target properties, camera properties, etc.)
	5.1.2. Port 20100 (CopterSim accepts emulation port to restart an aircraft)
	5.1.3. Port 30100 (CopterSim Single Aircraft Accepts External Requests for IMU Data by Default)
	5.1.4. Port 31000 (Vision Interface Configuration: The current system accepts IMU data by default)
	5.1.5. Port 20005 (Vision Interface Requests Timestamp of Aircraft Takeoff from CopterSim)
	5.1.6. Port 20006 (Listening for Data from RflySim3D)
	5.1.7. Description of data structures related to communication
	5.1.7.1. RflyTimeStmp (Time information received from CopterSim)
	5.1.7.2. VisionSensorReq (Reading the structure from the Config.json file to request sensor configuration from RflySim3D)
	5.1.7.3. imuDataCopter (accepts IMU data structures from CopterSim)
	5.1.7.4. SensorReqCopterSim (request relevant data from CopterSim, e.g. IMU)
	5.1.7.5. reqVeCrashData (Listen to RflySim3D to object property data when it is hit by an airplane)
	5.1.7.6. CoptReqData (request to RflySim3D to obtain the attributes of the specified aircraft)
	5.1.7.7. ObjReqData (request to RflySim3D to get the properties of the specified object)

	5.2. Python program communication interface with CopterSim
	5.2.1. PX4SILIntFloat （ SILInts and SILFloats data exported to CopterSim DLL models ）
	5.2.2. InitTrueDataLoop （Start two threads to receive real data from CopterSim and PX4 data respectively）
	5.2.3. InitMavLoop （ Enable MAVLink to listen to CopterSim data and update it in real time ）
	5.2.4. TimeStmploop（Listen to the timestamp data of a specified CopterSim in a loop）
	5.2.5. StartTimeStmplisten（The thread loop listens to the timestamp data of the specified CopterSim and does not block the main thread）
	5.2.6. endMavLoop （ Stop receiving CopterSim data, which is the same as stopRun ）

	5.3. Python program to communicate with RflySim3D Interface
	5.3.1. ReqVeCrashData (structure sent by RflySim3D, mainly data related to collision)
	5.3.2. CoptReqData (aircraft data returned by RflySim3D, information of a Copter sent)
	5.3.3. ObjReqData (data returned by RflySim3D, information about an object sent)
	5.3.4. CameraData (data returned by RflySim3D, information of a certain camera (vision sensor) sent)
	5.3.5. UE4MsgRecLoop (used to process the messages returned by RflySim3D or CopterSim, there are 6 kinds of messages in total)
	5.3.6. Get CamCoptObj (get the specified data from RflySim3D and store the monitored three types in three lists)
	5.3.7. reqCamCoptObj (Request data for objects in the scene (does not create new objects, but gets data for existing objects))
	5.3.8. sendUE4Cmd (To RflySim3D Send a Byte String Command)

	5.4. Python programs and other Ubuntu Inside ROS Node communication
	5.5. Application of RflySim platform time stamp alignment with other platform
	5.5.1. RflySim Timestamp, Remote System Timestamp, ROS Timestamp
	5.5.1.1. RflySim timestamp
	5.5.1.2. Remote System Timestamp
	5.5.1.3. ROS timestamp

	5.5.2. Timestamp alignment across system

	6. RflySim3D control interface UE4CtrlAPI.py
	6.1. Scene control interface (send command to control RflySim3D)
	6.1.1. sendUE4Pos (Set the pose, type, etc. To the object of the specified copter _ ID in RflySim3D)
	6.1.2. sendUE4Cmd (To RflySim3D Send a "command")

	6.2. Data request interface (get all objects B ounding B Properties such as ox ）
	6.2.1. CoptReqData (aircraft data returned by RflySim3D, information of a Copter sent)
	6.2.2. ObjReqData (data returned by RflySim3D, information about an object sent)
	6.2.3. CameraData (data returned by RflySim3D, information of a certain camera (vision sensor) sent)
	6.2.4. reqCamCoptObj (In the request RflySim3D scene)
	6.2.5. UE4MsgRecLoop (loop listening to data from RflySim3D)
	6.2.6. Get CamCoptObj (get the attributes of the specified target from RflySim3D)
	6.2.7. reqCamCoptObj (Request for properties of the specified object in RflySim3D)

