Outline for Retrieving API Documentation Files

1. RflySim Automatic Code Generation Simulink Configuration Interfacecc.ccoovvvriennnnnn, 1
1.1. The Basic Architecture of RflySim's Automatic Code Generation System 1
1.2. Internal Communication in the PX4 Software System..........cccoccevvvrieiniiiniinnininnnenn, 2
1.3. Simulink Configuration INtrface..........coovveiiiiiiiiniieiie e 3
1.4. Code Modification INErfacecvvvereiiiiinierreee e 6
L.5. Custom Source Code Import INterface..........ovvvvvririiieiiiiienee e 6

2. Simulink/PSP Toolbox Module INterface..........ccoceriiirieiiiiiice e 7
2.1. ADC and Serial — ADC and Serial Communication Libraryc.ccocooecvniininnenns 8

2.1.1. Read ADC Channels—Outputting the input of an external ADC 8
2.1.2. Serial—Serial Communication Modulecccoveeiiiiiiiiciiciecic e 8
2.2 Miscellaneous Utility Blocks—Other Ibrariescccocvvviviiniiie s 9
2.2.1. binary logger—Data Logging Module..........cccccoviiiniiniiiiiiiine 9
2.2.2. ExamplePrintFen—Print Function Example..........coooovciiiiiiicn, 10
2.2.3. ParamUpdate—Custom Storage Class Parameter Update Module................. 10
2.3. Sensors and Actuators—Sensor and Actuator Interface Library............ccoevveennnn, 11
2.3.1. Battery _measure—Battery Data Moduleccoooeeiiiiiiiiiiiciiciecec e 11
2.3.2. Input_rc—Remote Control Input Module..........ccooeeiiiiiiiiiiiiiiciecciee e 12
2.3.3. PWM_ output—Motor PWM Moduleccocvviiiiiiniiiiiieen, 13
2.3.4. RGB _LED— LED Light ...ccoooiiiiiiiiiciecrs e 14
2.3.5. sensor_combined—Sensor Fusion Module............ccccooiriiiiiiiicieciee 15
2.3.6. Speaker Tune—Buzzer Moduleccooviiiiiiiiiiii 16
2.3.7. vehicle attitude—Attitude Data Module ..o, 17
2.3.8. vehicle gps— GPS Data Module ..., 18
24. uORB Read and Write— uORB Message Read and Write Library...........c.ccenee. 19
24.1. uORB Read Async—Retrieve Data Related to uORB Topic..........coeveeennnn. 19
24.2. uORB Read Function-Call Trigger— uORB Message Read Callback Trigger M
odule 19
2.4.3. uORB Write— uORB Message Data Publishing Interface Module................ 21
244. uORB Write Advanced— Advanced Module for utORB Message Data Publishi
ng Interface 23
24.5. uORB Write Advanced dai— Advanced Module for utORB Message Data Pub
lishing INtETTACE.eiiiiiiiicic 24

3. MATLAB Command Line INterfaceccoveiriiiiiiiiiiiiicsie e 25
3.1 PXAUPIOAQ. ...ttt 25
3.2. PXACMD ...t 25
3.3. PXABUILA. ..o 25
3.4. PXAAPPNAME ...ttt 25
3.5. PXAADPPLOAA ..ot 25
3.6. PXAMOUGIFIIC. ...ttt 26
3.7. PXAOTECIAL ..o 26
3.8. PXASIISEL ...t 26
3.9. PXASIIREC ...ttt 26

4.

Automatically generated external communication interface..........ccoovvvervriinienienenieseenennens 26
4.1. TEIY CUTL NS ottt 27
4.2. TEIY EXEIMSE cvvieiiiitieite et nree 31
4.3. 101 N7 0 G 38 11T TSP P PP PPROPRRN 32
4.4, TE1Y INSTIS.MSE ccvviiiieiicitee et bbb nree 36
Flight Log Recording and External Data Communication Interface..........c.ccoccevvnvnivnicnnnnn, 36
5.1 Simulation Ground Truth Data ANalysisccccvririreiiniinineneenne e 36
5.1.1. Offline Acquisition Methodcccooiiiiiiiiiic 36
5.1.2. Online Acquisition Methodcccviriiiiiiiii s 36

5.2. Flight Data ANalysis........ccccrririeiiiiininiieiene e e 37
5.2.1. Offline Log ANALYSISveveeiiiiiririiicisene et 37
5.2.2. Online Log ANaLySiS.....cccocviiiiiiiiiiiiiiis i 37

5.3. Controller and External Data Communication Interface...........cccccoovviiiiiinieennenn 37
5.3.1. Actuator_output Message - HIL Simulationcccoceveeiiiiiiiecieciic e 37
5.3.2. pwm_output Message - HIL & Actual Flight..........cccoocoiininnen, 37
5.3.3. actuator_control 0—HIL & Actual Flightccccoooiiiiiiii 37

5.4. Flight Controller Communication Interface with External Data............ccc.cccooveneene 38
54.1. Port 20100 Series—Receiving Internal State Estimation Values from PX4 ...38
54.2. Port 30100 Sesries—Receiving CopterSim Flight Simulation Values and Sendi
ng rfly ctrl Messages to the Flight Controllerccoovviviiiiiiinii 39
5.4.3. 40100 System Port—Receiving Internal rfly px4 Messages from Flight Contro
ller 40

Code masking and replacement interface............ccocviiviiiiiiiinii 40

Multi-module parallel development interface............coceviiiniiciiiiic 41

Different aircraft model development interfacecoccveriiiiiriiieneseee e 42
8.1. Introduction to PX4 Flight Controller...........ccocvvviiiiiiiiiiieiece e 42
8.2. PX4 MiXer DEefINitionccueeveiviiiiiieiesiesie et 43
8.3. The syntax of PX4 miXer files........ccccviiiiiiiiiiiiiiiiice e 44
8.4. Summing MiXer—AdditiVe MIXEI.......cccvrvireeiiiriniesieene e 45
8.5. Null Mixer—Flight COntroller..........cccoovriiieiiiiiiniee e 46
8.6. Multirotor Mixer—Multitotor MIXETc.eevviiirerieiienie e 46
8.7. Helicopter Mixer—Helicopter MIXeT.........cceriiirireeienieseseese e 46
8.8. VTOL Mixer—Vertical Takeoff and Landing (VTOL) Drone Mixercc...... 48

PX4 NatiVe TN ACES ...ccuviviieiiiieieite st nre e 48
9.1. Getting Started with the PX4 Software Systemccoovvviiiiiiinccinnecee, 48

9.1.1. Firmware Download...........ccoooieiiiiiiiiiiiice e 50
9.1.2. Model ConfigUIation..........ccvriieeiiiiiieee s 51
9.1.3. Hardware-in-the-loop (HIL) SIMulation.........ccccceeiiininceininineenneceeee 51
9.1.4. Aircraft actual flight.........ccoooiiiiiiii 53
9.2. PX4 Official Flight Controller Support Introductioncccocovvvvvveiininecnninen, 53
9.3. Introduction to Commonly Used uORB Messages in PX4...........ccoceviniivnicnnnn, 54
9.4. Introduction to Commonly Used Modules in PX4...........cccccooviiiiiiiiiinccienn, 54
9.5. Introduction to Commonly Used Parameters in PX4 ..., 55

) R S 15 (S (oY B 10 P C 55

11.

Common Questions and ANSWELSccccviiiiiiieiiiii s e 56
11.1. MATLAB/Simulink During automatic code generation, the following error is some
TS TEPOTLEA.vveeitire ettt ettt r et nr et r e r e 56
11.2. In the automatic code generation controller, the delay module is used to directly gen
erate control instructions, which causes the aircraft to fly around.coocecvvniiiiniineen 58
11.3. SIL Or HIL When simulating, RflySim3D Appear Fatal error:[File:D://Build/++U
E4....]... REPOIt AN EITOT ...eiiiiiiiiiiiiiii s 60
11.4. How to do UAV attitude autonomous CONtrol?coererieerenenenieesesiesesiee e 61
11.5. How to get the result data of attitude control hardware in the loop? Do I know how
to download the flight log to get what I Want?............ccocooeiiiiiiiicii e 61
11.6. QGC Yes Analyze Tools- Flight log, after refreshing when downloading, I can't fi
nd the log of the time corresponding to the hardware in the ring..........c.cccooviiiiiiiiiciis 61
11.7. WinlOWSL When compiling the firmware, displays: region "AXI SRAM' overflo
WEA DY 15401072 DYLES....eiiiiiiiiiiii it 63

1. RflySim Automatic Code Generation Simulink Configura
tion Interface
1.1. The Basic Architecture of RflySim's Automatic Code Generation

System

The Pixhawk Pilot Support Package (PSP), also known as “Autopilot Support Package” in Ch
inese, is an official toolbox released by MathWorks for Pixhawk. This toolbox allows the automati
c compilation and deployment of Simulink models containing autopilot algorithms to Pixhawk har
dware systems using the Embedded Coder in Simulink. Its main functionalities include:

» Capable of simulating and testing various aircraft models and autopilot algorithms within Sim
ulink, with automatic deployment of algorithms to the autopilot.

» The toolbox provides practical examples including light control, remote controller data proce
ssing, and attitude controllers.

» Numerous interface modules are provided in the toolbox for accessing both the software and
hardware components of the autopilot.

» Automatic logging of flight data from sensors, actuators, and deployed controllers.

» Ability to subscribe to and publish uORB topic messages. All data within the PX4 autopilot s
oftware is temporarily stored in a uORB message pool. Subscribing to uORB allows reading t
opics of interest from this pool, while publishing to uORB allows specific topics to be publish
ed into the pool for use by other modules.

The PX4 software system can be divided into several small modules, each running independe
ntly (in parallel threads). These modules transmit and interact with data through the subscription a
nd publication functions of the uORB messaging module. After deploying the code generated by S
imulink to the PX4 autopilot software, it does not affect the operation of the native PX4 autopilot s
oftware. Instead, it adds an independent module called "px4 simulink app" (running in a separate
thread) parallel to the other modules. Since the native PX4 control algorithms may need to access t
he same hardware output resources as "px4 simulink app," this can lead to read-write conflicts. T
herefore, the platform's one-click deployment script provides an option to automatically block the
PX4 native firmware from accessing the actuators, ensuring that only the "px4 simulink app" mo

dule can output motor controls, as shown in the diagram below.

PXA% 1t Bt

e | s | | mEm

UORBYH Btk

Simulink4: Jf2
px4_simulink_app [

il 0

LED,PWM%E

AR i Simulink MATLAB

PSPT. H4H LN RS SIMULINK

The PSP toolbox generates C code from control algorithms designed in Simulink. This code i
s then imported into the source code of the PX4 software system to create a standalone program ca
lled "px4 simulink app" that runs independently. The toolbox invokes the compilation tool to com
pile all the code into a PX4 software firmware file with the extension ".px4". This firmware file is
downloaded and flashed into the flight controller, enabling the flight controller to execute the PX4

software with the generated algorithm code.

1.2. Internal Communication in the PX4 Software System

PX4 consists of two main components: the flight control stack, which primarily includes state
estimation and flight control systems, and the middleware, a universal robotic application layer ca

pable of supporting any type of autonomous robot. The middleware is responsible for internal/exte
rnal communication and hardware integration.

All supported PX4 drone models, including other platforms like unmanned boats, cars, under
water vehicles, etc., share a common codebase. The entire system employs a reactive design, mean
ing:

All functionalities can be divided into several replaceable and reusable components.
Communication is done through asynchronous message passing.

The system can handle different workloads.

The PX4 system achieves inter-module communication through a publish-subscribe mes
sage bus called uORB. Utilizing this publish-subscribe message bus implies:

® The system is reactive; it operates asynchronously, updating immediately upon the arriva

| of new data.

® All activities and communications within the system are fully parallelized.

® System components can access data from anywhere while ensuring thread safety.

uORB (Micro Object Request Broker, Micro Object Request Broker) is a crucial module in th
e PX4/Pixhawk system, tasked with the entire system's data transmission. All sensor data, GPS, PP
M signals, etc., are obtained from the chip and transmitted through uORB to various modules for ¢

omputation and processing. In reality, uORB is a set of inter-process IPC communication modules.

In Pixhawk, all functionalities are independently implemented and operate as process modules. Th
e inter-process data exchange is crucial and must meet the real-time and ordered characteristics.

Internally, the flight controller utilizes the NuttX real-time ARM system. For NuttX, uORB is
just a regular file device object that supports Open, Close, Read, Write, loctl, and Poll mechanism
s. Through the implementation of these interfaces, uORB provides a "point-to-multipoint" inter-pr
ocess broadcast communication mechanism. Here, "point" refers to the communication message's
"source," and "multipoint” means a source can have multiple users to receive and process data. The
relationship between the "source" and "user" is such that the source does not need to consider whe
ther a user can receive a broadcast message or when they receive it. It simply pushes the data to th
e uORB message "bus." For the user, the number of times the source pushes messages is not impor
tant; what matters is retrieving the latest message. In the communication process, the sender is onl
y responsible for sending data without caring about who receives it or whether the receiver can rec
eive all the data. Similarly, the receiver does not care who sent the data or whether all data was rec
eived during the process.

uORB does not guarantee that all sender data can be received by the receiver during data publ
ishing and reception; it only ensures that the receiver can receive the latest data when desired. The
separation of sending and receiving allows modules during flight to operate independently without
interference. In practice, a uUORB can be published by multiple senders and received by multiple r
eceivers, forming a many-to-many relationship. Publishers update and publish data to the uORB pl
atform at a certain frequency without concern for who is receiving. Subscribers can retrieve data at

any time. For further learning resources, please refer to: https://docs.px4.io/main/zh/middleware/u

orb.html

publisher subscriber

T

publish() subscribe()
e Obiect RequestBroker SYESt

1.3. Simulink Configuration Interface

The Embedded Coder module of MATLAB/Simulink can generate readable, compact, and fas
t C and C++ code for use with embedded processors in large-scale production. It extends the capab
ilities of MATLAB Coder and Simulink Coder, providing precise control over generated functions,

files, and data through advanced optimizations. These optimizations enhance code efficiency and

https://docs.px4.io/main/zh/middleware/uorb.html
https://docs.px4.io/main/zh/middleware/uorb.html

acilitate integration with existing code, data types, and calibration parameters. Third-party develop

ment tools can be integrated to build executable files for deployment on embedded systems or rapi
d prototype boards.

To generate code for Pixhawk series flight controller hardware after completing the model in

Simulink, follow these settings in the Model Configuration Parameters:

P4 Exp3_BlankTemp - Simulink

- o
File Edit View Display Diagram Simulation Analysis Code Tools Help
[T} == iii
B-a-8 me-=- % Rt Normal - @~
Exp3 BlankTemp

| (@ Model Configuration Parameters Ctrl+E
@® 03 BlankTenp Tmuration rarget ror atenow

Model Properties

1) Set the solver type to: Fixed-step, Solver selection: discrete. That is, select a discrete fix

ed-step solver.

@ Configuration Parameters: Exp3_BlankTemp/Configuration (Active)

- o X
Solver Simulation time
Data Import/Export start tme: [0 - f
- a: [inf
* Optimization art time: op time:
>
Diagnostics Solver options
Hardware Implementation
Model Referencing Type: Fixed-step ~ | Solver: |discrete (no continuous states) -
Simulation Target
» Code Generation ¥ Additional parameters
» Coverage

» HDL Code Generation Fixed-step size (fundamental sample time): aulo

Tasking and sample time oplions
Periodic sample time constraint: [Unconstrained
[] Treat each discrete rate as a separate task
[Allow tasks to execute concurrently on target
[#] Automatically handle rate transition for data transfer
Deterministic data transfer. Whenever possible

[Higher priority value indicates higher task priority

2) Go to Hardware Implementation, set the Hardware board to Pixhawk PX4, choose the o
perating system to be Nuttx, which is supported by the PX4 software system. Set the clo
ck frequency to 250, and for Target hardware resource, select "build only."

&) Configuration Parameters: Exp3_BlankTemp/Configuration (Active)

o X
Solver IHardware board: | Pixhawk PX4 ‘ i
Data Import/Export Code Generation system target file: ert.tlc
¥ Optimization

Signals and Parameters Device vendor: ARM Compatible
Stateflow

»_Diagnostics
I Hardware Implementation I

Model Referencing

~ | Device type: |/ARM Cortex
» Device details

Hardware board settings

Simulation Target ¥ QOperating system/scheduler settings
» Code Generalion Operating system options

» Coverage

» HDL Code Generation Operating system: | NuttX

Base rate task priority: | 250

¥ larget hardware resources

Groups

Build options Build action: |Build -
Clocking

External Mode Options

Uploading Options (Windows-anly)

Hard Real-Time constraints

0K Cancel Help

3)

Under Code Generation, set the System target file to ert.tlc from Embedded Coder, and ¢

hoose the C language. Select the Pixhawk Toolchain as the toolchain, and configure it fo

r Faster Builds.

