API specification file search outline

1. GENERAL INTRODUCTION OF MOTION MODELING INTERFACE......1
2. ENVIRONMENT CONFIGURATION .....ccoiiiiiiecie e 3
2.1 VISUAL STUDIO INSTALLATION ....eteitireiiieeiieeesieeesieeessseeesssesssssessnssessnseesanns 3
2.2 MATLAB COMPILATION ENVIRONMENT CONFIGURATION .....cccovveiireeinneeennes 4
2.3 SIMULINK CODE GENERATION SETTINGS ...ecivtieiiieeiireesieeessneesssneesnseeesseeeanns 4
2.4 ENVIRONMENT CONFIGURATION FOR LINUX VERSION .....cccoivieiiiieeiireesneeenns 7
3. BASIC OPERATION PROCESS .......oooiiiiice s 7
3.1 VEHICLE SIMULINK MODEL DEVELOPMENT ...eeciuviieiiieeesiieeesieeesssneeessseesnsneeanns 7
3.2 MODEL COMPILATION TO GENERATE C/C++ FILES ....ccveiieeviie et 8
3.3 DLL/SO MODEL GENERATION ....veeivieitieiieesteesreesseesseesssesseesssesseesssesseens 10
3.4 INTRODUCTION OF PX4 MIXED CONTROL RULES.......cceeivieeriieeeiiieesineesnsnnens 11
3.5 MODIFICATION OF BAT SCRIPT RELATED PARAMETERS ......ccovevieiieeiineeneenns 21
3.5.1 Hardware-in-the-loop simulation SCript..........cccccevvveieiiiininicene 21
3.5.2 Software-in-the-loop simulation SCrpPL........cccceviieiiiinirce 21

3.6 SITL SIMULATION .....utiieitieeesteeeeetee e aiee e stee e stee e st e snteeesnaeeesnneesnnseesneeeanneeens 21
3.7 HITL SIMULATION ....utiieitiee ettt et e s ee e siee e st e st e st e e snae e e snneeenneesnneesnneeens 23
3.8 SIMULATION TEST BY QGC OR REMOTE CONTROL ...c.vvieiieeiiienieesiee e 26
3.9 EXTERNAL INTERFACE COMMUNICATION DEBUGGING ......covvveeiiireirieeiiennns 26
4, DLL FILE GENERATION SCRIPT -GENERATEMODELDLLFILE.P....... 26
5, DLL/SO MODEL AND COMMUNICATION INTERFACE.........cccccveurnnenn 26
5.1 GENERAL INTRODUCTION ....uvvveiiiieitieesieeessteeessteeesnseeesssesssssessnsssesnssessnsnnens 26
5.2 IMPORTANT PARAMETERS .....vvtiitiieiieeesteeessteeessteeesnteeessaaessssessssseesnsnessnsenens 27
5.2.1 MOCEIINIT_POSE .......ooieiiiiesiee et 27
5.2.2 ModelINit_ANGEUIET ......c.oiiiiiie e 28
5.2.3 MOAHNIT_INPULS.....couiiiiiiiiiiieeee s 28
5.2.4 MOdelParam_UAVEYPE ......coiveieiirieriesie et 29
5.2.5 ModelParam_GPSLatLOoNg........cccooiiiiiiiiiiiciee e 30
5.2.6 ModelParam_enVAITULE .........cccooveiieiieie e 30

5.3 DATA PROTOCOL ...cccttiieitiie ettt e eetee et s et e st e et e e stae e s sna e e nnn e e esneeanneeens 31
5.3.1 Flight control simulation input interface............ccccocviiiiinninicnen, 31
5.3.2 Flight control simulation output interface.............ccocoocerviinininienienn, 32
5.3.3 Simulation data output INterface ...........coovvvveieieiese e 32
5.3.4 Automatic code generation controller communication interface.......... 33
5.3.5 Collision Data Receiving Interface -- inFloatsCollision...................... 33
5.3.6 External data incoming interface ...........cocoovvveiiieienc s 33