	6.3. Interface such as collision detection
	6.3.1. ReqVeCrashData (the structure sent by RflySim3D, which mainly contains data related to collision)
	6.3.2. UE4MsgRecLoop (used to process messages returned by RflySim3D or CopterSim)

	6.4. Terrain acquisition interface
	6.4.1. sendUE4Cmd (To RflySim3D Send command)

	7. Vision sensor configuration protocol Config. JSON.
	7.1. Config. General introduction to JSON protocol
	7.1.1. Config. JSON File Parameter Description
	7.1.2. jsonLoad (Increase vision sensor by reading configuration file)
	7.1.3. addVisSensor (Object to add a vision sensor parameter)

	7.2. Transmitting and receiving method
	7.2.1. sendUpdateUEImage (Sent a vision sensor request, R flySim3D This sensor will be created or updated when received)
	7.2.2. sendReqToUE4 (Send a set of VisionSen sorReq)

	7.3. Supported sensor list and configuration method
	7.3.1. Visible RGB image
	7.3.2. Grayscale image
	7.3.3. Depth image
	7.3.4. Partition map
	7.3.5. Ranging sensor
	7.3.6. Mechanical scanning laser radar
	7.3.7. Fancy scanning laser radar
	7.3.8. Infrared grayscale image
	7.3.9. Thermodynamic color map

	8. The Python visual interface is VisionCaptureApi. Py.
	8.1. Related classes and data structures
	8.2. Transmitting and receiving image related interface
	8.2.1. sendReqToUE4 (Send one group VisionSensorReq ）
	8.2.2. jsonLoad (Increase vision sensor by reading configuration file)
	8.2.3. sendReqToCopterSim (Send U DP Data to C opterSim Request sensor data. E.g. IMU)
	8.2.4. img_mem_thrd (Image of receiving RflySim3D return by reading shared memory)
	8.2.5. startImgCap (Turn on the thread that grabs images in shared memory)
	8.2.6. sendImgUDPNew (Pass the picture returned by RflySim3D through u dp Send to the specified ip And port number)
	8.2.7. img_udp_thrdNew (Receive the image data returned by RflySim3D)

	8.3. IMU obtains relevant interface
	8.3.1. sendImuReqCopterSim (By sending S ensorReqCopterSim Instance to request I mu Data
	8.3.2. sendImuReqClient (Send S ensorReqCopterSim Instance to request I mu Data
	8.3.3. sendImuReqServe (Receive C in thread opterSim Back to pass Imu Data
	8.3.4. AlignTime (Guarantee I mu Maintain stable frequency during data release (release)

	8.4. ROS-related interfaces
	8.4.1. Imu2ros （C opterSim Back to pass imu Message to R os Built-in I mu Message format conversion)
	8.4.2. getIMUDataLoop (Will be Imu Data conversion to ROS I mu And send it to the specified topic)
	8.4.3. img_mem_thrd (When the global variable isEnableRosTrans is True, the image content will be published in the form of ROS message.)
	8.4.4. img_udp_thrdNew (Global variable I sEnableRosTrans T rue Is used, the R os Publish the picture content in the form of a message)