@ Configuration Parameters: Exp3_BlankTemp/Configuration (Active) — O

Q

Solver
Data Import/Export

arget selection

 Optimization System target file: ert.tic Browse...
Signals and Parameters Language: c e
Stateflow Description: Embedded Coder
» Diagnostics
Hardware Implementation Build process
Model Referencing
S\muﬂon Target |— Generate code only
I ¥ Code Generation | ["] Package code and artifacts Zip file name:
Report Toolchain settings
Comments
Symbols Toolchain: Pixhawk Toolchain ‘ >
Custom Code
Interface Build configuration: |Faster Builds \ -
Code Style » Toolchain details
Verification
Templates
Code Placement
Data Type Replacement Code generation objectives
Memory Sections Prioritized objectives: Unspecified Set Objectives...
> Coverage Check model before generating code: |Off ~ Check Model...
» HDL Code Generation S
0K Cancel Help

Apply

4)

M Cortex-A9, and configure the support settings as shown in the figure below.

In the Code Generation interface settings, set the code's dependency library to GCC AR

| @& Configuration Parameters: Exp3_BlankTemp/Configuration (Active) bt m] X
Solver Software environment
Data Import/Export
N Code replacement library: | GCC ARM Cortex-A9 | -
» Optimization
» Diagnostics Shared code placement: |Auto | -
Hardware Implementation Support: floating-point numbers [¢] non-finite numbers complex numbers
Model Referencing . . . 7 . .
. absolute time continuous time [] variable-size signals
Simulation Target
¥ Code Generation Tode erace
Report
Comments Code interface packaging: |Nonreusable function -
Symbols Remove error status field in real-time model data structure
Custom Code
Interface Data exchange interface
Code Style
Verification Generate C AP for:
Templates [signals [] parameters [] states [root-level 110
Code Placement
Data Type Replacement [] ASAPZ interface
Memory Sections [] External mode
» Coverage
» HDL Code Generation
L OK Cancel Help ippl
For more options for automatic code generation settings, please refer to the document: 0.Ap

1Exps\3.DesignExps\Readme.pdf

0.ApiExps/3.DesignExps/Readme.pdf
0.ApiExps/3.DesignExps/Readme.pdf

1.4. Code Modification Interface

The one-click installation script for the RflySim platform makes some modifications to the official
PX4 source code for better compatibility with the platform. The core modifications include:

1) In ¥\PX4PSP\Firmware\boards, locate the corresponding compilation command cmake file,
such as px4 fmu-v6x_default in *\PX4PSP\Firmware\boards\px4\fmu-v6x\default.cmake, and ad
d the module compilation registration for px4 simulink app.

2) In *\PX4PSP\Firmware\ROMFS\px4fmu common\init.d\rcS startup script, add the automa
tic startup for px4 simulink app.

3) In *\PX4PSP\Firmware\src\modules directory, create a px4_simulink app folder and gener
ate source code that meets the compilation requirements.

4) Modify the source code under Firmware to disable PX4's own motor output, allowing px4

simulink app to gain control over the motors.

1.5. Custom Source Code Import Interface

The 2.FirmwareZip directory in the RflySim platform's installation package contains various
PX4 source code firmware, and it supports importing custom-developed PX4 source code. When r
edeploying firmware using the one-click installation script, it first deletes the *\PX4PSP\Firmware
folder. Then, based on the selected option, it unpacks "2 .FirmwareZip\PX4Firmware***.zip" to th
e *\PX4PSP directory. Finally, it extracts the contents of PX4Firmware***Update.zip and forceful
ly overrides them into the Firmware directory.

In PX4Firmware*** zip, the official source code is stored, downloaded from GitHub without
any modifications. PX4Firmware***Update.zip contains the files we modified, which will overwri
te the Firmware directory. Therefore, there are two ways to deploy custom source code:

1) Directly package the modified Firmware directory, rename it according to your version a

s PX4Firmware***** zip (see naming rules in 2.FirmwareZip\readme.txt), and delete th
e PX4Firmware****Update.zip file. This way, the one-click installation script will use y
our own script for deployment.

2) Alternatively, you can directly place your modified source code parts, structured by file

directory, inside PX4Firmware***Update.zip. During deployment, they will be copied i
n and forcibly replace the original code.
The RflySim platform also supports other PX4 firmware versions, such as 1.9.2, 1.10.2, etc., as me

ntioned in the 2.FirmwareZip\readme.txt file, as shown in the following figure.

BR -

0.UbuntuWsL
1.ToolChainZip
= 2.FirmwareZip
£3 PX4Firmware1.7.3.zip
£3 PX4Firmware1.11.3.zip
§3 PX4Firmware1.11.3Update.zip
£3 PX4Firmware1.12.3.zip
§3 PX4Firmware1.12.3Update.zip
£3 PX4Firmware1.13.3.zip
£3 Python38Adv3.zip

readme.txt
3.PX4PSP
4. HILApps
5.PPTs

8l onekeyscript.exe

#.] OnekeyScript.p

= | readme.txt

& uninstall.exe

ﬂ uninstall.m

EEEEEEBE

2. Simulink/PSP Toolbox Module Interface

PSP3.04 provides some Simulink modules as the hardware interface to Pixhawk. These modu
les are only responsible for generating the corresponding interface code and do not include the mo
deling of the peripheral hardware. It is best to organize your own control system into a Simulink m
odule at the time of simulation, leaving the necessary interfaces in order to connect with these hard
ware interface modules, so that it is also easy to reuse. These hardware modules can be viewed in
Simulink's toolbox Pixhawk Target Blocks, as shown in the figure below, which consists of four su

blibraries: ADC and Serial, Miscellaneous Utility Blocks, Sensors and Actuators, and uORB Read

and Write.
osE S. . . _
@u Simulink Library Browser O X
< |pinprog v|p§\‘kv PR~ © @
Pixhawk Target Blocks
Image Acquisition Toolbox ~
Instrument Control Toolbox |r\ s
IJhHm.m?wQ £ AAw
Model Predictive Control Toolbox
Neural Network Toolbox ADC and Serial Miscellaneous Utility Blocks
OPC Toolbox
Phased Arrayv System Toolbox ’a
| Pixhawk Target Blocks “y
ADC and Serial
Miscellaneous Utility Blocks Sensors and Actuators uORB Read and Write

Sensors and Actuators
uORB Read and Write
Powertrain Blockset
Report Generator
RF Blockset
Robotics System Toolbox v

2.1. ADC and Serial — ADC and Serial Communication Library

As shown in the figure below, the ADC read module can obtain the data of 3 external ADC ch

annels, and the serial port module can read and write the specified serial port.

| 'iS Simulink Library Browser

|
e mav1ink

Pixhawk Target Blocks/ADC and Serial

Ry~ w2 @

| Image Acquisition Toolbox
Instrument Control Toolbox

|| > LTE HDL Toolbox

Model Predictive Control Toolbox
|| » Neural Network Toolbox

OPC Toolbox

3.3wADC Ch1
Pixhawk Serial UART
ADC | 33vADCChzB NTx SEEBSh
6.6v ADC [
Read ADC Channels Serial

|| » Phased Array System Toolbox

|~ Pighauk Targer Blocks

ADC and Serial]
Miscellaneous Utility Blocks

Sensors and Actuators

uORB Read and Write

|| » Powertrain Blockset

| Report
RF Bloc
Robotic
Robust
SimEvents

Simscape

Simulink 3D Animation
Simulink Coder

Simulink Control Design

S 1 le Nocion Ontimigati

senerator

Vo

ystem Toolbox
ntrol Toolbox

R

| .

2.1.1. Read ADC Channels—Qutputting the input of an external ADC

Read ADC Channels: Select which ADC channel from the 3.3V and 6.6V analog inputs to be

the output of this module, as shown in the figure below. Note that channels 1 and 2 correspond to p

ins 14 and 15 of the 3.3V ADC, respectively.

Signal definition:

® 3.3V analog-to-digital conversion (int32)

® 3.3V Analog-to-Digital conversion (int32)

® 6.6V Analog-to-Digital (int32)

More information is available by clicking the "Help" button in the module dialog box.

3.3vADC Ch1

Pixhawk

ADC 3-3vVADC Ch2

6.6v ADC

Read ADC Channels

Block Parameters: Read ADC Channels
ADC_block

Outputs external ADC inputs.
RS

S8
> 8 ADC_Channel 3 3 1

8 ADC Channel 3 3 2
8 ANC_Channel_6_6

> SanpleTime -1

Simulate using Interpreted execution

Heiig (C) b

2.1.2. Serial—Serial Communication Module

Serial: As shown in the image below, serial communication block that allows reading and writ

ing devices, specifying device name and read or write options. The specific usage can be checked

by clicking the "Help" button of the module dialog box.

Serial UART
X Tx /devittyPSO

Serial

Block Parameters: Serial
SerialCOM

UART serial port System Object
HRAEE

B8

Device Name

Read or Write to serial: Writing
Baud Rate 115200
O Blocking

[Enable Header

[Enable Comm Protocol

Simulate using: Interpreted execution

0L () #8h ()

2.2. Miscellaneous Utility Blocks—Other libraries

LiS Simulink Library Browser
<3 mav]ink
Pixhawk Target Blocks/Miscellaneous Utility Blocks

et

B2 @

Image Acquisition Toolbox
Instrument Control Toolbox
LTE HDL Toolbox
Model Predictive Control Toolbox
Neural Network Toolbox
0PC Toolbox
Phased Array System Toolbox
~ Pixhawk Targ
ADC and Sorial
[\115ce]lanaous Utility Blocks]
sensors and Actuators
UORB Read and Write
> Pawertrain Blockset
Repart Generator
RF Blockset
Robotics System Toolbox
Robust Control Toolbox
SimEvents
Simscape
Simulink 3D Animation
Simulink Coder
Simulink Control Design
= 1 le Nocion Ontimigati

~

~

w

o

R

5

ul
Hsimicrosdilag/mw 4
Nuz fon

hinary_logger ExamplePrintFcn

Parameter Update module

ParamUpdate

2.2.1. binary_logger—Data Logging Module

This module records the data as a double and stores it in the SD card, and if the cache is turne
d on in memory, writes the data when en gets low or reaches the specified maximum number of rec
ords. The first enable input signal during program execution must first trigger the high level and th
en drop to the low level in order to record the data successfully. If the low level is not dropped bef
ore the code finishes running, then the record file is considered to be open and inaccessible. In add
ition, the log must be stored under the directory "/fs/microsd/". As shown in the following figure, y
ou can set the path for storing logs and the maximum number of records. The specific usage can be

clicked on the "Help" button of the module dialog box to view, and the specific routine experimen

t can be seen in the file: 0.ApiExps\5.Log-Write-Read\Readme.pdf

0.ApiExps/5.Log-Write-Read/Readme.pdf

Block Parameters: binary_logger X
Pixhawk Binary Logger (mask) (link)

Log a vector of data to a file on the SD card

If Cache in Memory is on data is written when en goes low or when max
number of records specified is reached

Otherwise Max Number of Records is used to indicate when to performa an
fflush out to file

514

) en (O Cache in Memary
Max Record Count

1000

[fs/microsd/log/mw

) data

binary_logger

AL (Cy HiB) (H)

2.2.2. ExamplePrintFecn—Print Function Example

As shown below, this module prints the signal data content to the PX4 Nuttx console terminal.
This block should be considered an "example" block, and the print message can be constructed in
any way the user sees fit. Coder.ceval() is a MATLABCoder function that evaluates printf() statem
ents to pass two values. Note that there is a bug in Nuttx that sometimes floating-point numbers do

not display correctly. Use warnx() instead of printf() as a workaround.

function fen(ul, u2)

ut %itcodegen

N

4

u2 fen

N

if strcmp(coder.target, 'rtu') == true
coder.ceval('printf','%d %d %c', int32(ul), int32(u2), int8(10))
end

o v W N e

ExamplePrintFcn

2.2.3. ParamUpdate—Custom Storage Class Parameter Update Module
As shown in the image below, this module updates custom PX4 software parameters. Note wh
en using: Assume that the csc is stored in your base workspace, other possible locations include a d

ata dictionary or a model workspace. You will need to copy the appropriate csc into your base wor

kspace before using this feature.

List of PX4 Custom Storage Class objects

Auto-populate List of CSC variables

Remove selected CSC

Sample Time: E]

NOTE: it is assumed that CSCs are stored in your base workspace Other
possible locations could include data dictionaries or model
workspace.Piease copy the appropiate CSCs to the base

workspace before using this feature

Parameter Update module

Okay Cancel

ParamUpdate

10

2.3. Sensors and Actuators—Sensor and Actuator Interface Library

TimeStamp

PHi_output

RGB_LED

input_re

Magx

MagY 3 o
g’ 3 I —

} Roll (phi) {2} <\ ‘Ne

£ ¢ ffe)/‘7 A %
A\ A

vV \

MagZ

AceelX
AcoelY
Accelz
GyroX (p)

GyroY @)

GyroZ (1) | Quaternion
N

Baro

RunTimeTS b

sensor_conbined Speaker_Tune vehicle_attitude vehicle_gps

2.3.1. Battery_measure—Battery Data Module

This module allows you to obtain the battery health status by subscribing to messages posted
by the uORB topic publisher battery_status, so you need to ensure that the power module is plugge
d into Pixhawk in order to obtain the correct data.

The signal definition:

® Voltage: (double) The battery voltage, in volts.

® Filtered Voltage: (single) Filtered voltage of the battery, in volts.

® Current: (single) Current of the battery, in amperes.

® mAH: (single) The amount of discharge in mAH.

® Timestamp: (int32) Timestamp of the measurement.

As shown in the image below, the module provides a setting box for the sample rate, as well a

s selectable battery status options. More information can be viewed by clicking the "Help" button o

f the dialog box.

Block Parameters: battery_ measure X
PX4_Battery_Measurement

Returns battery measurements from Pixhawk hardware

Sample Time

1/250]

TimeStamp [
E-2 4
= @ voltage
e > O Filtered Voltage
@ current
8 i
Current) B 1iee siam

mAH [

battery_measure

HLH (C)

5 1 (H)

11

2.3.2. Input_rc—Remote Control Input Module

This module allows the user to access the signal from the RC transmitter. Through this modul
e, the output signal can be selected, including the value of multiple remote control channels, and so
me other information. As shown in the following picture, these include:

1. Channel Selection - Channel selection

a) uintl6 data type, which represents the PWM(in use) value from the controller.
b) Measure the pulse width of each support channel.
2. Channel Count - Number of channels
a) Uint32 Indicates the number of channels detected by the PX4 detector.
3. RC Failsafe - Remote control signal failsafe
a) Boolean data type, indicating that RC Tx is sending FailSafe signal (if set correctly)
b) Displays the failsafe flag: true if Tx fails or if Tx is out of range, false otherwise.
€) Only the true state is reliable, as there are some (PPM) receivers on the market that
go into failsafe without explicitly telling us.
4. RC Input Source - Remote control signal input source
a) Enumerate the data type, indicating which source the RC input comes from.
b) Find valid values in the ENUM file:
RC_INPUT SOURCE ENUM.m
RCINPUT SOURCE UNKNOWN (0)
RCINPUT SOURCE PX4FMU PPM (1)
RCINPUT SOURCE PX4IO PPM (2)
RCINPUT SOURCE PX4IO SPEKTRUM (3)
RCINPUT SOURCE PX4IO SBUS (4)

5. RSSI - received signal strength indicator
a) Received Signal Strength Indicator (RSSI) : <0: undefined; 0: No signal; 255: full r
eception.
6. RC Lost Connection - Remote control signal lost connection
a) Boolean data type indicating RC receiver connection status.
b) True if no frame arrived in the expected time, false otherwise.
c) True usually means that the receiver is disconnected, but can also mean that the rad
1o link is lost on a "dumb" system.
d) Ifan RX with the failsafe option continues to transmit frames after the link is lost,
it remains false.
More information can be viewed by clicking the "Help" button in the dialog box or by viewin

g the official PDF document. See the file for specific routine experiment: 0.ApiExps\2.PSPOfficial

12

file:///C:/Users/admin/Desktop/55555/5.RflySimFlyCtrl/0.ApiExps/2.PSPOfficialExps/Readme.pdf

Exps\Readme.pdf

Block Parameters: input_rc X
PX4_Input RC (mask) (link)
RC Input Block

Ch1 > Receiver Inputs from the Pixhawk hardware
Sample Time

1/250]

Channel Selection

Ch2 > 8 Channel 1 8 Channel 2 B Channel 3 8 Channel 4

O Channel 5 O Channel & O Channel 7 [Channel 8
[Channe19 [Channe110 [Channel11 [Channe112
O Channel13 O Channel14 O Channells O Channel16
[channe117 [Channe118

ch3p
Optional Outputs
O Channel Count (O RssI
J RC Failsafe [J RC Lost Connection
O RC Input Source

Ch4 D

input_rc W © | A

2.3.3. PWM_output—Motor PWM Module

Through this module, PWM signal can be sent to the output port of PX4IO to control the mot
or rotation, you can select the PWM update rate and input channel.

In order for the flight control arm (enabled) to output from the software side, the ARM output
input must be kept high (Boolean TRUE). Only then will the PWM value be sent to the PX4 hard
ware port. This is usually a feature of the RC Tx combined with other flight modes programmed in
the Simulink model by the user.