5.3.7 Real-time parameter modification interface - FaultParamsAPI........... 34

5.4 COMMUNICATION INTERFACE .....vveriiiiiitieiisiee e 34
5.4.1 20100442 SEIIES POIT ...vvveeieeneeneetestesie sttt 34
5.4.2 20101442 SEIIES POIT ...vvveeiieiieeerieste sttt 34
5.4.3 30100442 SEIIES POIT ...veveeiieieenieiesie sttt 35
5.4.4 30101442 SEIIES POITS ....vveuiiiieieieeeieste sttt 35
545 TCP POITS ..t 35
5.4.6 Flight control USB serial POrt............cooiiiriiiiiieieiesc e 35

6. INTRODUCTION OF SIMULINK MODELING TEMPLATE.........cccccovenee. 36

6.1 MOTOR IMODEL MODULESACT ....vvviveneeiisteieie st 37

6.2 FORCE AND MOMENT MODELSFM .....cooviiiiiiieiiniinieisie et 38

6.3 PHYSICALCOLLISIONMODEL (COLLISION DETECTION IS ONLY SUPPORTED IN

PERSONAL PREMIUM EDITION AND ABOVE) .....cveveiuieitieeeaseesieesesseesseessssseesseensessesssens 42
6.4 GROUNDSUPPORTMODEL THE GROUND SUPPORT MODULE .......cccueeriveanenene 43
6.5 6DOF RIGID BODY MODULESBODY.......ceuviieieiesiesiestenseeeeseessessessessessessessenns 44
6.6 SENSOROUTPUT SENSOR OUTPUT MODULESSENS .....covveieieieniesiesienreanenneans 47
6.7 3DOUTPUT 3D DISPLAY MODULES 3D ..cuveuviiiiiniesiesieeeeee e sie it 47
6.8 GAZEBO MODEL MODULE ....cutietiiiitiesiiesiieesieessteesieesbeesteesnseesaeesnseessnesneee e 48

6.8.1 ESC_ALL MOUUIE.......ooeiiieiieece e 48
6.8.2 ESC MOUUIE .....oceeieecieee et 51
6.8.3 MOtor_ALL MOCUIE ........cciiieee e 51
6.8.4 MOLOI MOUUIE.......cceieieeeecieeee e 52
6.8.5 LiftDrag_ALL MOAUIE .........coviiiiiiiiirieeeee s 52
6.8.6 The LiftDrag Module ...........cooiiiiiiiiiiiieecee e 54

7, RFLYSIM HAS SUPPORTED VEHICLE SIMULATION OPERATION INT
RODUCTION ...ttt sttt te e e sre et e eneenseeneeaneenreenseenes 54
7.1 MULTI-ROTOR MODEL .....tttiitiieiieiesiieesteeesteeesibeeesibeesssbeesssneesiseesnneesnneeens 54
7.1.1 QUADROTOR ..ccttietitaitiesteeasteesteeasteessesasbeessesssteesbesssbeeateeanteesseesnbeesseesneeenes 55
7.1.1.1 Modeling PrinCiple ..o 55
7.1.1.2 Modeling and Simulation CaSeS..........cccuevriereienienene e 57
T.0.2 SIXROTOR ..uteeiuieetieasteesteeaiteesteesstaesbeessbeesbeessteesseeasbeeabeeanteesseeanbeeaseeensee e 58
7.1.2.1 Modeling PrinCiple ..o 58
7.1.2.2 Modeling and Simulation CaSeS ..........ccccuvreierieieniene e 58
7.1.3 QUAD-AXIS OCROTOR ....uvveiutieieeaseiesteessteessessnsesssessnsesssessnseessessnsessseesnsesses 58
7.1.3.1 Modeling PrinCiple ..o 58
7.1.3.2 Modeling and Simulation CaSe ...........ccocuevrieieieiene e 58
7.1, 4 OCROTOR ...ctvieiitieeitiie ettt ettt ettt e s st e s st e sbb e e skt e e e nab e e s e e e snbn e e anneeeas 59