	8.5. Other intrinsic functions
	8.5.1. sendImgBuffer (Encapsulate the data to be sent into one or more messages according to the fixed size, and send the message through u. dp Send to Specified I p And port number)
	8.5.2. initUE4MsgRec (Start a t 4(self.UE4MsgRecLoop) Start listening 2 24.0.0.10：20006）
	8.5.3. endUE4MsgRec (Stop thread t 4(self.UE4MsgRecLoop) Monitoring of)
	8.5.4. UE4MsgRecLoop (For processing R fly Sim3D Or C opterSim Message returned)
	8.5.5. getUE4Pos (Obtain Co pter At Rf lySim3D Position in the)
	8.5.6. getUE4Data (Obtain C opter In R flySim3D Data in)
	8.5.7. TimeStmploop (Receive C opterSim The returned heartbeat and timestamp data ensures that the terminal and C. opterSim The connection of is normal)
	8.5.8. StartTimeStmplisten (Receive C in child thread opterSim Heartbeat and timestamp data returned to ensure C opterSim The connection is normal
	8.5.9. sendUE4Attatch (Other C opter Attach to other C opter Plus, "append" means to follow the move)
	8.5.10. sendUE4PosScalePwm20 (Set the status attributes of 20 groups of UAVs and set the motor data)
	8.5.11. sendUE4Pos (To all in the LAN R f lySim3D Send a C opter If it does not exist, one will be created)
	8.5.12. sendUE4PosScale100 (Set 100 groups of UAV status attributes)
	8.5.13. sendUE4PosScale (Send a C opter The data for, R flySim3D Update the Co upon receipt pter , with a scaling factor)
	8.5.14. sendUE4Pos2Ground (Send a C opter The data for, R flySim3D The Co will be updated upon receipt pter , but it can make C opter Close to the ground)
	8.5.15. sendUE4PosScale2Ground (Send a C opter , update the Co pter , with a zoom factor, and set the aircraft to ground contact)
	8.5.16. sendUE4PosNew (Send the data of a Copter, and RflySim3D will update the Copter after receiving it)
	8.5.17. sendUE4PosSimple (Send the data of a Copter, and RflySim3D will update the Copter after receiving it)
	8.5.18. sendUE4PosFull (Send a C opter The data for, R flySim3D The Co will be updated upon receipt pter ）
	8.5.19. sendUE4ExtAct (To target C opter Send a set of data to be processed by the user-defined function of the target to achieve various user-defined effects)

	9. Python Aircraft Control Interface PX4MavCtrlV4.py
	9.1. Initialize
	9.1.1. InitMavLoop (Enable MAVLink to monitor CopterSim data and update it in real time)
	9.1.2. endMavLoop (Stop receiving CopterSim data, consistent with stopRun)
	9.1.3. stopRun (Quit MAVLink Data reception mode)

	9.2. The offboard exits at the end
	9.2.1. initOffboard (On offboard Mode, and start the thread to send o in a loop ffboard News
	9.2.2. initOffboard2 (On offboard Mode, and start the thread to send o in a loop ffboard News
	9.2.3. OffboardSendMode (Send offboard data cyclically)
	9.2.4. endOffboard (Send MAV _ CMD _ NAV _ GUIDED _ ENABLE command to exit offboard mode and stop sending offboard messages)

	9.3. Unlock
	9.3.1. SendMavArm (Unlock or lock the UAV)

	9.4. Aircraft Pointing Flight Interface
	9.4.1. SendPosNED (Send the target position and heading angle interface in the northeast earth coordinate system)
	9.4.2. SendPosNEDNoYaw (Sending the target position in the North-East coordinate system)
	9.4.3. SendPosNEDExt (Select Northeasterly or lower right forebody coordinate system to send target position to PX4)
	9.4.4. SendPosGlobal (Earth coordinate system (latitude, longitude, altitude) with yaw pointing flight interface)
	9.4.5. sendMavLand (Send Three-dimensional coordinates 、 MAV_CMD_NAV_LAND Command the aircraft to land at the target position)
	9.4.6. sendMavTakeOffLocal (Send 3D coordinates, course angle, pitch angle, take-off speed MAV_CMD_NAV_TAKEOFF_LOCAL Command the aircraft to fly to the target position)
	9.4.7. sendMavTakeOff (Send 3D coordinates, course angle, pitch angle, MAV_CMD_NAV_TAKEOFF Command the aircraft to take off to the target position)
	9.4.8. F RD Pointing flight interface in coordinate system
	9.4.8.1. SendPosFRD (target position and heading angle in airframe coordinate system (lower right front))
	9.4.8.2. SendPosFRDNoYaw (target position in airframe coordinate system (lower right front) to PX4)
	9.4.8.3. SendPosNEDExt (select the North-East or the lower right front coordinate system to send the target position to PX4)

	9.4.9. F RD Pointing flight interface without yaw angle in coordinate system
	9.4.9.1. SendPosFRDNoYaw (target position in airframe coordinate system (lower right front) to PX4)
	9.4.9.2. SendPosNEDExt (Select Northeasterly or lower right forebody coordinate system to send target position to PX4)