The block has 8 available ports (data type uint16) that can be selected selectively. These corre
spond to the 8 PWM output ports on the px4fmu hardware.

The unit value of PWM is microsecond (usec), which corresponds to the pulse width (1500 is
1500usec or 1.5 ms).

The PWM update rate is set to 400Hz when the px4simulinkapp is started (or whatever the us
er sets in the block dialog). The available PWM update rates are :50, 125, 250, 300, and 400Hz.

px4 simulink app will also set an idle value of 900usec at startup and when the ARM port is
set to low (Boolean FALSE) so that the ESC controller does not time out.

As shown below, for more information click the "Help" button of the dialog box to see.

13

file:///C:/Users/admin/Desktop/55555/5.RflySimFlyCtrl/0.ApiExps/2.PSPOfficialExps/Readme.pdf

Block Parameters: PWM_output *
PX4 Output PWM (mask) (link)
PWM Output Block

ARM Output

Sends the PWM signals to the output ports of the PX4I0
@ Publish Qutputs (actuator outputs)
PWM Update Rate
O 50z
m1 -
() 125Hz

O 250Hz

O 300Hz

> O 4001z
Output PWM Selection
[RIS O P 5

> @ w2 O P 6
@ rw 3 O pim 7
@ r 4 O i 8

Y pwm4

PWM_output WH© ||

2.3.4. RGB_LED— LED Light

The mode and color of the LED light flashing can be controlled through this module. As show
n below, the module receives two inputs, one is Mode, the other is Color, and these two inputs are
enumerated data types. You can find a valid value in the MATLAB command window by entering
the following command:

>>:enumeration (“RGBLED COLOR ENUM”)

Enumeration members of the ' RGBLEDCOLORENUM' class:

COLOR_OFF

COLOR_RED

COLOR_YELLOW

COLOR_PURPLE

COLOR_GREEN

COLOR_BLUE

COLOR_WHITE

COLOR_AMBER

COLOR _DIM_RED

COLOR _DIM_YELLOW

COLOR_DIM_PURPLE

COLOR_DIM_GREEN

COLOR_DIM BLUE

COLOR_DIM_WHITE

COLOR_DIM_AMBER

Enumeration member of the 'RGBLED MODE_ENUM' class:

MODE_OFF

14

MODE_ON

MODE _BLINK SLOW

MODE_BLINK_NORMAL

MODE_BLINK_FAST

MODE _BREATHE

MODE_PATTERN

More information can be viewed by clicking on the "Help" button of the dialog box. See file f

or specific routine experiment: 0.ApiExps\2.PSPOfficialExps\Readme.pdf

Block Parameters: RGE_LED X
PX4_RGBLED - controls the mode and color of the Pixhawk RGB LED (mask) (link)
LED Qutput Block

Blocks has input for controlling the Mode and Color of the RGB LED light on the
pixhawk.

RGB_LED mH© || W

2.3.5. sensor_combined—Sensor Fusion Module
It is through this module that the sensor data available in Pixhawk can be obtained, which can
then be used to control the design of the model. The data available includes magnetometers, accel
erometers, gyroscopes, barometers, and time stamps.
Signal definition:
® Magnetometer(x,y,z):(single) Magnetometer(x,y,z), magnetic field under NED, Gauss un
it.
® Accelerometer(x,y,z): (single) accelerometer (x,y,z), the frame of acceleration under NE
D, in m/s"2.
Gyroscope(x,y,z): (single) gyroscope (p,q,r), angular velocity in radians per second.
® Barometer(Altitude): (single) barometer (altitude), air pressure with temperature compen
sated (mbar).
® uORB and RunTime(timestamp):(double) Time stamp in microseconds since the gyrosc
ope was activated.
The sensor_combined block needs to run the px4io service on the PX4 hardware in order to g
et a valid signal value.
As shown below, more information can be viewed by clicking the "Help" button of the dialog

box. See file for specific routine experiment: 0.ApiExps\11.SenorDataGet\Readme.pdf

15

file:///D:/GitbookGen/5.RflySimFlyCtrl/0.ApiExps/2.PSPOfficialExps/Readme.pdf
file:///C:/Users/admin/Desktop/55555/5.RflySimFlyCtrl/0.ApiExps/11.SenorDataGet/Readme.pdf

Block Parameters: sensor_combined e
MagX> PX4_Sensor_Combined (mask) (link)
Sensor Tnput Block
Magy P v
MaaZ Sensor Combined inputs from the Pixhawk hardware
agZp Sample Time
AccelX [1/250
AccelY > Output Selection
AccelZ > B Vagnetometer (x, v, z)
G B fccelerometer (x,y,z)
roX
Y (P) > -] Gyroscope (x,y, z)
GyroY (q) @ Barometer (Altitude)
GyroZ (1) > @ LORB and RunTime (timestamp)
Baro |
Mag Ts
Accel Ts
Bt a1 Baro Ts)
; 2
4 UORB Ts)

sensor_combined B (C) i (1)

2.3.6. Speaker_Tune—Buzzer Module
Through this module, you can control the buzzer to emit a specific tone at a specific event. As
shown below, this module accepts 3 input signals.

® Tune ID: This is the enumerated data type of predefined "tunes" that can be played. Enu
meration members of class 'PX4 TUNE ENUM' :
STOP TUNE
STARTUP TUNE
ERROR TUNE
NOTIFY_ POSITIVE TUNE
NOTIFY NEUTRAL TUNE
NOTIFY NEGATIVE TUNE
ARMING WARNING TUNE
BATTERY WARNING SLOW_TUNE
BATTERY WARNING FAST TUNE
GPS_WARNING TUNE
ARMING FAILURE TUNE
PARACHUTE RELEASE TUNE

® [sTuneOverride: Used to define a custom tune to play. The user can use a constant block

to define the string to be played.
® Trigger: This is a trigger signal that indicates when a predefined tune (if the trigger value
changes to 1) or a custom tune (if the trigger value changes to 2) will be played. A chan

ge in the tune will only be triggered by a change in that value.

More information is available by clicking on the "Help" button of the dialog box.

16

Tune ID

IsTun

Trigger

Speaker_Tune

Block Parameters: Speaker_Tune

Tone Output Block

2.3.7. vehicle attitude—Attitude Data Module

This module provides filtered attitude data (Euler Angle and quaternion) and provides access
to a running service that calculates the attitude of the UAV. A uORB theme (vehicle attitude(Attitu
de Measurement)) publisher must be run in order for the block to provide valid signal values.

One of these must be run on px4fmu in order for the block to return a valid value. For exampl

For Tone ID: use one of the PX4_TUNE_ENIM values

px4fmu-v2 ekf2: ekf Extended Kalman filter for attitude estimation

px4fmu-v2 default: SO(3)- Attitude estimation using accelerometers, gyroscopes and magneto

meters

As shown in the image below, the module provides a setting box for the sampling rate, as wel

1 as selectable attitude options.

Signal definition:

For more information, click the "Help" button in the dialog box.

Roll rate:(single) Roll rate in degrees per second or radians per second (NED).

Pitch rate: (single) Pitch rate in degrees per second or radians per second (NED).

PX4_Play Tune — Plays a predefined tune or one based on a “string” (mask) (1link)

For IsTunelverride input: if set to 1 the tune which is playing will be stopped
and the new started
For Trigger input: If it changes from 0 te 1, the tune message will be sent, the
buzzser will change its voice.

i (0) AU AC)

i (1)

Yaw rate: (single) yaw rate in degrees/second or radians/second (NED).

Quaternion(NED): (single) Optional according to uORB publisher (NED).

uORB Ts: Used for efficient data exchange and time synchronization.

Roll rate (phi)

vehicle_attitude

Block Parameters: vehicle_attitude
PX4_Vehicle Attitude (mask) (1link)
Vehicle Attitude Block

Vehicle Attitude measurements from the Pixhawk hardware

Sample Time

0.01

Dutput Signal Selection
B Roll rate

@ Pitch rate

@ vaw rate

@ Quaternion (NED)

B uorB Ts

17

HUH (C)

i (1)

2.3.8.

vehicle gps— GPS Data Module

The Pixhawk GPS data can be accessed through this module, which is achieved by subscribin

g to the uORB hashtag "vehicle gps", so you will need to ensure that the GPS module is plugged i

nto Pixhawk to get the correct data during the actual run. As shown in the image below, the modul

e provides a setting box for the sample rate, as well as selectable attitude options. The meaning of

each option is as follows:

Latitude: (int32) Global coordinates are given at le-7 degrees.

Longitude: (int32) Longitude is given in 1e-7 degrees.

Altitude: (int32) is 1e-3 m (mm) above MSL (mean sea level).

GPS TS: (double) Timestamp (microseconds in GPS format), this is the timestamp from
the GPS module.

Velocity: (single)GPS ground speed, in meters per second.

GPS Fix Type: (uint8)0-1=NO fix,2=2D fix,3=3D fix.

Num Satellites: (uint8) Number of satellites used to calculate.

More information is available by clicking the "Help" button in the dialog box.

Block Parameters: vehicle_gps *
PX4_Vehicle GPS (mask} (1link)
GPS Input Block
Return Values from the GPS topic running on the Pixhawk.
Sample Time

1/250

p
p
> Output Selection
@ Altitude
> B 6PS Timestamp
B velocity
> B Fix Type
8 Nunber of Satellites
p
p

vehicle_gps mH© || @

18

2.4. uORB Read and Write— uORB Message Read and Write Libra

ry

| EE Simulink Library Browser - a X

f mav]ink v fb\ 3y w2 3

| Pixhawk Target Blocks/uORB Read and Write

Image Acquisition Toolbox

Instrument Control Toolbox
> LTE HDL Toolbox Function Trigger .
. " uORB Read - Function Trigger:
Model Predictive Control Toolbox Topic ID: UNDEFINED 4 ‘differential_pressure’ P
> Neural Network Teolbox

0PC Toolbox
Phased Array System Toolbox . .
- ['1:]:-Lm'k T&‘[L-];lack' uORB Read Async uORB Read Function—Call Trigmer
xha arge s
ADC and Serial -
Miscellaneous Utility Blocks Y rat
Sensors_and Actuators UORB
[u0RB Read and Write I lon Topie: "vehicle_gps_position”
POWET LTalll BIOCKSEL)
Report Generator Htimestamp_time
RF Blockset
Robotics System Toolbox uORB Write uORB Write Advanced
Robust Control Toolbox
SimEvents
Simscape
Simulink 3D Animation
Simulink Coder
Simulink Control Design
Simulink Design Optimization T
< imnlink ”Lh_i‘ . \.] rifiar uORB Write Advanced dai

“

Write UORB Write
control Topic: actuator_controls

~

~

~

UORB Write_dai
P|contrel Topic: actuator_controls

B R

2.4.1. uORB Read Async—Retrieve Data Related to uORB Topic

As shown in the image below, the block will get data related to the uORB topic that drives the

asynchronous subsystem where the block is located. The topic name will be determined automatic

ally based on the callback, and the bus object will need to be specified for the topic. More informat
ion can be found by clicking the "Help" button of the dialog box.

Block Parameters: uORE Read Async x
Subsystem (mask) (link)

This block will grab data affiliated with the uORB Topic which is driving the asynchronous subsystem this block
resides in.

The uORB Topic name will automatically be determined based on call-backs

You will need to specify the bus object for this topic. The buttons below will help create this bus object as needed

Function Trigger
Topic ID: UNDEFINED > Detected Topic: 'differential pressure’ Refresh Topic Detection

Enter Bus Object Bus: airspeed SL v >

Use Bus Object from inherited Async Function Call Subsystem

uORB Read Async wiH© || w0
2.4.2. uORB Read Function-Call Trigger— uORB Message Read Callback Trigg
er Module

This module provides two functions, the first of which is to subscribe to messages from a uO

RB topic. The second is to subscribe to message data on a topic by triggering a function call signal

for asynchronous events.

19

uORB Read - Function Trigger: >
'differential_pressure'

uORB Read Function-Call Trigger

Block Parameters: uORB Read Function-Call Trigger x
uDRBE Read and Function-Call Trigger

This block operates in two modes:
Model: Reading uORB Data

In this mode, the block will fetch data using a uORB_CHECK() call and write the data to a struct. This
struct is accessed as a bus object. The buttons below allow one to create bus objects for any arbitrary uORB
message provided it is specified in a .msg format. Header files are added to the generated code from: C:

‘\pxd\Firmware\src\modules\uORBY topics

Mode2: Asynchronous Tasking

In this mode, the block will spawn a thread which will be data-driven. When a uORB message of the specified
topic arrives, the thread will advance in execution and run the contents of the affiliated function-—call
subsystem
(U SO i ferential e I

Open .msg file Select uORE Topic msg Create Bus Object
Enter Bus Object £ Bus: differential pressure SL w3 0
’uORIl Interval (ms) 1 I

Function—Call Options

[B Function—Call Trigger I

TaskName ' Taskl’

Polling Timeout (ms) (-1 = indefinite wait, 0 = return immediately) 100

HL3H (C)) (1)

As shown in the figure above, the steps of using the first function are:
® Choose a defined topic
Click the button "Select uORB Topic msg" to open the list of topics for selection, only to

pics that are not C++ objects are supported.
® (Create the bus (bus) object

Simulink's Bus object is used to receive UORB messages, click the button "Create Bus O
nject” and Simulink will find the corresponding message file from the.msg folder and map it t

o the MATLAB workspace to generate the bus object.
® Set the uORB read interval

In non-asynchronous mode, you need to set the query frequency in milliseconds. For som
e topics, the maximum data update rate is set. Do not set the frequency to exceed this maximu
m.

The steps to use the second function are as follows:

® Select the function call trigger

20

Function—Call Options
@ Function—Call Trigger

TaskName ' Taskl’

Polling Timeout (ms} (-1 = indefinite wait, 0 = return immediately) 100

® Set the query timeout and task name

When asynchronous is selected, the sampling time setting box disappears, and you need
to set the query timeout parameter and task name. The asynchronous function spawns a new t
hread that runs the code associated with the function trigger signal and waits for new data on t
he topic by querying it. At this point, another module is needed to read the data on the topic, n

amely the "Read uORB function Trigger Data Module", as shown in the figure below.

Function Trigger

uORB Read - Function Trigger: > Topic ID: UNDEFINED >

‘differential_pressure’

uORB Read Async

uORB Read Function-Call Trigger

2.4.3. uORB Write— uORB Message Data Publishing Interface Module

This interface allows users to publish specified values or structs to uORB topics. This module
allows users to publish messages to a uORB topic. Topics must be properly defined, and some def
ined topics are placed in the C:\PX4PSP\Firmware\msg directory, which automatically contains th
e topic definition file in the generated code.

As shown in the following figure, you can enter the topic name, click the button "Open. msg f
ile" to Open the corresponding message content, click the button "open. msg folder" to Open the to

pic list, and set the input port name and data type to correspond to the topic message.

N/

'output’

uORB Write
Topic: 'actuator_outputs'

3 'noutputs'

uORB Write

21

Block Parameters: uORB Write
S-Function (mask) (link)
uORB Write Output Block

Publishes to a user provided named tropic structure.