7.1.4.1 Modeling PrinCiple........coviiiii e 59

7.1.4.2 Modeling and Simulation CaSe ..........cceveierienieniie e 59
7.2 SMALL FIXED WING ... 0eeeittteeitieeaieeesteeesteeesseessssesssssesssssesssssessssssssnsssssnsenens 59
7.2.1.1 Modeling PrinCiple.........covoiiiiie e 59
7.2.1.2 Modeling and Simulation CaSe ..........ccoeuvrerieiieiie e 62
7.3 UNMANNED VEHICLES ....ccuttiiitietieattestee st et sies et e aeeseeesbeesnneeeee e 63
7.3.1 REFINE THE UNMANNED VEHICLE MODEL ....ccuvtiiiiiiitiesieesieesieeeieesine e 63
7.3.1.1 Modeling PrinCiple.......c.oovoiiii e 63
7.3.1.2 Modeling and Simulation CaSeS.........cccovrerreeieiie e 67
7.3.2 AKAMAN CHASSIS UNMANNED VEHICLE .....coouieiiiiiiiieniieeiee e 67
7.3.2.1 Modeling and Simulation CaSe ...........ccecurveieiieieiene e 67
7.3.3 DIFFERENTIAL UNMANNED VEHICLE ....uviiitiiiiiesiie et 68
7.3.3.1 Modeling and Simulation CaSe ...........ccccuevrieieieiene e 68
TAVTOLUAV ...ttt neene e, 68
T AL AL DROOP .ot ctiee ettt e ettt et e e st e e st e e st e e e snbe e e ssae e e ssaeeennseeaneeeanneeens 68
7.4.1.1 Modeling and SIimulation CaSe ...........cccueveieiieienene e 68
7.4.2 QUADROTOR TAIL-SEAT DRAPING .....veiiuiieiieaiieesieesiteesieesseeesseesssesssessneee e 68
7.4.2.1 Modeling and Simulation CaSe ...........cccuvveieiieienene e 68
7.5 UNMANNED VESSEL ....ciiuttiiiiiieaitee sttt ettt e steeessbee e sibee st essnneesnneesnnessnnneens 68
7.6 HELICOPTERS ...coitiitiiiiiieitie sttt e siee st stee sttt st sbe e ssbe et e et e b e enbeenneeenee e 68
7.6.1.1 Modeling and Simulation CaSe ...........cocuverieieneiene e 68
7.7 UNMANNED UNDERWATER VEHICLE.......cuiiiiiiiiiiieiieessiieeesiiee e 68
7.7.1.1 Modeling and Simulation CaSe ...........ccccuvvrierieieiene e 68
8. EXTERNAL CONTROL INTERFACE .......ocooieiieiesiese e 69
S T8 L] S 69
8.2 SIMULINK CONTROL INTERFACE .......uteititiiiieiieeiieesieesnieesteesneeesiessnseesseesneee e 69
8.3 PYTHON CONTROL INTERFACE .....ceiuvietieiiieesieesieeesieesnbeesseesnseessessnsesssessneeenes 69
9. SYNTHESIZE MODELS. ........oooi ittt 71
9.1 SYNTHESIS MODEL PROTOCOL ....ceuiieitieiiieesiie sttt 71
9.1.1 BACKGIOUNG .......oviiiiiiiiieiieiieie ettt 71
9.1.2 Synthesis model Offboard control design...........cccooeviiiiiniiiinienienn, 73
9.1.3 Complete the input uSING INSIL ........ccoooiiiiiiiiiee e 73
9.1.4 OULPUL INTEITACE .....veviieieiieieee e 74
9.2 SYNTHESIS MODEL IMPLEMENTATION ...cvvieiieaiiiesieessteesieesseeeseeesnseesseesneeenes 75
9.2.1 Realization of rotorcraft comprehensive model.............cc.ccoovvvviinnn, 75
9.2.2 Implementation of fixed-wing integrated model ............c.ccocvvvrirnnn, 80
10. REFERENCES ......oooiiiiie ettt nne s 84






1. General introduction to motion modeling interfaces

1.1 Design idea of motion model for unmanned system on RflySim pl

atform

1.1.1 Extracting similar components from different systems

b Pl R T
TZE: NTEfEAI e
fem ‘ Pl /
j&ﬁ X EF'I‘HE A ’f)é% s
E 2 o (R E >
KR R
BRa
WA R % sl mm
st L
L. i '! A Py
S — =G
—/ IR
2R LR LE TS
o eI -
Y
it % HIHL
GIRES 78]