	9.5. Aircraft Speed Control Interface
	9.5.1. F RD Speed control interface in coordinate system
	9.5.1.1. SendVelFRD (target velocity and course angular velocity in airframe coordinate system (lower right front))
	9.5.1.2. SendVelNoYaw (airframe target velocity)

	9.5.2. Speed control interface for uncontrolled aircraft yaw
	9.5.2.1. SendVelNEDNoYaw (speed control in North East coordinate system)
	9.5.2.2. Send Ground Speed (send a command to modify the GND _ SPEED _ TRIM and set the ground speed of the aircraft)
	9.5.2.3. SendCopterSpeed (send a command to modify the MPC _ XY _ VEL _ MAX and set the maximum speed of the aircraft)
	9.5.2.4. SendCruiseSpeed (send a command to modify the FW _ AIRSPD _ TRIM parameters and set the cruising speed of the aircraft)

	9.5.3. With yaw rate and altitude control interface
	9.5.3.1. SendVelYawAlt (Target speed, course angle and altitude to PX4 in northeast coordinate system)
	9.5.3.2. SendPosGlobal (course angular velocity and altitude control in northeast earth coordinate system)
	9.5.3.3. SendMavLandGPS (sends a Longitude, latitude, altitude, MAV _ CMD _ NAV _ LAND command to land the aircraft to the target position)
	9.5.3.4. SendMavTakeOffGPS (send commands of longitude, latitude, altitude, heading angle, pitch angle and MAV _ CMD _ NAV _ TAKEOFF to fly the aircraft to the target position)
	9.5.3.5. SendTakeoffMode (send the takeoff altitude command to change the flight control to takeoff mode to make the aircraft take off)

	9.6. Aircraft attitude control interface
	9.6.1. SendAttPX4 （F RD Attitude Control Interface in Coordinate System ）

	9.7. Aircraft Acceleration Control Interface
	9.7.1. SendAccPX4 (Send target acceleration to P X4 ）

	9.8. Carrier, carrier vision sensor, target and other attribute interfaces
	9.8.1. Request Carrier Aircraft Attribute
	9.8.1.1. GetUE4Data (get Copter data in RflySim3D)
	9.8.1.2. GetUE4Pos (get Copter's position in RflySim3D)

	9.8.2. Request carrier vision sensor interface
	9.8.2.1. CameraData (data returned by RflySim3D, information of a certain camera (vision sensor) sent)

	9.8.3. Request intra-scene target data interface
	9.8.3.1. Get CamCoptObj (get the specified data from RflySim3D and store the monitored three types in three lists)
	9.8.3.2. ReqCamCoptObj (requests data for objects in the scene (does not create new objects, but gets data for existing objects))

	9.9. Other intrinsic functions
	9.9.1. sendStartMsg (Wake up all aircraft)
	9.9.2. waitForStartMsg Program blocks until received sendStartMsg Message of)
	9.9.3. initPointMassModel (Create a particle drone model)
	9.9.4. EndPointMassModel (End particle model)
	9.9.5. yawSat (Back- PI To P I The heading angle between)
	9.9.6. PointMassModelLoop (An endless loop in which the particle model processes messages)
	9.9.7. InitTrueDataLoop (Start two threads, each receiving C opterSim Real data and PX4 Data
	9.9.8. EndTrueDataLoop (Stop I nitTrueDataLoop Thread listening for)
	9.9.9. initUE4MsgRec (Start a t 4(self.UE4MsgRecLoop) Start listening 2 24.0.0.10：20006）
	9.9.10. endUE4MsgRec (Stop thread t 4(self.UE4MsgRecLoop) Monitoring of)
	9.9.11. UE4MsgRecLoop (used to process messages returned by RflySim3D or CopterSim)
	9.9.12. sat (InPWM clipping)
	9.9.13. SendMavCmdLong (Send M AVLINK The C of the message ommand_long Message, which may request the drone to perform some action)
	9.9.14. send MavOffboardCmd (Send o ffboard Command to Flight Control)
	9.9.15. TypeMask (Get o ffboard The message requires typemask ）
	9.9.16. sendM a vOffboardAPI (Update off board Data of the message)
	9.9.17. sendUDPSimpData (Set control mode and control quantity)
	9.9.18. sendMavSetParam (Send command to P X4 Modify the specified parameter)
	9.9.19. SendSetMode (Send M AV_CMD_DO_SET_MOD Set airplane mode)
	9.9.20. getTrueDataMsg (Loop listens to real data and updates built-in state)
	9.9.21. getPX4DataMsg (Loop monitor PX4 Data, and update the built-in status)
	9.9.22. getMavMsg (Cyclic update M AVLink Received data)
	9.9.23. sendCustomData (Send a 1 6 Dimension data to the specified port. This interface can be used with the S imulink Communication)