IuGRB Topic "actuator_outputs’ I Open .msg file Open .msg folder

Number of Qutputs

uORB Parameter Names and Data Type

Iﬂ Input Struct param :

" output’ :| single || > Number of Elements 32

|8 1nput Struct param -

" noutputs’ :| uint32 |2 > Number of Elements 1

] Input Struct param :
O Input Struct param :
O Input Struct param :

ample Time (-1 inherited) -1

mH© || #Ho S (A

ActuatorOutputs.msg = | + ‘

1 uinté4 timestamp # time since system start (microseconds) .
2 uint8 NUM_ACTUATOR_OUTPUTS = 16 HEEHEHBNE
3 uint8 NUM_ACTUATOR_OUTPUT_GROUPS = 4 # for sanity checking
4 uint32 noutputs # valid outputs
5 float32[16] output # output data, in natural output units
[
7 # actuator_outputs_sim is used for SITL, HITL & SIH (with an output range of [-1, 1])
8 # TOPICS actuator_cutputs actuator_outputs_sim actuator_outputs_debug
9
Block Parameters: uORB Write X
S-Function (mask) (link}
uORB Write Output Block
Publishes to a user provided named tropie structure.
uORB Topic ’actuator outputs’ g Open .msg file Open .msg folder
Number of OQutputs 2
uORB Parameter Names and Data Type
-
X
> IbEBEE > E& (C) > PX4PSP > Firmware > msg v o] & msg PEE »p
=- O e
~
=2 sk =3 Foh
ActionR: it 2024/3/22 1513 Qutlook.File. 1KB ut
D ionRequest.msg /3. utlook.File.msg ‘?TFF‘L%E;U%
[ActuatorArmed.msg 2024/3/22 1513 Qutlook.File.msg... 1KB
[ActuatorControlsStatus.msg 2024/3/22 15:13 Cutlook.File.msg... 1KB
[l ActuatorMotors.msg 2024/3/22 1513 Qutlook.File.msg... 1KB
[7] ActuatarDutputs.msg 2024/3/22 1513 Outlook.File.msg... 1KB
[ActuatorServos.msg 2024/3/22 1513 Qutlook.File.msg... 1KB
[ActuatorServosTrim.msg 2024/3/22 15:13 Cutlook.File.msg... 1KB
[] ActuatorTest.msg 2024/3/22 1514 Qutlook.File.msg... 1KB
[7] AdcReport.msg 2024/3/22 15113 Qutlook.File.msg... 1KB
[] Airspeed.msg 2024/3/22 1513 Qutlook.File.msg... 1KB
[] Airspeedvalidated.msg 2024/3/22 15:13 Cutlook.File.msg... 1KB
[7] AirspeedWind.msg 2024/3/22 1513 Outlook.File.msg... 2KB

22

2.4.4. uORB Write Advanced— Advanced Module for uORB Message Data Pub

lishing Interface
This interface allows users to have more flexible control over the data they publish. Using the
uORB Write Advanced interface in Simulink, a more complex and precise way of publishing mess
ages can be achieved. You can select the message file and a message ID to write to. In addition, yo

u can also set the priority of the message, queue size and other advanced options.

uORB Write

) output Topic: actuator_outputs

uORB Write Advanced

As shown in the following picture, you can see the name of the current topic, click the button
"Open. msg file" to Open the corresponding message content, and click the button "Select. msg fil

e" to open the topic list, and you can set the input port name and data type to correspond to the topi

C message.
4 uORB Write Block - a X
UORB Message: Apply Select msg file Open msg file
Struct Field Dimensions| DataType | Enable
| 1 [timestamp 1 double - O
| 2 |noutputs 1uint32 (m]
3 |output 16 single a
([Enable/Disable Al
Advertisement Queue (0 = no queue) : 0
Sample Time: 3
Okay Cancel
ActuatorQutputs.msg +
1 uinté4 timestamp # time since system start (microseconds) - .
2 uint8 NUM_ACTUATOR_OUTPUTS = 16 HEHBRAE
3 uint8 NUM_ACTUATOR_OUTPUT_GROUPS = 4 # for sanity checking
4 uint32 noutputs # valid outputs
5 float32[16] output # output data, in natural output units

w o N oo

actuator_outputs_sim is used for SITL, HITL & SIH (with an output range of [-1, 1])

TOPICS actuator_outputs actuat

or_outputs_sim actuator_outputs_debug

23

uORB Message: actuator_outputs. Apply Open .msg file
[Struct Field | Dimensions| DataType | Enable |
I r— = =
> WFEBE > ELE(C) > PX4PSP > Firmware > msg ~ c T msg FEE
= " RS m S
[ActionRequestmsg 20247322 1 Outlook File.msg... 1Ke FIFRE5ZE
[] ActuatorArmed.msg 202473422 15:13 Outlook.Fle.msg... 1KB
[7] ActuatorControlsStatus.msg 2024/3/22 15:13 Outlock Fle.msg... 1KB
[] ActuatorMotors.msg 202473422 15:13 Outlook.Fle.msg... 1KB
[ActuatorOutputs.msg 20247322 15:1 Outlook.Fle.msg... 1KB
[ActuatorServas.msg 2024/3/22 15:1 Outlock Fle.msg... 1KB
[] ActuatorServosTrim.msg 20247322 15:1 Outlook.Fle.msg... 1KB
[ActuatarTestmsg 2024/3/22 1 Outlock Fle.msg... 1KB
[] AdcReport.msg 202473422 15:13 Outlook.Fle.msg... 1KB
[Airspeed.msg 2024/3/22 15:13 Outlock Fle.msg... 1KB

Publishing Interface

Compared with utORB Write Advanced, uORB Write Advanced dai adds the function of cust
omizing uUORB MsgID.

> output

uORB Write_dai
Topic: actuator_outputs

uORB Write Advanced

{4 UORB Write Block

uORB Message:

actuator_outputs

dai

uORB MsgID:

actuator_outputs_0

Apply

Select .msg file

1 [timestamp
2 |noutputs
3 |output

Struct Field

Dimensions| DataType
1 double (]
1 uint32 O
16 single

Enable

Advertisement Queue (0 = no queue) :

sample Time:

Cancel

See the file for the specific routine experiment:

> 0.ApiExps\5.Log-Write-Read\Readme.pdf

24

2.4.5. uORB Write Advanced_dai— Advanced Module for uORB Message Data

0.ApiExps/5.Log-Write-Read/Readme.pdf

> 0.ApiExps\6.uORB-Read-Write\Readme.pdf

3. MATLAB Command Line Interface

The RflySim platform also supports running relevant commands through the MATLAB comm

and line window, including:

3.1. PX4Upload

You can upload the PX4 firmware to the flight controller with a single click. The firmware up
loaded at this time is located at: *\PX4PSP\Firmware\build\[build command]\[build command].px

4 (For example, [build command] could be px4 fmu-v6x_default).
PXdUpload

After executing the above command, a black window will pop up, prompting the user to plug

and unplug the flight controller, and displaying the upload progress bar.

3.2. PX4CMD

To switch to the compilation environment for the Pixhawk 6C flight controller, you can perfor

m the following steps to replace the firmware compilation options:

PXUCMD(¢ pxt_fmu-v6c_default’)
=
PX4CMD ¢pxid_fmu-v6c_default’

3.3. PX4Build

Firmware compilation is possible.

3.4. PX4AppName

Rename the PX4 software's APP to support multiple automatic code generation programs. For

detailed usage, please refer to:

PXuAppName (' rfly_simulink_app')
% =
PXdAppName 'rfly_simulink_app'

Related examples can be found at: 2.AdvExps\e0 AdvApiExps\l.CusMaskPX4Code\Re

adme.pdf. 2.AdvExps\e0 AdvApiExps\2.RenamePX4App\Readme.pdf

3.5. PX4AppLoad

Load the renamed PX4 software's App to import previously developed App programs. The us

age is as follows:

PXuAppLoad('C:\PXUPSP\rfly_simulink_app"')
5%
PXuAppLoad 'C:\PXUPSP\rfly_simulink_app"'

Related examples can be found at: 2.AdvExps\e) AdvApiExps\l.CusMaskPX4Code\Re

adme.pdf. 2.AdvExps\e0 AdvApiExps\3.LoadPX4App\Readme.pdf

25

0.ApiExps/6.uORB-Read-Write/Readme.pdf
2.AdvExps/e0_AdvApiExps/1.CusMaskPX4Code/Readme.pdf
2.AdvExps/e0_AdvApiExps/1.CusMaskPX4Code/Readme.pdf
2.AdvExps/e0_AdvApiExps/2.RenamePX4App/Readme.pdf
2.AdvExps/e0_AdvApiExps/1.CusMaskPX4Code/Readme.pdf
2.AdvExps/e0_AdvApiExps/1.CusMaskPX4Code/Readme.pdf
2.AdvExps/e0_AdvApiExps/3.LoadPX4App/Readme.pdf

3.6. PX4ModiFile

To replace parts of the code in PX4 software through Excel, follow these steps:
PXuModiFile('C;\Users\dream\Desktop\ E & X 5 #t UORB 4 £ i F pxuBlock.xlsx')
Related examples can be found at: 2.AdvExps\e0) AdvApiExps\l.CusMaskPX4Code\Re

adme.pdf. 2.AdvExps\e0 AdvApiExps\2.RenamePX4App\Readme.pdf

3.7. PX40fficial

By executing the command, you can directly generate official firmware (without output mask
ing), which can be used to restore the flight controller for HITL external control or to repair proble

matic flight controllers. The usage is as follows:

PXdofficial
PATZ LR e A, BRATEREA, TG E 7 EH A2 K iEE:
PXdUpload

3.8. PX4SitlSet

To enable the current automatically generated controller, px4 simulink_app, to support SITL
simulation, follow these steps: In the Simulink program, click "Build" to generate the hardware-in-
the-loop (.px4) file. Run PX4SitlSet directly after generating the .px4 file.Execute SITLRun (for st
andard quadcopter) or other SITL simulation scripts driven by the DLL model to simulate the hard
ware-software interaction of the automatically generated algorithm.

Command format:
PXusitlSet
Related examples can be found at: 0.ApiExps\14.SITLVeriGenCodeFirm\Readme.pdf

3.9. PX4SitlRec

In the SITL simulation code, remove the automatically generated controller, px4 simulink ap
p, to revert to the normal software-in-the-loop simulation mode, which supports QGC control and
Offboard external control. Note: After testing the Simulink controller by running PX4SitlSet, if yo
u want to run the platform's official vision or external control routines again, please use PX4SitlRe
c to restore the environment first.

Command format:
PXdSitlRec
Related examples can be found at: 0.ApiExps\14.SITLVeriGenCodeFirm\Readme.pdf

4. Automatically generated external communication interfa

ce

When running the one-click installation script for RflySim, the platform modifies the source ¢

ode in the Firmware directory by adding four utORB messages. These messages are registered in *\

26

2.AdvExps/e0_AdvApiExps/1.CusMaskPX4Code/Readme.pdf
2.AdvExps/e0_AdvApiExps/1.CusMaskPX4Code/Readme.pdf
2.AdvExps/e0_AdvApiExps/2.RenamePX4App/Readme.pdf
0.ApiExps/14.SITLVeriGenCodeFirm/Readme.pdf
0.ApiExps/14.SITLVeriGenCodeFirm/Readme.pdf

PX4PSP\Firmware\msg\CMakeLists.txt*. Detailed information and usage guidelines are provided

below:

4.1. rfly ctrl.msg

Format of messages transmitted from external sources into PX4 via UDP or MAVLink protoc

ol:
uintéed timestamp # time since system start (microseconds)
uint32 flags # control flag
uint8 modes # mode flag
float32[16] controls # 16D control signals

External data transmission from Simulink to internal uORB messages in PX4:

Transmitter: Refer to the module "SendToPX4UorbR{lyCtrl" in the example "0.ApiExps\9.PX

4CtrlExternal Tune\Readme.pdf". This module can send messages through the 30100 series port to

CopterSim, and then forward them to the internal uORB message "rfly ctrl" in PX4 through the M
AVLink protocol.

Ch1:Value

T —
100 1250 1400 1550 1700 1901

Ch2:Value CH1
I R R
100 1250 1400 1550 1700 udp| UDP Send

CH3:Value UDP30100

T
100 1250 1400 1550 1700 1901 SendloPX3lorRiyCr

CH4:value

I T
100 1250 1400 1550 1700

CH5:Value

I
100 1250 1400 1550 1700 1901 CHS

Send signals to PX4 controller through UORB msg rlly_ctr thraugh port 36100

Receiver: When designing low-level controllers in Simulink, simply subscribe to the "rfly ctr

1" message to receive the data.

Use modes >=1 to check the data is correct. ‘

<modes>

uORB Read Topic:
'rly_ctel"

<controls>

From port 30100 to receive external control signals

Experimental Principle: After receiving the "rfly ctrl" message, PX4ExtMsgReceiver.slx sim
ulates the first five elements of "controls" as inputs from the remote controller, which are then fed
into the attitude controller of the previous example to perform attitude control. Therefore, PX4Ext

MsgSender.slx can simulate sending inputs from the remote controller to test the attitude algorithm.

27

file:///C:/Users/admin/Desktop/5/5.RflySimFlyCtrl/0.ApiExps/9.PX4CtrlExternalTune/Readme.pdf
file:///C:/Users/admin/Desktop/5/5.RflySimFlyCtrl/0.ApiExps/9.PX4CtrlExternalTune/Readme.pdf

Experimental Procedure: PX4ExtMsgReceiver.slx is burned into the flight controller through
automatic code generation and launched for hardware-in-the-loop simulation. Then, PX4ExtMsgS
ender.slx is opened in Simulink. By adjusting the sliders on the left side of the "SendToPX4UorbR
flyCtrl" block, various channel data from the remote controller can be simulated to control the dro
ne.

Communication Principle from Simulink to CopterSim: Analyzing the "SendToPX4Uorb
RflyCtrl" module reveals that this Simulink module sends the following structure via UDP to the 1

27.0.0.1:30100 port on the local machine.

struct PXdUorbRflyCtrl {
int checksum;

int CopterID;

uint32_t modes;

uint32_t flags;

float data[16];

}

Note: The checksum here must be set to 1234567896 in order to pass the verification by Copt

erSim.

28

CH1

CH2

CH3 dp UDP Send

chd UDP30100

Block Parameters: UDP30100 X
UDP Send (mask) (link)

Send a UDP packet to a network address identified by the
remote IP address and remote IP port parameters.

B I e A

Chs

SendToPX4UorbRflyCtrl

Parameters
Remote IP address (255.255. 255.255 for broadcast):

1127.0.0.1

Remote IP port:

30100

g rlly_ctl through port 30100 . :
Local IP port source: Automatically determine -

Cancel Help Apply

Communication Principle from CopterSim to PX4: After receiving the PX4UorbRflyCtrl messa
ge, CopterSim will further relay it as the "hil_actuator controls" MAVLink message (https://mavli
nk.io/en/messages/common.html#HIL_ ACTUATOR CONTROLS), and then forward it to the PX
4 flight controller. The definition of this message is as shown in the following figure.

HIL_ACTUATOR_CONTROLS (#93)

Message] Sent from autopilot to simulation. Hardware in the loop control outputs (replacement for HIL_CONTROLS)
Field . o
Type Units Values Description
Name
time_usec uinté4_t us Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or

since system boot) by checking for the magnitude of the number.

controls float[16] Control outputs -1 .. 1. Channel assignment depends on the simulated hardware.
mode uint8_t MAV_MODE_FLAG System mode. Includes arming state.
flags uinté4_t Flags as bitfield, 1: indicate simulation using lockstep.

Note: In reality, during hardware-in-the-loop simulation, this message is used by PX4 to trans
mit motor control commands to CopterSim. Here, it is borrowed to transmit data back to PX4.

The RflySim platform has modified the source code at C:\PX4PSP\Firmware\src\modules\ma
vlink\mavlink receiver.cpp to add support for the hil actuator controls message.

Internal parsing of the rfly ctrl message by PX4: As seen in the source code below, both rf
ly ctrl and rfly _ext borrow the hil_actuator controls message for data transmission. When the mo
de is 123, data is sent to the Simulink controller via rfly_ext, while in other cases, it is sent to the ¢

ontroller via rfly ctrl.

29

https://mavlink.io/en/messages/common.html#HIL_ACTUATOR_CONTROLS
https://mavlink.io/en/messages/common.html#HIL_ACTUATOR_CONTROLS

C: > PX4PSP > Firmware > src > modules > mavlink >| G+ mavlink_receiver.cpp |

109
110
111

MavlinkReceiver::handle_message(mavlink_message_t *msg)
{

switch (msg-»>msgid) {

fase MAVLINK MSG_ID HIL ACTUATOR_CONTROLS:{ |
mavlink_hil_actuator_controls_t hil_actuator_control;
mavlink_msg_hil_actuator_controls_decode(msg, &hil_actuator_control);
if(hil_actuator_control.mode==123){

rfly_ext_s re{};

re.timestamp = hrt_absolute_time();

re.modes = 14

for(int i=@;i<16;i++){

re.controls[i]=hil_actuator_control.controls[i];

}
rfly ext pub.publish(re);

Jelse{

rfly_ctrl_s rc{};

rc.timestamp = hrt_absolute_time();

rc.modes = hil_actuator_control.mode;

rc.flags = hil_actuator_control.flags;

for(int i=0;i<16;i++){
rc.controls[i]=hil_actuator_control.controls[i];

}
_rfly_ctrl_pub.publish(rc);

}

break;

}

Python Interface Usage: According to the forwarding principle of CopterSim, we can send t

he PX4UorbRflyCtrl structure to port 30100 or directly send MAVLink messages to the PX4 flight

controller. There are two methods to input the rfly ctrl message.

First Method: Utilize the sendPX4UorbRflyCtrl function from the PX4MavCtrlV4.py interfac

e for data transmission.

L

23
24
25

26
27

ctrls=[1500,1500,1900,1500,1900,1100,1
mav.sendPX4UorbRflyCtrl(ctrls)
KiksendToPX4UorbRflyCtriZids, fEPX4P
AWEEERE NI EE GEE BT,

The sendPX4UorbR{flyCtrl function internally sends the PX4UorbR{lyCtrl structure to the 30

100 series port, which is then forwarded to the PX4 flight controller.

1258
1259
1260
1261
1262

}2i2I16f

def sendPX4UorbRflyCtrl(self,data=[90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],modes=1,flags=1):
checksum=1234567896
buf = struct.pack("2i2116f",checksum,self.CopterID,modes,flags,*data)
self.udp_socket.sendto(buf, (self.ip, self.port+10000))

Since we know that both rfly ctrl and rfly ext are Mavlink messages originating from hil act

uator_controls to transmit data, we can also directly use Python to send Mavlink messages for data

transmission.