Figure 1.1 Common system architecture of different types of unmanned vehicle systems11

Different types of unmanned systems (such as unmanned vehicles, unmanned aerial vehicles,
unmanned ships, etc.) have different shapes and operating environments, but they have many com
mon characteristics from the system structure diagram that can be reused in a large number of mod
eling and simulation systems. Therefore, the model framework here adopts a modular approach to
divide the entire unmanned model system into several subsystems, so as to maximize these comm
on factors and simplify the complex modeling problem. At the same time, this approach also helps
to share the same model between different types of unmanned systems, and can be automatically i
mplemented in model-based design software (such as MATLAB/Simulink). The corresponding en

vironment configuration is shown in 2.



1.1.2 From component model to complete machine model
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FIG. 1.2 Unified framework of motion model12
Unmanned system vehicle motion model can be decomposed into errors through physical and
virtual components 1% 1 & 215 A ¥&. Unified modeling framework shown. In this framewor
k, the whole motion model system can be divided into three subsystems: the body subsystem, the s
ensor subsystem and the three-dimensional environment subsystem.
® The body subsystem includes actuator, body, operating environment, force and torque,
which is the overall description of the body's motion, energy consumption and fault char
acteristics in the environment.
® The sensor model is mainly used to describe all the electronic hardware models except t
he control software, which mainly includes sensor data, communication protocol, conne
ction interface and other characteristics.
® The 3D environment model is mainly used to describe the 3D visual environment of UA
V flight (including trees, obstacles, roads, etc.), which is used to provide visual data sim
ulation for the autonomous control system.
Each subsystem can be subdivided into smaller independent subsystem modules, and finally f

orm a modular unified modeling framework as shown in the figure above.
1.1.3 General Modeling interface

See 3, Basic operation process

See 5, DLL/SO model and Communication interface for general input and output_interface
1.2 Overall classification of RflySim platform motion models

1.2.1 Dynamic model

Without the controller, only according to_the dynamic characteristics of the unmanned system



modeling, see 6, Simulink modeling template introduction

1.2.2 Synthesis model

The controller is implemented based on the original dynamic model, see 9. Synthesis Model

2. Environment configuration

2.1 Visual Studio Installation

RflySim model development requires Visual Studio compiler, such as the use of MATLAB S-
Function Builder module, Simulink automatic generation of C/C++ model code, etc. It is
recommended to install Visual Studio 2017 here. The online installation steps (Internet connection
required) are as follows:

Step 1: Double-click to run "RflySimAPIs3.0\M.RflySimModel\ 1.Basicexps \VS2017Installe
r\vs_community2017.exe";

+ SimulinkControlAPl > VS2017Installer

Vs community2
017.exe

Step 2: Select "Desktop Development using C++", click "Install" in the bottom right corner,

and wait for the installation to complete.

EZERE - Visual Studio Community 2017 - 15.9.57
IH% SNMEGF B8 RREUE

O EEAREENRENE FEES REFHER
~ (B C++ MEEAR

v 2a%

Bas

ﬂ;l NET S@F 4 fom @ Cs WEEFE Y Visual C 4+ EORENE

{27 C#, Visual Basic 1 F# % % WPF, Windows E#H11Z {2 Microsoft C++ TRE&, ATL 5 MFC %% Windows £ v R
WagAes. BUAEE. =aEE
VC++ 2017 version 15.9 v14.16 latest v141..
C++ SR
Windows 10 SDK (10.0.17763.0)
W EM Windows FEFA FAF CMake 37 Visual C++ T8
W 27 C#, VB, JavaScript ST C++ NiBA Windows F B x86 1 x64 & Visual C++ ATL
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Windows 8.1 SDK 1 UCRT SDK
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P x86 0 x64 #3 Visual C++ MFC
ASPNET #2 Web 74 A Azure 5 C+/CU %12
2R ASP.NET. ASP.NET Core, HTML/JavaScript F1414% RTFARELEM, UREFUREMSIE Docker THNF FEEERERE)
Docker ¥ #2388 £ A Web MBS, B4 Azure SOK, TREVES, IncrediBuild - & FA0E

Windows 10 SOK (10.0.17134.0)

Windows (3)

3

C:\Program Files (x86)\Microsoft Visual Studio\2017\Community Ea%..
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Note: 1. Higher version of MATLAB can also install VS2019, but MATLAB can only
recognize Visual Studio lower than its own version, so MATLAB2017b cannot recognize VS2019.