	9.10. Aircraft status information
	9.10.1. uavAngEular Euler angle returned by flight control (obtained from flight control and can be used for real experiment)
	9.10.2. uavAngRate Angular velocity returned by flight control (obtained from flight control and can be used for real experiment)
	9.10.3. uavPosNED The estimated local position (NED coordinate system) of the PX4 relative to the takeoff position returned by the flight control (obtained from the flight control and can be used for real experiments)
	9.10.4. uavVelNED Estimated local velocity (NED coordinate system) returned by the flight control (derived from the flight control for real experiments)
	9.10.5. isVehicleCrash Is it colliding with another vehicle?
	9.10.6. IsVehicleCrashIDThe number of the vehicle involved in the crash
	9.10.7. uavPosGPS GPS position returned from PX4, using the NED coordinate system, including latitude, longitude, altitude, relative altitude, velocity component, heading angle (derived from flight control for real experiments)
	9.10.8. uavPosGPSHome GPS origin (takeoff) position returned from PX4, using the NED coordinate system (derived from flight control for real experiments)
	9.10.9. uavGlobalPos The global position returned from PX4 is converted into UE4 map coordinate system (obtained from flight control and can be used for real experiments).
	9.10.10. uavAngQuatern Euler angle quaternion returned from PX4 (derived from flight control for real experiments)
	9.10.11. uavMotorRPMS Motor PWM signal returned from PX4 (obtained from flight control and can be used for real experiment)
	9.10.12. uavAccB = [0, 0, 0] Acceleration returned from PX4 (derived from flight control for real experiments)
	9.10.13. UavGyro = [0,0,0] Gyro data returned from PX4 (obtained from flight control and can be used for real experiments)
	9.10.14. uavMag = [0, 0, 0] Magnetometer data returned from PX4 (obtained from flight control for real experiments)
	9.10.15. uavVibr = [0, 0, 0] Vibration data returned from PX4 (obtained from flight control and can be used for real experiment)
	9.10.16. trueAngEular Real Euler angles simulated in CopterSim's DLL model (simulation data)
	9.10.17. trueAngRate Real angular rate simulated in CopterSim's DLL model (simulation data)
	9.10.18. truePosNED Real position simulated in the DLL model of CopterSim (in relation to the UE4 map center), using the NED coordinate system (simulation data)
	9.10.19. trueVelNED Real speed of simulation in DLL model of CopterSim, using NED coordinate system (simulation data)
	9.10.20. trueAngQuatern Real Euler angle quaternions simulated in CopterSim's DLL model (simulation data)
	9.10.21. trueMotorRPMS Real motor speed simulated in CopterSim's DLL model (simulation data)
	9.10.22. trueAccB Real acceleration simulated in CopterSim's DLL model (simulation data)

	10. Related interfaces of mavros/ROS required in development
	10.1. Introduction of Common Communication Modes in ROS
	10.1.1. Message topic communication
	10.1.2. Service type communication

	10.2. Application of ROS on RflySim platform
	10.2.1. Interface for obtaining visual sensor data through topic
	10.2.2. Interface for obtaining IMU data through topic
	The default published topic name for RflySim is/rflysim/IMU, which makes it possible to use IMU data published by mavros (/mavros/IMU/data _ raw) if mavros emulation is used. When using the IMU data published by RflySim, there is a corresponding inter...

	10.3. MavROS common interface
	10.3.1. Topic/mavros/state Obtain flight control status information
	Through this topic, we can check the flight control status information, such as whether the flight control is successfully connected, the current mode of flight control, whether the flight control has been unlocked, etc. Usually, we send instructions ...

	10.3.2. Topic/mavros/local _ position/pose Get flight control pose data
	Through this topic, the pose of the flight control system in the world coordinate system "map" can be obtained, including position information and attitude information. Therefore, if the attitude of the aircraft needs to be obtained, the IMU data can ...