30

23 ctrls=[1500,1500,1900,1500,1900,1100,1100,1100,1100,1100,1100,1100,1100,1100,1100,1100]
24 mav.SendHILCtrlMsg(ctrls)
25 # JZi%SendToPX4UorbRflyCtrl#if

9P rfly_ctrlffJuORBiH 5
26 # (E Y (358 ’ LR

i 77

MoliER TR, 12

]
2213 # send hil_actuator_controls message to Pixhawk (for rfly_ctrl uORB message)

2214 def SendHILCtrlMsg(self,ctrls):

2215 """ Send hil_actuator_controls command to PX4, which will be transferred to uORB message rfly_ctrl
2216 https://mavlink.io/en/messages/common.html#HIL_ACTUATOR_CONTROLS

2217 e

2218 time_boot_ms = int((time.time()-self.startTime)*1000)

2219 controls = [150@,150@,1100,1500,1500,1500,1500,1500,1500,1500,1560,1500,1500,1500,1500,1500]

2220 for i in range(len(ctrls)):

2221 if i<len(controls):

2222 controls[i]=ctrls[i]

2223 if self.isCom or self.isRealFly:

2224 self.the_connection.mav.hil_actuator_controls_send(time_boot_ms,controls,1,1)

2225 else:

2226 buf = self.mav@.hil_actuator_controls_encode(time_boot_ms,controls,1,1).pack(self.mave)

2227 self.udp_socket.sendto(buf, (self.ip, self.port))

2228 #print("Msg Send.")

2229

4.2. rfly_ext.msg

Transferring directly from the DLL model into the PX4 internals, the message definition form

at is:
uintéd timestamp # time since system start (microseconds)
uint8 modes # mode flag
float32[16] controls # 16D control signals

1) During DLL model development, the output port ExtToUE4PX4 is introduced. The first 1
6 dimensions of data from this interface are directly sent to UE4 for actuator control execution, wh
ile the subsequent 16 dimensions are directly sent to PX4. These can be received in the low-level ¢

ontroller via the rfly ext message.

ExtToUE4-1-8

ExtToUE4-1-16

III'HIIII
single
ExtTalIEd-5-16 ExToPXa-1-16 L}

struct ExtToUE4PX4{

float ExtToUE4[16]; // This signal will be sent to UE4 as
the 9 to 26 of actuator's inputs. Besides, this value can be
shown in UE4's D mode, so you can observe the value of
the model through UE4.

float ExtToPX4[16]; // this value will be sent to PX4 with
EXToPXE uORB msg rfly_ext. So you can transfer some sensor data

to you generated PX4 controller.

Selectorg-16 }

ExtToUE4PX4

.

2) When loading the DLL model in CopterSim, the 32-dimensional data from ExtToUE4PX4
is split into a 16-dimensional ExtToUE4 structure and a 16-dimensional ExtToPX4 structure. The 1
atter is then passed into the PX4 flight controller via the MAVLink message hil actuator controls.
It's important to note that a passphrase "mode=123" is forcibly set during this transmission. Theref
ore, as mentioned earlier, mavlink receiver.cpp will parse it as rfly _ext before forwarding it.

3) In the Simulink low-level controller, subscribing to "rfly ext" allows for receiving data fro

m the DLL model. This interface can be used to transmit sensor data that CopterSim currently does

31

not support to PX4, thus accelerating the debugging speed of hardware-in-the-loop simulation env

ironments.

ls& modes >=1 to check the data is cormect.

1000000 timestamp
UORB Write

Topic: rlly_pxd

UORB Read Topic
‘rlly_ext

control

To 40101 ports to show the PX4 controller states

==

From DLL model of CopterSim

4) Testing Method: PX4ExtMsgReceiver.slx automatically generates code and burns it into t
he flight controller. Exp2 MaxModelTemp.slx generates the DLL model and enables hardware-in-
the-loop simulation. In the DLL model, numbers 17 through 32 are sent to rlfy_ext, and then the lo
w-level controller forwards them as rfly px4 UORB messages. Therefore, the method described la
ter can be used to view the data in QGroundControl (QGC) to verify if the messages from the DLL

model are correctly transmitted.

4.3. rfly_px4.msg

To transmit PX4 internal data externally through UDP or MAVLink protocol, the message def

inition format is as follows:

uintéd timestamp # time since system start (microseconds)
float32[8] control # 8D control signals

1) Publish the rfly px4 message in the low-level controller, then subscribe to the data throug
h port 40100 in Simulink. Refer to the example in the UDP_SIL_State Receiver2 module located i
n 0.ApiExps\9.PX4CtrlExternalTune\Readme.pdf.

32

file:///C:/Users/admin/Desktop/5/5.RflySimFlyCtrl/0.ApiExps/9.PX4CtrlExternalTune/Readme.pdf

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

| in1
Data
Recaive UDP packels
usm‘_g host-targe! connection
rom: Any IP address
Length
UDP40101
In2

conirols :

UDP_SIL_State Recaiver?

Get desired signals from PX4 through rly_pxd tORB AP with port 401041

2) The RflySim platform has modified the "Firmware\src\modules\mavlink\streams\ACTUA
TOR_CONTROL_TARGET.hpp" file to subscribe to rfly px4 and forward it as ACTUATOR CO
NTROL TARGET MAVLink messages, which are then received by CopterSim.

L

actuator_controls_s act_ctrl;

1f(N==0){
rfly px4 s rf px;

if 4_rf1y_px4_sub 8& _rfly_px4_sub->update(&rf_px)[) {

msg.time_usec
msg.group_mlx

mavlink_actuator_control_target_t msg{};

rf_px.timestamp;
123;

for (unsigned

i

i

= @; i < sizeof(msg.controls)|/ sizeof(msg.controls[®]); i++) {

msg.controls[i] = rf_px.control[i];

|mavlink_msg_actuator_control_target_send_structd_mavlink—>get_channel(), &msg) ;

return true;

}

Please refer to the detailed definition of the message:

n.htm#ACTUATOR_CONTROL _TARGET

33

https://mavlink.io/en/messages/commo

https://mavlink.io/en/messages/common.html#ACTUATOR_CONTROL_TARGET
https://mavlink.io/en/messages/common.html#ACTUATOR_CONTROL_TARGET

ACTUATOR_CONTROL_TARGET (#140)

[Message] Set the vehicle attitude and body angular rates.

Field
Type Units Description
Name
time_usec uinté4_t us Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer
timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude
of the number.
group_mix uint8_t Actuator group. The "_mlix" indicates this is a multi-instance message and a MAVLink
parser should use this field to difference between instances.
controls float[8] Actuator controls. Normed to -1..+1 where 0 is neutral position. Throttle for single

rotation direction motors is 0..1, negative range for reverse direction. Standard
mapping for attitude controls (group 0): (index 0-7): roll, pitch, yaw, throttle, flaps,
spoilers, airbrakes, landing gear. Load a pass-through mixer to repurpose them as
generic outputs.

3) After receiving the ACTUATOR _CONTROL TARGET message, CopterSim will check i
f group mlx equals the code 123. If it does, it will forward the following structure to the 40100 ser

ies port.
struct PXUExtMsg {
int checksum; //123u567898
int CopterID;
double runnedTime; //Current stamp (s)
float controls[8];
}

Note: CopterSim uses odd-numbered ports for outgoing communication and even-numbered p

orts for incoming communication. Therefore, for the first aircraft, when publishing the PX4ExtMs

g message to the corresponding 40100 series port, it is actually using port 40101.

Use host—target connection =

Local portl 40101 I

Receive width: 120

B Receive from any source

!

Sample time (—1 for inherited): -1

OK Cancel Help Apply

controls.

Recaive UDP packets
Using host-target connection
rom: Any P address

Length

—
UDPa0101

UDP_SIL_State_Recerver2

Gel desired signals from PX4 through rily_px4 uORB AP| with port 40101

After listening to port 40101 through the UDP module, the data is parsed and outputted.

34

checksum

struct PX4ExtMsg {
int checksum; //1234567898

int CopterID;

louble runnedTime; //Current

float controls[8];

) E

stamp (s)

CopterlD
Sl TR A IEF AT A1 opter
Data y 4‘ 1605*
fen
Length dataOk »
runnedTime

—]

444Iil44,

VehicleDataPerse

Byte Unpack controls

In the parsing function, checks are performed on the length and checksum flags to prevent rea

ding incorrect data. Additionally, if the correct data is not received, the aforementioned data will be

retained.

7] #Ri522 - Block: PX4ExtMsgSender/UDP _SIL State Receiver2/\

- UDP SIL State ReceiverZ2/VehicleDataPerse

12 —
13 —

|+ |
function [y, dataOk] = fen(Data, Length)
y=uint8(zeros (48, 1)) :
dataOk = 0;
if Length = 48

return;
end
checksum=typecast(Data(l:4), "int32");
if checksum ~= 1234567898
return;

end

y = Data(1:48);
dataOk = 1:

Using Python or C language, one can similarly listen for MAVLink's ACTUATOR _CONTRO

L TARGET message to obtain the "rfly ext" data. Readers are encouraged to try this out themselv

€s.

35

4.4. rfly_insils.msg

Message Definition Format for Internal Data Transmission in PX4:

uintéed timestamp # time since system start (microseconds)
uint32 checksum # checksum/flag

int32[8] in_sil_ints # 8D int signals

float32[20] in_sil_floats # 20D float signals

The routine for this message is continuously being improved and can be broadly utilized in fo

ur aspects:

1)

2)

3)

4)

Directly modifying the PX4 source code by adding subscription code for "rfly insils", a
nd then publishing this message through Simulink to establish communication between t
he Simulink controller and the modified code interface.

Directly modifying the PX4 source code by adding publishing code for "rfly insils", an

d then subscribing to this message through Simulink.

Generating two automatic code applications for subscribing and publishing communicat
ion between the two.

Modifying the PX4 source code in two locations to enable bidirectional communication

and connect the two sets of code.

5. Flight Log Recording and External Data Communication

Interface

5.1. Simulation Ground Truth Data Analysis

5.1.1. Offline Acquisition Method

For the i-th aircraft, you only need to create a new file under PX4PSP\CopterSim called Copt

erSim+i+.csv (for example, CopterSim1.csv). After each simulation, it will record the simulation g

round truth data (similar to RflySim3D received data, including position, velocity, motor RPM, et

c.). For detailed operational steps, please refer to the following:*\PX4PSP\RflySimAPIs\2.RflySim

Usage\l.BasicExps\el4 Log-Get\Readme.pdf,

5.1.2. Online Acquisition Method

RflySim provides two methods for simulation data retrieval and analysis:

Method One: Detailed operational steps for the MATLAB/Simulink version are as follo
ws:*\PX4PSP\RflySimAPIs\10.RflySimSwarm\0.ApiExps\7.DataAnalysis Mat\Readm

e.pdf.

Method Two: Detailed operational steps for the Python version are as follows:*\PX4PSP
\RflySimAPIs\10.RflySimSwarm\0.ApiExps\8.DataAnalysis Py\Readme.pdf.

36

5.2. Flight Data Analysis

5.2.1. Offline Log Analysis

Detailed operational steps for offline log analysis can be found at:*\PX4PSP\RflySimAPIs\2.
RflySimUsage\1.BasicExps\e4 Log-Reads-Python38Env\Readme.pdf.
5.2.2. Online Log Analysis

Visit https://logs.px4.io/ and upload the ulog file for analysis.

5.3. Controller and External Data Communication Interface

5.3.1. Actuator_output Message - HIL Simulation

Contents of the "actuator output.msg" file:

uintéd timestamp # time since system start (microseconds)
uint8 NUM_ACTUATOR_OUTPUTS = 16

uint8 NUM_ACTUATOR_OUTPUT_GROUPS = 4 # for sanity checking

uint32 noutputs
float32[16] output

valid outputs
output data, in natural output units

This message is only used for hardware-in-the-loop (HIL) simulation.
5.3.2. pwm_output Message - HIL & Actual Flight

Contents of the "pwm_output.msg" message file:

uint6ld timestamp # Time since system start (microseconds)
uint6ld error_count # Timer overcapture error flag (AUX5 or MAINS)
uint32 pulse_width # Pulse width, timer counts

uint32 period # Period, timer counts

This message is only used for HIL and actual flight, and the flight controller's output must sup
port px4io.
5.3.3. actuator_control 0—HIL & Actual Flight

Contents of the "actuator_controls.msg" message file:

uintéd timestamp # time since system start (microseconds)
uint8 NUM_ACTUATOR_CONTROLS = 8

uint8 NUM_ACTUATOR_CONTROL_GROUPS = 6
uint8 INDEX_ROLL = @

uint8 INDEX_PITCH = 1

uint8 INDEX_YAW = 2

uint8 INDEX_THROTTLE = 3

uint8 INDEX_FLAPS = 4

uint8 INDEX_SPOILERS = 5

uint8 INDEX_AIRBRAKES = 6

uint8 INDEX_LANDING_GEAR = 7

uint8 INDEX_GIMBAL_SHUTTER = 3

uint8 INDEX_CAMERA_ZOOM = 4

uint8 GROUP_INDEX_ATTITUDE = 0
uint8 GROUP_INDEX_ATTITUDE_ALTERNATE = 1

uint8 GROUP_INDEX_GIMBAL = 2

37

uint8 GROUP_INDEX_MANUAL_PASSTHROUGH = 3
uint8 GROUP_INDEX_ALLOCATED_PART1 = 4
uint8 GROUP_INDEX_ALLOCATED_PART2 = 5
uint8 GROUP_INDEX_PAYLOAD = 6

uintéd timestamp_sample # the timestamp the data this control response is based on was
sampled
float32[8] control

TOPICS actuator_controls actuator_controls_0 actuator_controls_1l actuator_controls_2 ac
tuator_controls_3

TOPICS actuator_controls_4 actuator_controls_5

TOPICS actuator_controls_virtual_fw actuator_controls_virtual_mc

This message is primarily used to convey actuator control commands, with different message
IDs corresponding to different control groups. Please refer to section 8.1 in the PX4 control group
definition, such as the actuator control 0 series messages. It corresponds to the control group of m
ultirotors, supporting both hardware-in-the-loop simulation for multirotors and actual flight on real
vehicles. Note: When using this message, it is necessary to select the option to suppress the actuat
or_control 0 message in the installation script of RflySim (a simulator). Additionally, it cannot be

directly mapped to motors; instead, the output needs to be configured using PX4's mixer rules.

5.4. Flight Controller Communication Interface with External Data

Note: Please refer to the corresponding example code for this section:*\PX4PSP\RflySimAPI
s\5.RflySimFlyCtr\0. ApiExps\9.PX4CtrlExternal Tune,

5.4.1. Port 20100 Series—Receiving Internal State Estimation Values from PX4

The 20100 series port primarily receives internal state estimation values from PX4. The recei

ved data includes:

struct outHILStateData{ // mavlink data forward from Pixhawk
uint32_t time_boot_ms; //Timestamp of the message

uint32_t copterID; //Copter ID start from 1

int32_t GpsPos[3]; //Estimated GPS position, lat&long: degxle7, alt: m*le3 and up
is positive

int32_t GpsVell3]; //Estimated GPS velocity, NED, m/s*le2->cm/s

int32_t gpsHome[3]; //Home GPS position, lat&long: degxle7, alt: m*le3 and up is p
ositive

int32_t relative_alt; //alt: m*le3 and up is positive

int32_t hdg; //Course angle, NED,deg*1000, 0~360

int32_t satellites_visible; //GPS Raw data, sum of satellite

int32_t fix_type; //GPS Raw data, Fixed type, 3 for fixed (good precision)

int32_t resrvelnit; //Int, reserve for the future use

float AngEular[3]; //Estimated Euler angle, unit: rad/s

float localPos[3]; //Estimated locoal position, NED, unit: m

float localVel[3]; //Estimated locoal velocity, NED, unit: m/s

float pos_horiz_accuracy; //GPS horizontal accuracy, unit: m

float pos_vert_accuracy; //GPS vertical accuracy, unit: m

float resrveFloat; //float,reserve for the future use

}

The naming format for the receiving port of the i-th aircraft is: 20100 + (2*i-1). For example,

38

for the first aircraft, the port is 20101, for the second aircraft, it is 20103, and so on.

5.4.2. Port 30100 Sesries—Receiving CopterSim Flight Simulation Values and Se

nding rfly ctrl Messages to the Flight Controller
The 30100 series port receives flight simulation values from CopterSim and sends rfly ctrl m

essages to the flight controller. The received data includes:

struct SOut2Simulator

{
int copterID; //7%#LID
int vehicleType; //\HL#A
double runnedTime; //f7Z kta
float VelE[3]; //NED i3k R &
float PosE[3]; //NED 3k RfrE
float AngEuler[3]; //Wkdrf
float AngQuatern[ud]; //mW it
float MotorRPMS[8]; //®#l%ti% RPM
float AccB[3]; VILIRCS: Vb 33
float RateB[3]; [/AR B i E
double PosGPS[3]; //33k GPS £ 4%

//S0ut2Simulator # % X 5 Simulink B /w# MavVehileInfo %4 fh 55 & — 3
//FT L E A #HTH simulink # & # MavVehile3DInfo %t 0 #4E #4747 &

[/ TN %H R K E AT 2 152

sizeof(SOut2Simulator) = sizeof(MavVehileInfo) = 152

T E W EMES
typedef struct _netDataShort
{
TargetType tg; //XEHmHEEHE, 5 17 uint32
int len; /[/XNKEAEREMAEKE, Hil< 152
char payload[192]; //®& E®#l 152 frf# 7 SOut2Simulator 4 #h#k e, A U0 R Y
}netDataShort;

//UDP & H &K Z % 200
sizeof(netDataShort) = 200

// %3] UDP 55 1 5 % : 20010
The naming format for the receiving port of the i-th aircraft is: 30100 + (2*i-1). For example,

for the first aircraft, the port is 30101, for the second aircraft, it is 30103, and so on.