2, please do not change the default VS installation directory (such as installing to the D disk),



it will cause MATLAB can not recognize.

2.2 MATLAB compilation environment configuration

In the MATLAB command line window, enter the command "mex-setup”, in general, the VS
2017 compiler will be automatically recognized and installed, as shown in the right picture, "MEX
configuration uses' Microsoft Visual C++ 2017 ‘for compilation” shows that the installation is

correct.

»» mex —setup
MEX BREHFER [ Microsoft Visual C++ 2017 (C)’ ]L)Liﬁﬁ C iESHiF-

S, MATLAB C 7 Fortran API D.8BPR, B0 %35
BE 2732-1 MALTTRA) waTLAR EE. BEE
BRI AR APT.
WO AT LA T b 3R B8 £ M {5 5.
http://wsw. mathworks. com/help/matlab/matlab_external/upgrading-mex-files—to-use-64-bit{

BIFARM C #WiF, BMUATRITP®FE—Fha-$

Microsoft Visual C++ 2013 (C) mex —setup:D:\MATLAB\R2017b\bin\winf4\mexopts\msvc2013. xml C
Microsoft Visual C++ 2015 (C) mex —setup:D:\MATLAB\R2017b\bin\winf4\mexopts\msvc2015. xml C
Microsoft Visual C++ 2017 (C)! mex —setup:C:\Users\dream\AppData\Roaming\MathWorks\MATLAB\R]

BHIFARMIES, BANTRIAG®REFTheS.
mex —setup C++
mex —setup FORTRAN

Jx >

2.3 Simulink code generation setup

Before using the RflySim platform to simulate the hardware/software in the loop of the
vehicle model, it is necessary to compile the Simulink source program of the model and generate
the DLL file.

The steps of Simulink model compilation setup are as follows:

Step 1: Open the Simulink "Settings" page and set the simulation as a Fixed-step long,
fourth-order Runge-Kutta solver with a step size of 0.001s (or other Settings can be set according

to requirements).

— -
‘i Exp1_MinModelTemp - Simulink *3 Bep1_MinModelTemp - Simulink
File Edit View Display Diagram Simulation Analysis Code Tools = b = L ApPP
- 6 — . ‘ 7 Q= - ] = @D
B-o-Be o lelE-ee®r O 37 s | |[®
el R SEE  AEEEE EmpE
Expl_MinModelTemp wE ER [ siEe =B -
THEEE gt ey

®

[Ejflxpl MinModelTemp P A5 (0)



@ Configuration Parameters: dynamics/Configuration (Active) — [m] x

Q

Solver Simulation time
Data Import/Export
» Optimization
» Diagnostics
Solver options
Hardware Implementation 2

Model Referencing Type: | Fixed-step ‘- Solver:| ode4 (Runge-Kutta) -

Simulation Target

Start time: |0.0 Stop time: 10.0

¥ Code Generation ¥ Additional parameters

Report

Comments Fixed-step size (fundamental sample time):||0.001

Symbols

Custom Code Tasking and sample time options

Interface Periodic sample time constraint: | Unconstrained -
» Coverage

» HDL Code Generation r Treat each discrete rate as a separate task

["] Allow tasks to execute concurrently on target
r Automatically handle rate transition for data fransfer

O Higher priority value indicates higher task priority

Step 2: Choose ert.tlc code generation method, which can be used in windows, Linux and
various embedded platforms; Choose C++ language, easy to call through inheritance code
generation; The compilation process selects "code and tools packaging”, and the Zip file name is

set to "MulticopterModel".