	10.3.3. Topic/mavros/IMU/data _ raw Obtain flight control IMU data
	For the original IMU data, the coordinate system is related to the setting of flight control parameters, and the FLU coordinate system is generally used. Related to this is the/mavros/IMU/data topic, which is the filtered data.

	10.3.4. Topic/mavros/setpoint _ raw/local Send position, speed, acceleration, control command interface
	Send the interface of position control, speed control and acceleration control to the flight control. You can select the control mode through the type _ mask variable. View in detail.错误!未找到引用源。

	10.3.5. Topic mavros/setpoint _ raw/attitude Send Attitude Control Interface
	Flight control by means of attitude control Detailed Reference Attitude loop control

	10.3.6. Service/mavros/set _ mode flight control mode switching interface
	Switch the flight mode of the flight control through this service name. Of course, whether the mode switching is successful or not is limited by the flight control settings. For example, some flight controls shield the switching of some modes. For det...

	10.3.7. Service/mavros/cmd/arming flight control unlocking interface
	The flight control can be unlocked through the service name. Of course, unlocking is also subject to the constraints of flight control settings. Refer to for details. Unlock the flight control

	10.4. Application of MavROS on RflySim Platform
	10.4.1. MavROS Software in the Loop
	10.4.2. MavROS Hardware-in-the-Loop
	10.4.3. MavROS and Flight Control Communication
	10.4.3.1. Obtain the flight control status
	10.4.3.2. Obtain the aircraft attitude
	10.4.3.3. Acquire the flight control pose
	10.4.3.4. Switch flight control Flight mode
	10.4.3.5. Unlock the flight control

	10.4.4. Flight control mode of MavROS
	10.4.4.1. Attitude loop control
	Content description for mavros _ msgs/AttitudeTarget message type:
	10.4.4.2. Acceleration loop control
	10.4.4.3. Speed loop control
	10.4.4.4. Position loop control

	10.5. RflySim Multi-machine ROS Distributed Deployment
	10.5.1. Configuration of flight control parameters
	10.5.2. MavROS parameter configuration
	10.5.3. TF tree building
	10.5.3.1. Brief description of the TF tree
	10.5.3.2. Application of TF tree between RflySim and mavros

	11. Introduction to coordinate systems such as MavROS and RflySim
	11.1. RflySim3D coordinate system
	11.1.1. RflySim3D Map coordinate system
	RflySim3D coordinate system is the FRD or NED of North East (X North, Y East, Z Down).
	The coordinates of the CopterSim interface are the North-East coordinate system (NEU).

	11.1.2. Carrier coordinate system
	Only when the coordinate system of the carrier is determined, the installation position and angle of the sensor can be determined. It should be noted that the object in the Rflysim 3D model can be scaled, so generally speaking, the installation positi...

	11.1.3. RflySim IMU coordinate system
	RflySim outputs the FRD (X Forward, Y Right, Z Down) coordinate system by default, but in order to unify with mavros, it is currently changed to the FLU (X Forward, Y Left, Z Up) coordinate system

	11.1.4. Sensor coordinate system
	The coordinate system of the camera is: (UWN), that is, the Z axis points to the north, the X axis points to the sky, and the Y axis point to the west

	11.2. MavROS coordinate system
	11.2.1. MavROS IMU coordinate system
	11.2.1.1. Software-in-the-loop simulation
	The IMU coordinate system output by mavros is FLU by default. Note: In order to unify the coordinate system, the IMU coordinate system output by the new version of VisionCaptureAPI interface no longer uses the previous FRD (X Forward, Y Right, Z Down)...
	11.2.1.2. Hardware-in-the-loop simulation
	Before using the IMU of mavros, first determine the IMU coordinate system. If it is the northeast earth, then change the coordinate system to the northeast sky. The specific steps are as follows:

	11.2.2. MavROS map coordinate system
	11.2.2.1. Problems needing attention in using RflySim and mavros
	When using RflySim simulation combined with mavros, it should be noted that the map coordinate system used in ROS is also ENU coordinate system, but in the process of development based on mavros, it will be found that the coordinate system in RflySim3...