The format of the uUORB message data it sends is:

uintéd timestamp # time since system start (microseconds)
uint32 flags # control flag

uint8 modes # mode flag

float32[16] controls # 16D control signals

The naming format for the sending port of the i-th aircraft is: 30100 + (2*i-2). For example,

or the first aircraft, the port is 30100, for the second aircraft, it is 30102, and so on.

39

5.4.3. 40100 System Port—Receiving Internal rfly px4 Messages from Flight Co

ntroller

The 40100 system port receives internal rfly px4 messages from the flight controller. The rec

eived data includes:

struct PXUExtMsg {
int checksum; //123u567898
int CopterID;
double runnedTime; //Current stamp (s)
float controls[8];
}

The naming format for the receiving port of the i-th aircraft is: 40100 + (2*i-1). For example,

for the first aircraft, the port is 40101, for the second aircraft, it is 40103, and so on.

6. Code masking and replacement interface

When developing based on the underlying control algorithms of RflySim, to validate the deve
loped control algorithms, we need to mask the output of the PX4 software. In most cases, we only
need to directly mask the motor output in the PX4 software system. However, certain specific deve
lopment tasks require masking a certain intermediate quantity of a module in the PX4 software sys
tem to meet development needs. For example, if we need to mask the module of the attitude angula
r rate loop controller in the PX4 software system (this location is for PX4 version 1.12.3, for other
versions, please refer to the PX4 official documentation) at: *\PX4PSP\Firmware\src\modules\mc
rate_control. Open the "MulticopterRateControl.cpp" file in this folder. Based on the PX4 source ¢
ode architecture, we can know that the output uORB message of the attitude angular rate loop is "a
ctuator_controls 0" (detailed definition of this message can be found at https://docs.px4.io/v1.12/e
n/concept/mixing.html). By examining the code, we can find that the code for publishing the "actu
ator_controls_0" message is as follows (you can also find it by searching for " actuators 0 pub.pu

blish(actuators);"):

253 }

254 }

255

256 actuators.timestamp = hrt absolute time();
257 I _actuators_@_pub.publish(actuators);

258

259 } else if (_v_control_mode.flag_control_termination_enabled) {
260 if (!_vehicle status.is_vtol) {

261 // publish actuator controls

262 actuator_controls_s actuators{};

263 actuators.timestamp = hrt absolute time();
264 | _actuators_@_pub.publish(actuators);

265 }

266 }

267 t

268

To mask the above two lines of code, there are two methods that can be used.
Method 1: We only need to delete them, comment them out, or replace them with other invali

d code. Since PX4's compilation checks are very strict, directly commenting out the above two line

40

s of code may lead to compilation errors due to the actuators being defined but not used. Therefore,
here we need to use the UNUSED macro to achieve masking. The masking of the code can follow
one of the following rules depending on the situation.

a) Replace " actuators 0 pub.publish(actuators);" with "" (empty string, equivalent to d
eletion. Note that this method is only applicable when there will be no error due to unuse
d variable.)

b) Replace" actuators 0 pub.publish(actuators);" with "/ actuators 0 pub.publish(act
uators);" (this is equivalent to commenting out the line. Note the precautions mentioned
above.)

€c) Replace " actuators 0 pub.publish(actuators);" with "UNUSED(actuators);" (this is
equivalent to replacing it with an invalid statement. Note that this method is applicable w
hen directly deleting the actuators variable would result in an error, and it is suitable for
PX4 1.12 and earlier versions, as the UNUSED macro was removed starting from firmw
are version 1.13.)

d) Replace" actuators 0 pub.publish(actuators);" with "(void) (actuators);" (this is equ
ivalent to replacing it with an invalid statement. Note that this method is applicable whe
n directly deleting the actuators variable would result in an error, and it is suitable for all

versions including firmware version 1.13.)

Method 2: Another approach is to directly replace the file to be modified with a pre-modifi
ed file. The platform's provided interfaces can meet the requirements mentioned above. The one-cl
ick installation script of the RflySim platform offers a file replacement feature. The core idea is to
describe the files and their contents to be replaced according to a given Excel file template. When r
unning the installation script, you input the address of the Excel file, enabling automatic file replac
ement or modification of file contents during platform installation. For specific masking methods,

please refer to the example files for details: 2.AdvExps\e0 AdvApiExps\l1.CusMaskPX4Code\Rea

dme.pdf

7. Multi-module parallel development interface

The latest version of the RflySim platform supports the rapid creation of multiple modules for
parallel development. Based on the multi-process running state in the PX4 software system, the P
X4 application generated automatically by MATLAB's code generation is named "px4 simulink a
pp." You can rename the PX4 application using the "MATLAB Command Line Interface." By rena
ming px4 simulink app, you can continue to build models through Simulink to generate another a
pplication with the name px4 simulink_app. If you need to add another application, you can contin
ue to rename it, and so on. In theory, this approach can facilitate the creation of numerous PX4 app

lications to meet development needs. For detailed usage of the interface, please refer to the experi

41

2.AdvExps/e0_AdvApiExps/1.CusMaskPX4Code/Readme.pdf
2.AdvExps/e0_AdvApiExps/1.CusMaskPX4Code/Readme.pdf

ment file: *\RflySimAPIs\5.RflySimFlyCtr[\2.AdvExps\e0_Basic-Interface\4.MultPX4App\Read

me.pdf.

8. Different aircraft model development interface

8.1. Introduction to PX4 Flight Controller

The PX4 architecture ensures that no special handling for airframe layout is required within th
e core controller. Mixer refers to the distribution of input commands (e.g., right turn from the remo
te controller) to the actuators of motors and servos (such as electronic speed controllers or servo P
WM commands). For fixed-wing aircraft, for instance, where each aileron is controlled by a servo,
mixing involves controlling one aileron to lift while the other drops. Similarly, for multirotors, pit
ch operation requires changing the speed of all motors. Separating the mixing logic from the actual
attitude controller significantly improves reusability.

A specific controller sends a normalized force or torque command (scaled to -1..+1) to the mi
xer, which then sets each individual actuator accordingly. Control output drivers (such as UART, U
AVCAN, or PWM) then translate the mixer's output into the native units for the actuators' operatio

n, such as outputting a PWM command with a value of 1300.

‘//,{/’/,.——p Actuator 5

Attitude Controller — —— Actuator Control Group 0

ﬁmmxmh““%——b Actuator 6

Gimbal Controller ——» Actuator Control Group 2 —— Actuator 5

The control channel outputs of PX4 mainly consist of 4 control groups, which are:
» actuator_controls_0:The primary control channels of the flight controller are used to output ¢
ontrol signals for various channels such as pitch, roll, yaw, throttle, etc. Their specific definiti

ons are as follows:

Control Group #0 (Flight Control)

. 0: roll (-1..1)

pitch (-1..1)

yaw (-1..1)

throttle (0..1 normal range, -1..1 for variable pitch / thrust reversers)
flaps (-1..1)

spoilers (-1..1)

: airbrakes (-1..1)

. 7: landing gear (-1..1)

.
O O FE W NP

» actuator_controls 1:Backup control channels, used in VTOL for outputting control signals in

fixed-wing mode. Their specific definitions are as follows:

Control Group #1 (Flight Control VTOL/Alternate)
. 0: roll ALT (-1..1)

42

pitch ALT (-1..1)

yaw ALT (-1..1)

throttle ALT (0..1 normal range, -1..1 for variable pitch / thrust reversers)
reserved / aux0@

reserved / auxl

.
(o) W, R R VS I S I)

reserved / aux2
. 7: reserved / aux3

» actuator_controls_2: Gimbal control channel. Their specific definitions are as follows:

Control Group #2 (Gimbal)
. 0: gimbal roll
gimbal pitch
gimbal yaw

gimbal shutter
reserved

reserved

.
o o FE W N B

reserved

. 7: reserved (parachute, -1..1)

» actuator_controls_3: Remote control mapping channel. Their specific definitions are as follo

WS!

Control Group #3 (Manual Passthrough)
. 0: RC roll

RC pitch

RC yaw

RC throttle

RC mode switch

RC auxl

RC aux2

RC aux3

8.2. PX4 Mixer Definition

.
N 00 o FEwNn B

One of the functions of the mixer in PX4 is to connect the outputs of upper-level application
modules (such as the output from the attitude controller algorithm) with the actuators of the underl
ying hardware (corresponding to PWM values for motors or servos). The mixer module effectively

isolates the upper-level application modules from the hardware interface, so developers don't need
to worry about which motor receives which control signal when writing upper-level application m
odules. Additionally, by changing different mixer configuration files, PX4 can adapt to different ai
rframe types without needing to modify the code of upper-level application modules. The specific
code can be found in *\PX4PSP\Firmware\ROMFS\px4fmu common\mixers.

The default settings for mixer files in the PX4 software system can be found in the *\PX4PSP
\Firmware\ROMFS\px4fmu_common\init.d\airframes folder. Alternatively, these settings can be o
verridden by placing a mixer file with the same name in the */etc/mixers/ directory on the SD card.
Mixer files with the prefix "xxxx.main.mix" are mapped to the main (MAIN) output, while files n
amed "yyyy.aux.mix" are mapped to the auxiliary (AUX) output. The prefixes (xxxx/yyyy) depend

on the airframe and its configuration. Typically, MAIN and AUX outputs correspond to MAIN an
d AUX PWM outputs, but when enabled, these may be loaded onto the UAVCAN (or other) bus.

43

The main mixer file name (prefix xxxx) is used in the airframe configuration with the comma

nd "set mixer xxxx," for example, calling "set mixer quad_x" in the airframes/4011_dji_f450 confi

guration loads the main mixer file quad x.MAIN.mix). The AUX mixer file (prefix yyyy) depends

on the airframe setting or defaults, such as:

MIXER_AUX can be used to set which yyyy.aux.mix file is loaded. For example, in the file *
\PX4PSP\Firmware\ROMFS\px4fmu common\init.d\airframes\13006_vtol standard d
elta*, after set MIXER_AUX vtol_delta, the loaded mixer file will be *\PX4PSP\Firmware\
ROMFS\px4fmu_common\mixers\vtol delta.aux.mix.

For multirotor and fixed-wing aircraft models, if the MIXER_AUX option is not set, the defa
ult loaded mixer file will be *\PX4PSP\Firmware\ROMFS\px4fmu_common\mixers\pas
s.aux.mix. (Note: "pass.aux.mix’ is the pass-through mixer file for the remote control, w
hich passes the values of four user-defined remote control channels (set using 'RC_MAP
_AUXXx/'RC_MAP_FLAPS" parameters) to the first four outputs of the AUX output.)
Vertical take-off and landing (VTOL) drones will load the "yyyy.aux.mix" set if relevant
settings are applied; otherwise, only the mixer file set by MIXER will be loaded.

Enabling the general control mode (with the output mode set to AUX) will override the M
IXER_AUX setting in the airframe and load the AUX output on *\PX4PSP\Firmware\ROM

FS\px4fmu common\mixers\mount.aux.mix*.

Note: The loading of mixer files as described above is implemented through the file *\PX4PS

P\Firmware\ROMFS\px4fmu_common\init.d/rc.interface.

8.3. The syntax of PX4 mixer files

Mixer files are text files that define one or more mixer definitions: a mapping between one or

more inputs and one or more outputs. There are mainly four types of definitions: multirotor mixer,

helicopter mixer, summing mixer, and null mixer.

» multirotor mixer: defines the outputs of a + or x-shaped rotorcraft with 4, 6, or 8 outputs.

>

helicopter mixer: defines the outputs of helicopter swashplate servos and main motor ESCs (t

he tail rotor is a separate mixer).

summing mixer: combines zero or more control inputs into a single actuator output. The inpu

ts are scaled, and the mixing function sums the results before applying the output scaler.

null mixer: produces an output of zero for the actuator output (when not in fail-safe mode).

The output produced by each mixer depends on the type and configuration of the mixer. For e

xample, a multirotor mixer can have 4, 6, or 8 outputs depending on the aircraft type, while a sum

ming mixer or null mixer only produces one output. Multiple mixers can be specified in each file.

The output order (assigning mixers to actuators) is specific to the device that reads the mixer defin

itions, and for PWM, the output order matches the declaration order.

44

The first statement defined in each mixer file is:
<tag>: <mixer arguments>
The tag here represents the selected mixer type, as follows:

R: Multirotor mixer
H: Helicopter mixer
M: Summing mixer

Z: Null mixer

8.4. Summing Mixer—Additive Mixer

The Summing Mixer is used to control UAV actuators and servos. It combines zero or more ¢
ontrol inputs into a single actuator output. The inputs are scaled, and the mixing function sums the
results before applying the output scaler. The minimum actuator traversal time limit can also be sp

ecified in the output scalar (inverse of rotation rate). A simple mixer definition is as follows:

M: <control count>
0: <-ve scale> <+ve scale> <offset> <lower limit> <upper limit> <traversal time>

If <control count> is zero, then the sum is effectively zero, and the mixer outputs a fixed value

constrained by <lower limit> and <upper limit>.

The second line defines the output scalar using the scalar parameters mentioned above. Altho
ugh calculations are performed as floating-point operations, values stored in the definition file are
scaled by a factor of 10,000; for instance, an offset of -0.5 is encoded as -5000. The <traversal tim
e> on the output scale (optional) is used for actuators, and if the value is too large, it may damage t
he aircraft—e.g., a tilted actuator on tilt-rotor VTOL aircraft. It can be used to limit the rate of cha
nge of actuators (if not specified, rate limiting should not be applied). For example, a <traversal t
ime> value of 20,000 will limit the rate of change of the actuator, requiring at least 2 seconds to go
from <lower limit> to <upper limit> and vice versa.

Note 1: <traversal time> should only be used when required by hardware!

Note 2: Do not impose any restrictions on actuators controlling vehicle attitude (such as servo
s for aerodynamic surfaces), as this can easily lead to controller instability.

Proceed with defining the inputs and their scaling for <control count>, in the following form:
S: <group> <index> <-ve scale> <+ve scale> <offset> <lower limit> <upper limit>

Note 3: s: must be below 0:.

Note 4: Mixer outputs (where <group>=e and <index>=3) with throttle input will not operate in t
he armed or pre-armed state. For example, a servo with four inputs (roll, pitch, yaw, and throttle) w
ill not move even with roll/pitch/yaw signals in the armed state.

The <group>value identifies the control group from which the scalar mixer reads, while the <in
dex> value indicates the offset within that group. These values are specific to the devices defined in
the mixer. When used for mixing vehicle controls, mixer group 0 is for vehicle attitude control, wi
th 0 to 3 typically representing roll, pitch, yaw, and thrust respectively. The remaining fields utilize

the parameter configurations for controlling scalers as discussed above. Values stored in the defini

45

tion file are scaled by a factor of 10,000 when computed as floating-point operations; for example,
an offset of -0.5 is encoded as -5000. Below is an explanation of a typical mixer file example. For

detailed example analysis, please refer to:https://docs.px4.io/v1.13/en/dev_airframes/adding_a ne

w_frame.html#mixer-file,

8.5. Null Mixer—Flight Controller

This mixer does not consume any control channels and generates a single actuator output with
a constant value of zero. Typically, the Null Mixer is used as a placeholder in mixer collections to
achieve a specific pattern of actuator outputs. It can also be utilized to control the output values for
fault safety mechanisms (output is 0 during normal operation; during fault safety, the mixer is ign
ored, and the fault safety values are used instead). The definition is as follows:

Z:

8.6. Multirotor Mixer—Multirotor Mixer

The Multirotor Mixer combines four control inputs (roll, pitch, yaw, thrust) into a set of actua

tor outputs used for driving motor speed controllers. The definition is as follows:
R: <geometry> <roll scale> <pitch scale> <yaw scale> <idlespeed>

Supported aircraft types include:

4x - Quadcopter X Configuration
4+ - Quadcopter Plus Configuration
6x - Hexacopter X Configuration
6+ - Hexacopter Plus Configuration

8x - Octocopter X Configuration

YV V V V VY V

8+ - Octocopter Plus Configuration

The proportional values for roll, pitch, and yaw determine the proportion of roll, pitch, and ya
w control relative to thrust control. When computed as floating-point operations, values stored in t
he definition file are scaled by a factor of 10,000; for example, 0.5 is encoded as 5000. The range o
f inputs for roll, pitch, and yaw is from -1.0 to 1.0, while the range for thrust input is from 0.0 to 1.
0. The output range for each actuator is from -1.0 to 1.0.

The idle speed ranges from 0.0 to 1.0. Idle speed is relative to the maximum speed of the mot
or, which is the speed at which the motor is commanded to rotate when all control inputs are zero.
In the case of actuator saturation, the values for all actuators are readjusted to constrain the saturate

d actuators to 1.0.

8.7. Helicopter Mixer—Helicopter Mixer

The Helicopter Mixer combines three control inputs (roll, pitch, thrust) into four outputs (coll

ective and main motor ESC settings). The first output of the helicopter mixer is the throttle setting

46

https://docs.px4.io/v1.13/en/dev_airframes/adding_a_new_frame.html#mixer-file
https://docs.px4.io/v1.13/en/dev_airframes/adding_a_new_frame.html#mixer-file

for the main motor. The subsequent outputs are for the servo of the swashplate. Tail rotor control ¢
an be achieved by adding a simple mixer. The thrust control input is used for the main motor settin
g and collective pitch of the swashplate. It employs a throttle curve and a pitch curve, each compos
ed of five points

Note: The throttle and pitch curves map the positions of the "throttle" stick input to throttle va
lues and pitch values (respectively). This allows for flight characteristics to be adjusted for differen
t types of flight.

The Helicopter Mixer is defined as follows:

H: <number of swash-plate servos, either 3 or 4>
T: <throttle setting at thrust: 0%> <25%> <50%> <75%> <100%>
P: <collective pitch at thrust: 0%> <25%> <50%> <75%> <100%>

T: Defines points for the throttle curve. p: Defines points for the pitch curve. Both curves cons
ist of 5 points ranging from 0 to 10000. For a simple linear variation, the five values of the curve s
hould be 0, 2500, 5000, 7500, 10000.

The definition for each servo of the swashplate (3 or 4) is as follows:
S: <angle> <arm length> <scale> <offset> <lower limit> <upper limit>

<angle> is in degrees, with 0 degrees representing the direction of the nose. Positive angles are
clockwise. <arm length> is a normalized length, where 10000 equals 1. If all servo arms are of the s
ame length, the value should be 10000 for each. A larger arm length will decrease the amount of se
rvo deflection, while a shorter arm length will increase it. The servo output is scaled by <scale> /
10000. After scaling, <offset> is applied, and its value should be between -10000 and +10000. With

in the full servo range, <tower limit> and <upper limit> should be -10000 and +10000, respectivel

y.
The tail rotor can be controlled by adding a Summing Mixer:
M: 1
S: 0 2 10000 10000 0 -10000 10000

By directly mapping the tail rotor to the yaw command. This applies to both tail rotors control
led by two servos and tail rotors with a dedicated motor.

The 130-blade helicopter mixer file is as follows:

H: 3

18 O 3000 6000 8000 10000

P: 500 1560 2500 3560 4500

Swash plate servos:

S: 0 10000 10000 0 -8000 8000
S: 140 13054 10000 0 -8000 8000
S: 220 13054 10000 0 -8000 8000
Tail servo:

M: 1

S: 0 2 10000 10000 0 -10000 10000

At 50% thrust, the slope of the throttle curve is slightly steep, reaching 6000 (0.6).
At 100% thrust, it reaches 10000 (1.0) with a smaller slope.

47

* The pitch curve is linear, but its entire range isn't used.

* At 0% throttle, the collective control stick setting is already at 500 (0.05).

* At maximum throttle, the collective control stick is only at 4500 (0.45).

* Using higher values for this type of helicopter will cause the blades to stall.

* The swashplate system of this helicopter is set at angles of 0, 140, and 220 degrees.

* Servo arm lengths are not equal.

* Compared to the first servo system, the arm lengths of the second and third servo system
s are 1.3054.

. The servos are limited to -8000 and 8000 because of mechanical constraints.

8.8. VTOL Mixer—Vertical Takeoff and Landing (VTOL) Drone Mix

er

The vertical take-off and landing system utilize a multirotor mixer as the output in multirotor
mode and a sum mixer as the output in fixed-wing mode. The mixer system of the vertical take-off
and landing UAV can be either combined into a single mixer, where all actuators are connected to

10 or FMU ports, or divided into separate mixer files for IO and AUX.

9. PX4 Native Interfaces

PX4 is highly portable and serves as an operating system-independent solution for unmanned
aerial vehicles (UAVs). Developed by world-class developers from both industry and academia, it
benefits from active global community support, powering a wide range of vehicles from racing and

cargo drones to ground vehicles and underwater vehicles. For more information, visit the official

website: https://docs.px4.io/main/en/. Below are some commonly used uORB messages, modules,

and parameters in the PX4 software system.

9.1. Getting Started with the PX4 Software System

Drones are unmanned "robotic" vehicles that can be operated remotely or autonomously, and
they are widely used in many consumer, industrial, governmental, and military applications. These
applications include but are not limited to aerial photography/videography, cargo transportation, ra
cing, search and surveying, among others. Different types of drones are used in aerial, ground, mar
ine, and underwater environments. These drones are referred to as Unmanned Aerial Vehicles (UA
Vs), Unmanned Aerial Systems (UAS), Unmanned Ground Vehicles (UGV), Unmanned Surface V
ehicles (USV), and Unmanned Underwater Vehicles (UUV).

The "brain" of a drone is known as the autopilot system. It runs flight stack software on the ve
hicle controller ("flight controller") hardware. Some drones are also equipped with a separate onbo

ard computer, providing a powerful platform for networking, computer vision, and many other task

48

https://px4.io/software/software-overview/
https://docs.px4.io/main/en/

PX4 is a powerful open-source drone flight control stack, with some key features including:
® Control a variety of vehicle frames/types, including drones (multirotors, fixed-wing aircraft, a
nd VTOL aircraft), ground vehicles, and underwater vehicles.
® Offer a robust selection of vehicle controllers, sensors, and other peripheral devices.
Provide flexibility and robustness in flight modes and safety features.
Deeply integrate with onboard computers and robot APIs (such as ROS 2, MAVSDK).
PX4 serves as a core component of a broader drone platform, which includes QGroundContro
I-based ground stations, Pixhawk hardware, and MAVSDK, integrating with companion com
puters, cameras, and other hardware using the MAVLink protocol.
The ground control station for Dronecode is called QGroundControl. You can use QGroundC
ontrol to flash PX4 onto vehicle control hardware, configure vehicles, change various parame
ters, get real-time flight information, and create and execute fully autonomous missions. QGr
oundControl runs on Windows, Android, MacOS, or Linux. Download and install it from her

c.

QGroundControl Daily - o X

g5 +0.0m 10.0 m/s 00:00:00
40.0m =20.0m/s £0.0m

- e 2

PX4 supports aerial, ground, and underwater vehicles. You can view all types and variants ("f
rames") of vehicles for PX4 testing/tuning here: Airframe Reference. Choose different vehicles bas
ed on the type you need:

Multirotors: Offer precise hovering and vertical takeoff but have shorter range and typically
fly slower. They have modes in PX4 that make them easy to fly and are the most popular type of fl
ying vehicle.

Helicopters: Similar to multirotors but mechanically more complex and efficient.

49

Fixed-wing aircraft: Provide longer flight times and faster speeds, making them better for ap
plications like ground surveys. However, they are more challenging to fly and land than multirotor
s. They are not suitable if you need to hover or fly at very slow speeds (e.g., when surveying vertic
al structures).

Vertical Takeoff and Landing (VTOL) drones: Come in various types such as tiltrotors, tail
sitters, quadplanes, etc. They offer the dual advantage of vertical takeoff like multirotors and then t
ransitioning to forward flight like airplanes. They are typically more expensive and harder to manu
facture and tune than multirotors and fixed-wing aircraft.

Balloons/Airships: Are lighter-than-air flying vehicles that typically offer high-altitude, long
-duration flights, usually with limitations (or no limitations) on range and speed control.

Rovers are ground vehicles similar to cars. They are easy to control and often fun.

Unmanned boats: Are surface vehicles.

Unmanned underwater vehicles: Are underwater vehicles.

QGroundControl = [m} X
% Back < go Vehicle Setup

Airframe Setup
Summary

Airframe Setup is used to select the airframe that matches your vehicle. This will in turn set up the various tuning values for flight parameters.

You've connected a 3DR Iris Quadrotor.To change this configuration, select the desired airframe below then dlick ‘Apply and Restart'.

Firmware

sl Autogyro Balloon oaxial H
o. Aitframe utogy Balloo Coaxial
..
Sensors
Flight Modes ‘

Power Cloudship ThunderFly Auto-G2 ThunderFly balloon TF-B1

Flying Wing ielicopte Hexarotor +
Motors

Safety
PID Tuning

Flight Behavior

Generic Flying Wing Blade 130X
Camera

Octorotor + Octorotor Coaxial Generic Hexarotor x geometry

Octo Coax W i =
- Vi "
Parameters UVIfy Draco-R
X ¢ L] Hex X with control allocation
- S é -

9.1.1. Firmware Download

After installing the RflySim platform, you can find the complete PX4 source code at the path:
\PX4PSP\Firmware. Open the WSL subsystem on the desktop (\Desktop\RflyTools\Win10WSL.
Ink) for compilation. After the compilation is complete, open the QGC software for firmware down
load. Note: You can also directly download the firmware through QGC if there is an internet conne

ction.

50

9.1.2. Model Configuration

After firmware flashing is complete, launch the QGroundControl software. Once connected to
the flight controller, select the "Q" icon > Vehicle Setup > Airframe (sidebar) to open the airframe
configuration. Choose the vehicle group/type that matches your frame, and then within the group,
use the drop-down menu to select the frame most suitable for your vehicle. For example, if you are
simulating quadcopter hardware in a loop, you can select the frame as follows: Simulation -> HIL

Quadcopter X.

QGroundControl = o X

% Back < %g Vehicle Setup

Airframe Setup

Summary
Airframe Setup is used to select the airframe that matches your vehicle. This will in turn set up the various tuning values for flight parameters.

Cr You've connected a 3DR Iris Quadrotor.To change this configuration, select the desired airframe below then click 'Apply and Restart'.

Coaxial Helicopter

Sensors

Flight Modes

Generic Dodecarotor cox geomgn

Flying Wing Hexarotor x
Motors
Safety

PID Tuning A

Flight Behavior

Camera
Octo Coax Wide Generic Hexarotor x geometry

x
VI raco-R
Parameters Uvify Draco
{ Hex X with control allocation

9.1.3. Hardware-in-the-loop (HIL) simulation

Connect the flight controller to the computer, open the QGroundControl ground station, and s
elect the airframe as follows: Simulation -=> HIL Quadcopter X. In the safety options, set: Safety >

Hardware-in-the-loop Simulation -> HITL enabled.

51

QGroundControl Daily - o %

PID Tuning
Standard VTOL Tilt-Quad Tricopter ¥+

Open the "*\Desktop\RflyTools\HITLRun.Ink" to start the hardware-in-the-loop simulation sc
ript with a single click. Input the port number of the flight controller and wait until the message ba
r at the bottom left of CopterSim displays: "PX4: GPS 3D fixed & EKF initialization finished". Th

en, you can unlock and take off the aircraft in QGC.

QGroundControl Daily - o %

ack < ?,Q Vehicle Setup

PID Tuning

Fligh : external HITL
HITL and SIH disabled

HIHL
HITL enabled

SIH enabled

52

ehicle Info of 1D 1 with style 3
Timestemp (s): 1551150
Position xyz: -0020, 0.008, -18016

9.1.4. Aircraft actual flight

Choose the airframe for your specific vehicle, for example: for a quadcopter, you can select th
e airframe as follows: Quadrotor X -> DJI F450 w/ DJI ESCs. In the safety options, set: Safety ->
Hardware-in-the-loop Simulation -> external HITL. For more detailed steps on actual flight, please

refer to the experiment: 1.BasicExps\e5-AttitudeCtrl\e5.4\Readme.pdf.

9.2. PX4 Official Flight Controller Support Introduction

The flight controllers officially supported by PX4 are maintained by the PX4 Autopilot maint
ainers and the Dronecode team. They comply with the Pixhawk standard. For more up-to-date info

rmation, please visit: https://docs.px4.io/main/en/flight controller/. The following table lists some

commonly used flight controller hardware and compilation commands:

53

1.BasicExps/e5-AttitudeCtrl/e5.4/Readme.pdf
https://docs.px4.io/main/en/flight_controller/

Serial | Onboard Informatio
Numb n Hardware Name Compilation Command
er
1 CUAV Pixahwk V6X (FMUvV6X)
2 | FMUv6X and FMU | Holybro Pixhawk 6X (FMUv6X) Pxil_fRuzvEx_defadtt
3 v6C Holybro Pixhawk 6C (FMUv6C)
4 Holybro Pix32 v6 (FMUv6C) Pxil_fauzvee_defautt
5 EMUYS and EMU Pixhawk 4 (FMUVS)
6 | o (svngzm 20V1 Pixhawk 4 mini (FMUvS5)
7 0120, 5 CUAV V5+ (FMUVS) px4_fmu-v5_default
8 CUAV VS5 nano (FMUVS5)
9 FMUv4 (STM32F Pixracer pxt_fmu-vi_default
10 4,2015) Pixhawk 3 Pro px4_fmu-vipro_default
11 Pixhawk 2
FMUV3 (STM32F - —
12 Pixhawk Mini pxU_fmu-v3_default
4,2014) -
13 CUAV Pixhack v3
FMUV2 (STM32F ,
14 Pixhawk px4_fmu-v2_default

4,2013)

9.3. Introduction to Commonly Used uORB Messages in PX4

hicle IMU

Seria
I Nu Name Description File Address
mber
)) *\PX4PSP\Firmware\msg\actuato
1 actuator_controls.msg Driver control signal
r_controls.msg
)) *\PX4PSP\Firmware\msg\actuato
2 actuator_outputs.msg Driver output signal
r_outputs.msg
: The remote control inpu | *\PX4PSP\Firmware\msg\input r
3 input_rc.msg
ts a message c.msg
Controls single or multi | *\PX4PSP\Firmware\msg\led co
4 led _control.msg
- ple external LEDs ntrol.msg
. . *\PX4PSP\Firmware\msg\vehicle
5 vehicle status.msg Vehicle status message
_status.msg
)) Message output from ve | *\PX4PSP\Firmware\msg\vehicle
6 vehicle imu.msg

_imu.msg

For more uORB message descriptions, please refer to:https://docs.px4.io/main/en/msg_docs/

9.4. Introduction to Commonly Used Modules in PX4

Seria
1 Nu Name Description File Address
mber
Multi-rotor speed control | *\PX4PSP\Firmware\src\modules
1 mc_rate_control
-~ module \mc_rate_control
Multi-rotor position control | *\PX4PSP\Firmware\src\modules
2 mc_pos_control
module \mc_pos_control

54

https://docs.px4.io/main/en/msg_docs/

Multi-rotor attitude control | *\PX4PSP\Firmware\src\modules
3 mc_att control
- module \mc_att_control
) L. *\PX4PSP\Firmware\src\modules
4 navigator Navigation control module)
\ navigator

For more uORB message descriptions, please refer to:https://docs.px4.io/main/en/

9.5. Introduction to Commonly Used Parameters in PX4

5 Name Description
1 MPC THR MIN Minimum thrust in automatic thrust control
2 MPC _THR_HOVER Hover thrust
3 MPC _USE HTE Hover Thrust Source Selector
4 MC ROLLRATE P Proportional gain of roll rate
5 MC _ROLLRATE 1 Integral gain of roll rate
6 MC ROLLRATE D Differential gain of roll rate
7 MC _ROLLRATE FF Feed forward of roll acceleration
8 MC ROLLRATE K Roll Rate Controller Gain, Global Gain of Controller

For more uORB message descriptions, please refer to:https://docs.px4.io/main/en/

10.Reference Materials

[1]. & A AR 0, R UeE 58 B 4 5 B, AP B3 £ e B AT H I 58 FI ML BT Tk AR
#,2018.
Quan Quan, Du Guangxun, Zhao Zhiyao, Dai Xunhua, Ren Jinrui, translated by Deng Heng,
"Design and Control of Multirotor Aircraft" [M], Published by Electronic Industry Press, 201
8.

[2]. AAEYIE, . % jE B AT BRI 5355 52 B [M], B F Tk AR AE,2020.
Quan Quan, Dai Xunhua, Wang Shuai, "Design and Control of Multirotor Aircraft: Practice"
[M], Published by Electronic Industry Press, 2020.

55

https://docs.px4.io/main/en/
https://docs.px4.io/main/en/

11.Common Questions and Answers
11.1. MATLAB/Simulink During automatic code generation, the follo

wing error is sometimes reported.

a
‘fvbv GTR- l‘!""{;‘ o~

Exp5_AtstudeSystemCodeGenRealFlight_old

uring_the_call_to_make

‘An_error_occurred_during_the_call_to_make’ TRASBFEIIHES, WAROTETHES

SRHLALIR T #F .
#88 (Creating HTML report file ExpS AttitudeSvstemCodeCenRealflight old codegen rpt himl

£S5 : Validation warning(s):
Skipped the existence check for 'Invoke Make'. Cannot determine the utility that needs to be
checked for existence from the build tool command ‘$(call CALLPX4MK)".

##2# Build procedure for model: 'Exp5_AttitudeSystemCodeGenRealFlight_old' aborted due to an error.

Error(s) encountered while building "Exp5 AttitudeSystemCodeGenRealflight old”
#%8 Failed to generate all binary outputs.

Caused by:
e Validation error(s):
Validating other build tools ...
Unable to locate build tool "Pixhawk Toolchain C Compiler™: echo
t

.

Unable to locate build tool "Pixhawk ToolchainC Pre-Linker™: echo

Unable to locate build tool "Pixhawk Toolchain Archiver™: echo

Caused by:

Validation error(s):

Validating other build tools ...

Unable to locate build tool "Pixhawk Toolchain C Compiler": echo
Unable to locate build tool "Pixhawk ToolchainC Pre-Linker": echo
Unable to locate build tool "Pixhawk Toolchain Archiver": echo

In case of compilation errors, possible compilation problems can be classified as: MATLAB
model problems, PX4 firmware problems, MATLAB model and PX4 firmware linking problems.

Questions and answers:

Dealing with MATLAB model problems. MATLAB automatic code generation checks the mo
del at the initial stage of compilation, so these kinds of problems are often displayed within second
s of clicking the compile button. The most common MATLAB problem is that the data of each inte

rface does not match. Click the module that prompts the error to jump to the problem.

56

(S

¥, Diagnostic Viewer X
B v > ‘.“ A 4 w - R, searc!) v 4 @ - @
Exp5_AmtudeSystemCodeGenRealFlight old ©

#28 Starting build procedure for model: ExpS_AttitudeSystemCodeGenRealFlight_old
##8% Generating code and artifacts to 'Model specific’ folder structure

v Code Generation w1 @1
Elapsed 0 376 sec
##8 Generating code into build folder: C:\PX4PSP\RflySimAPIs\Exp@2_FlightControl\ed-
PlatformStudy\3.DesignExps\ExpS_AttitudeSystemCodeGenRealFlight_old_ert_rtw
Output port 1 of "ExpS AttitudeSystemCodeGenRealflight old/input rcl' is not connected.

Component Simulink | Category. Block waming
#88% Build procedure for model: ‘Exp5_AttitudeSystemCodeGejRealFlight_old’ aborted due to an error.

Error in port widths or dimensions. Output port 1 of

‘ExpS AttitudeSystemCodeGenRealFlight old/Subsystem’ is ajone dimensional vector with 4 elements.
Component: Simulink | Category Block diagram error
ISE i E: L i3 ST AN LY S

Error in port widths or dimensions. Input port 1 gf
'ExpS _AttitudeSystemCodeGenRealflight g}g(ﬁgp;u&f is a one dimensional vector with 1 elements.

somponent. Simulink | Category. Block diagram error

Address the PX4 firmware issue. If the PX4 source code has compilation problems, it will ge
nerally be displayed in the compilation log prompt of MATLAB. The following figure shows the 1
ocation of the problem code. Modify it according to the prompt. The firmware for the PX4 in the p

latform is located at PX4PSP \ Firmware.

¥4 Diagnostic Viewer - o X

Bvuvuv“v‘?vlq 1 " @v @
ExpS5_AtitudeSystemCodeGenRealFlight old ©
AN T1i@ INCLUGRO TrOom ..I..IDLI‘YONS/I\U“X/"U“A/nU‘!!/lﬂ(LUO./SinlOC(J.h:JL,
from ../../src/drivers/drv_hrt.h:42,
from ../../platfores/common/include/pxd_platform_common/log.h:125,
from ../../platfores/common/include/px4_platform_common/defines.h:42,
from ../../src/drivers/pxdio/pxdio.cpp:40:
<ol ../src/drivers/pxdio/pxdio.cpp: In member function ‘virtual int PX4I0::ioctl(file*, int,
long unsigned int)’: S I
{./../platforms/common/include/px4 platform common/defines.h:66:23: error: jump to case label |

66 | #define _PX4_IOC(x,y) _IOC(x,y)
| Arerere
vof.o/src/drivers/drv_pwm_output.h:206:31: note: in expansion of macro '_PX&_IOC*
206 | wdefine PWM_SERVO_GET(_servo) _PX4_IOC(_PWM_SERVO_BASE, Ox50 + _servo)

| S
ool < /src/drivers/pxdio/pxdio.cpp:1671:28: note: in expansion of macro 'PWM_SERVO_GET®
1671 | case PWM_SERVO_GET(@) ... PWM_SERVO_GET(PWM_OUTPUT_MAX_CHANNELS - 1): {

I A
compilation terminated due to -Wfatal-errors.
ninja: build stopped: subcommand failed.
Makefile:230: recipe for target ‘pxd_fmu-vbc_default® failed
make: *** [px4_fmu-v6c_default] Error 1
gmake: *** [postdownload_preexecute] Error 2
CAPYXAPSPI\RFISIimAPT<\Fynfl) FliohtContrnliel.

Handles linking of MATLAB models to PX4 firmware. This kind of problem is often caused
by the change of some interfaces due to the upgrade of PX4 firmware version, and the interfaces g
enerated by MATLAB automatic code may not match, so errors will occur in the final link stage. T
his kind of problem cannot see the specific error in MATLAB. You need to open WinlOWSL (refer

to other tools if other compilation tools are selected) and re-execute the following compilation co

57

mmands, such as make px4_fmu-vec_default (change other versions to their corresponding co

mmands) to see the specific problem.

> 2@ > RflyTools v O 4
= 29 3F & = I
£ AT A g S A A ﬁ @
3DDisplay CopterSim FlightGear HITLRun PPTs Python38E QGroundC
-F450 nv ontrol

@ &6

RflySim3D RflySimAPl RflySimUE SITLRun WinT0WSL
5 5

)

ER: ARMKEREEAN, NZRILFeRELHZEN, RERARNYGRE GRS
ZERUY o

11.2.In the automatic code generation controller, the delay module is
used to directly generate control instructions, which causes the ai

rcraft to fly around.

Description of the problem:

Routine:_1. BasicExps\e5-AttitudeCtrl\Readme.pdf disconnect the remote controller inputs C
H1-CH4 from the inputConditioning module, and change the input signals of roll (CH1), pitch (CH
2), throttle (CH3) and yaw (CH4) to the desired fixed value inputs. Only the AttitudeControl _ HI
L. SIx is modified in this place, and then the hardware-in-the-loop simulation is carried out with th
e same operation steps as the original AttitudeControl _ HIL. Slx routine. After the hardware-in-th
e-loop is started, the aircraft itself flies on the ground, and an error will be reported after a while. W

hat is the reason? How to solve it?

58

1.BasicExps/e5-AttitudeCtrl/Readme.pdf

IESEGITR

D) ent Rolldf—
ch1
(2)—»{ double }——pich2 Pitch_d f—
ch2
W ch3 yawRate_d |—
ch3
("4)—»{ double }——pich4 Thrust |—
ch4
InputConditioning
BXG:
1600 |———p{_double |—— ch1 Roll_d f—
chi 1500 »{ double }——pch2 Pitch_d f—
: Conversion12
CI;Z 1500 ch3 yawRate_d |—
®°h3 > 200 cad e —
1500 pepa—"
ch4 1 InputConditioning

Simulation phenomenon: After the change, the UAV flies on the ground during the hardware-in-the

-loop simulation.

x R 120]
sax 18

A LU /
M

R

- BT
- Wodeprise SR
l o
AcHERRN
e
A: L] SR
Nas MRS cow

This modification is not feasible because the total delay of 200 steps is only 200 * 0.001 = 0.2 seco
nds. Because the px4 _simulink _ app program starts to run when it is powered on, it is equivalent
to inputting control instructions after powering on, and it becomes a full throttle state. In this case,
the flight control has not been initialized, the filter triggers the divergent state, and the accurate po

se information is not obtained.

59

‘ 1600 double ch
1500 ;@ double ch
Conversion12

l

1500 double ch.
200 |—p| 7100 £
1500 —

1

Perfect solution: directly read the uORB message of the EKF state, judge that the filter is initialize
d, and then delay a period of time to give control instructions. Simple solution: extend the delay ti
me a little more, or directly use MATLAB function to write a trigger mechanism, and then give co

ntrol instructions after the simulation time reaches 60s.

11.3.SIL Or HIL When simulating, RflySim3D Appear Fatal error:

[File:D://Build/++UEA4....]... Report an error

The specific error reporting interface is as follows:

Fatal error:
[File:D:/Build/++UE4/Sync/Engine/Source/Runtime/Windows/D3D11RHI/Private/
D3D11Util.cpp] [Line: 198]

Unreal Engine is exiting due to D3D device being lost. (Error: 0x887A0006 -
'HUNG")

Questions and answers:

The above RflySim3D error may be due to the compatibility problem caused by the graphics
card driver of the computer. It is recommended to upgrade the graphics card driver to the latest ver
sion and see if it can be solved. If it cannot be solved, please contact the relevant after-sales person

nel of the RflySim platform.

60

11.4.How to do UAV attitude autonomous control?

Description of the problem:

The detailed description is: we need to let the UAV fly to a certain height and fix it, and then |
et the UAV move autonomously according to the input of the expected attitude angle given by ours
elves, so that the three attitude angles can move to the given expected value.

Questions and answers:

The channel of the remote controller can be used to transmit trigger information. For example,
when CHS is dialed to the full position, the program starts to execute automatically. Write a state
machine in Simulink to let the aircraft take off first, and then control the attitude after reaching the
altitude. The specific design method of the controller belongs to the category of Simulink program
ming, which can be understood by referring to relevant literature. If you want to input the informat
ion such as the expected attitude angle from the outside after switching the fixed height, please use

0. ApiExps\9.PX4CtrIExternal Tune\Readme.pdf the external control interface in this directory to s

ubscribe to the rfly _ ctrls message (transmitted from the external program) in the flight control as

the expected attitude angle.

11.5.How to get the result data of attitude control hardware in the loo

p? Do I know how to download the flight log to get what I want?

Questions and answers:

Please use 0. ApiExps\9.PX4CtrlExternalTune\Readme.pdf the interface of the routine to obta

in the real attitude (simulation value) of the model in Simulink in real time and the data from the fl

ight control (fill in the flight control attitude). Similar data can also be obtained from the flight log.

11.6.QGC Yes Analyze Tools- Flight log, after refreshing when down
loading, I can't find the log of the time corresponding to the hard

ware in the ring.

Questions and answers:

Open the QGC and enter the vehicle setup

61

0.ApiExps/9.PX4CtrlExternalTune/Readme.pdf
0.ApiExps/9.PX4CtrlExternalTune/Readme.pdf

W = |
Select Tool Close

OQO Vehicle Setup

& Analyze Tools
Application Settings

QGroundControl Daily Version
v4.2.0-392-gbabcf1ff6

Go to the parameter label at the bottom, search for "log", find the parameter of the SDLOG _

MODE, change it to the following figure, record the log from power-on to power-off, and then you

can see the log.

from boot until shutdown ~ Reset To Default
disabled

top logging. By
when armed until disarm (deh arming the system,
from boot until disarm

from boot until shutdown

depending on AUX1 RC chan

Vehicle reboot required after change

62

11.7. Winl0WSL When compiling the firmware, displays: region "A

XI_SRAM' overflowed by 15401072 bytes

Description of the problem:

@

t’ failed

Questions and answers:

The problem is that the compiled firmware is larger than the content of the flight control, caus
ing the firmware to overflow and report an error. You can enter the Cmake file of PX4 to comment
out some unused modules. The specific address of Pixhawk series flight control is: * PX4PSP \ Fir
mware \ boards \ px4. For example, the experiment conducted is a quadrotor related low-level cont
rol algorithm development experiment, the flight control used is Pixhawk 6C, and the unused mod
ules in C: \ PX4PSP \ Firmware \ boards \ px4 \ fmu-v6c \ default. Cmake can be annotated (as foll

ows). And then compile.

MODULES
airspeed_selector
px4_simulink_app
attitude_estimator_q
camera_feedback
commander

dataman

63

64

	1. RflySim Automatic Code Generation Simulink Configuration Interface
	1.1. The Basic Architecture of RflySim's Automatic Code Generation System
	1.2. Internal Communication in the PX4 Software System
	1.3. Simulink Configuration Interface
	1.4. Code Modification Interface
	1.5. Custom Source Code Import Interface

	2. Simulink/PSP Toolbox Module Interface
	2.1. ADC and Serial — ADC and Serial Communication Library
	2.1.1. Read ADC Channels—Outputting the input of an external ADC
	2.1.2. Serial—Serial Communication Module

	2.2. Miscellaneous Utility Blocks—Other libraries
	2.2.1. binary_logger—Data Logging Module
	2.2.2. ExamplePrintFcn—Print Function Example
	2.2.3. ParamUpdate—Custom Storage Class Parameter Update Module

	2.3. Sensors and Actuators—Sensor and Actuator Interface Library
	2.3.1. Battery_measure—Battery Data Module
	2.3.2. Input_rc—Remote Control Input Module
	2.3.3. PWM_output—Motor PWM Module
	2.3.4. RGB_LED— LED Light
	2.3.5. sensor_combined—Sensor Fusion Module
	2.3.6. Speaker_Tune—Buzzer Module
	2.3.7. vehicle attitude—Attitude Data Module
	2.3.8. vehicle gps— GPS Data Module

	2.4. uORB Read and Write— uORB Message Read and Write Library
	2.4.1. uORB Read Async—Retrieve Data Related to uORB Topic
	2.4.2. uORB Read Function-Call Trigger— uORB Message Read Callback Trigger Module
	2.4.3. uORB Write— uORB Message Data Publishing Interface Module
	2.4.4. uORB Write Advanced— Advanced Module for uORB Message Data Publishing Interface
	2.4.5. uORB Write Advanced_dai— Advanced Module for uORB Message Data Publishing Interface

	3. MATLAB Command Line Interface
	3.1. PX4Upload
	3.2. PX4CMD
	3.3. PX4Build
	3.4. PX4AppName
	3.5. PX4AppLoad
	3.6. PX4ModiFile
	3.7. PX4Official
	3.8. PX4SitlSet
	3.9. PX4SitlRec

	4. Automatically generated external communication interface
	4.1. rfly_ctrl.msg
	4.2. rfly_ext.msg
	4.3. rfly_px4.msg
	4.4. rfly_insils.msg

	5. Flight Log Recording and External Data Communication Interface
	5.1. Simulation Ground Truth Data Analysis
	5.1.1. Offline Acquisition Method
	5.1.2. Online Acquisition Method

	5.2. Flight Data Analysis
	5.2.1. Offline Log Analysis
	5.2.2. Online Log Analysis

	5.3. Controller and External Data Communication Interface
	5.3.1. Actuator_output Message - HIL Simulation
	5.3.2. pwm_output Message - HIL & Actual Flight
	5.3.3. actuator_control_0—HIL & Actual Flight

	5.4. Flight Controller Communication Interface with External Data
	5.4.1. Port 20100 Series—Receiving Internal State Estimation Values from PX4
	5.4.2. Port 30100 Sesries—Receiving CopterSim Flight Simulation Values and Sending rfly_ctrl Messages to the Flight Controller
	5.4.3. 40100 System Port—Receiving Internal rfly_px4 Messages from Flight Controller

	6. Code masking and replacement interface
	7. Multi-module parallel development interface
	8. Different aircraft model development interface
	8.1. Introduction to PX4 Flight Controller
	8.2. PX4 Mixer Definition
	8.3. The syntax of PX4 mixer files
	8.4. Summing Mixer—Additive Mixer
	8.5. Null Mixer—Flight Controller
	8.6. Multirotor Mixer—Multirotor Mixer
	8.7. Helicopter Mixer—Helicopter Mixer
	8.8. VTOL Mixer—Vertical Takeoff and Landing (VTOL) Drone Mixer

	9. PX4 Native Interfaces
	9.1. Getting Started with the PX4 Software System
	9.1.1. Firmware Download
	9.1.2. Model Configuration
	9.1.3. Hardware-in-the-loop (HIL) simulation
	9.1.4. Aircraft actual flight

	9.2. PX4 Official Flight Controller Support Introduction
	9.3. Introduction to Commonly Used uORB Messages in PX4
	9.4. Introduction to Commonly Used Modules in PX4
	9.5. Introduction to Commonly Used Parameters in PX4

	10. Reference Materials
	11. Common Questions and Answers
	11.1. MATLAB/Simulink During automatic code generation, the following error is sometimes reported.
	11.2. In the automatic code generation controller, the delay module is used to directly generate control instructions, which causes the aircraft to fly around.
	11.3. SIL Or HIL When simulating, RflySim3D Appear Fatal error:[File:D://Build/++UE4....]... Report an error
	11.4. How to do UAV attitude autonomous control?
	11.5. How to get the result data of attitude control hardware in the loop? Do I know how to download the flight log to get what I want?
	11.6. QGC Yes Analyze Tools- Flight log, after refreshing when downloading, I can't find the log of the time corresponding to the hardware in the ring.
	11.7. Win10WSL When compiling the firmware, displays: region `AXI_SRAM' overflowed by 15401072 bytes