&) Configuration Aircrafth orks/Cor on (Active) - (] X
Q
Solver “ | Target selection
Data Import/Export ]
» Optimization System target file: ert.tic Browse...
» Diagnostics Language: G+ -
Hardware Implementation Description: Embedded Coder
Model Referencing
Simulation Target Build process
¥ Code Generation
Report [#] Generate code only
Comments [¢] Package code and artifacts | Zip file name: | MulticopterModel
Symbols Compiler optimization level: | Optimizations on (faster runs)‘ -
Custom Code .
Interface Makefile configuration
Code Style r Generate makefile
Verification Template makefile: ert_default_tmf
Templates
Code Placement Make command: | make_rtw
Data Type Replacement
» Coverage Code generation objectives
' H.DL Code Generation Prioritized objectives: Unspecified Set Objectives...
Simscape v e——
Phnnl madal hafare annarcfine andn- | OFF [ =1 [ Fhant Madal

0K Cancel Help

Step 3: Because it contains continuous modules (integral modules), it is necessary to check
continuous time, otherwise the compilation will give an error. In addition, the Parametervisibility

is set to public, and the parameter structure is a common variable for easy access.



@ Configuration Parameters: AircraftMathworks/Configuration (Active) bl (m]

Q

—

» Optimization “| software environment
> Diagnostics Code replacement library: None | A
Hardware Implementation
Model Referencing Shared code placement: |Auto | A
Simulation Target Support: V floating-point numbers |7 non-finite numbers |7 complex numbers
¥ Code Generation [¢] absolute time |1 variable-size signals
Report
Comments Code interface
Symbols
Custom Code Code interface packaging: |C++ class | ~ | Multi-instance code error diagnostic: |None -
Interface |1 Remove error status field in real-time model data structure
Code Style Data Member Visibility/Access Control
Verification
Templates Parameter visibility: |public | ~ | Parameter access: |None -
Code Placement External I/O access: Mone [~
Data Type Replacement
» Coverage Configure C++ Class Interface
» HDL Code Generation
Simscape Data exchange interface
Simscape Multibody 1G © NELELE
» Simscape Multibody v enerae or:

Step 4: In the Codeplacement page, set the file packing type to compact to avoid generating

extra files and make the code the most readable.

@ Configuration Parameters: AircraftMathworks/Configuration (Active) — (m]
» Optimization Code packaging

» Diagnostics
Hardware Implementation
Model Referencing
Simulation Target
¥ Code Generation
Report
Comments
Symbols
Custom Code
Interface
Code Style
Verification
Templates
Code Placement
Data Type Replacement
» Coverage
» HDL Code Generation
Simscape

Clrmmmnnn Kl A5

File packaging format: | Compact

Step 5: Set the parameters to be Tunable so that we can modify the parameters at runtime.
Note: inline form is more memory saving, but it is not easy to access parameters, it is not easy to

realize real-time parameter modification or model fault injection.




*Q Configuration Parameters: AircraftMathworks/Configuration (Active) bl (m]

Q
Solver Code generation
Data Import/Export
v Oplimization |Defau\t parameter behavior: | Tunable ~ | | Configure... Inline invariant signals
Signals and Parameters +| Use memcpy for vector assignment Memcpy threshold (bytes): |64
Stateflow Pack Boolean data into bitfields
» Diagnostics
Hardware Implementation Loop unrolling threshold: 5
Model Referencing Maximum stack size (bytes): Inherit from target -
Simulation Target Pass reusable subsystem outputs as: |Structure reference -
¥ Code Generation .
Parameter structure: Hierarchical -
Report
Comments
Symbols
Custom Code
Interface
Code Style
Verification
Templates

Code Placement
Data Type Replacement

After completing the vehicle Simulink model compilation setting, click the Simulink
compilation button to generate C/C++ code, as follows: For MATLAB 2019a and previous

versions, the toolbar style is shown below, directly click its compilation button "Build".

ipid Accelerator v W e

| Build Model j

For 2019b and later versions, click Aps-Code GENERATION -- Embedded Coder to pop up
the CODE GENERATION toolbar. In the toolbar, click "C++CODE" - "Generate Code" - "Build"

button as shown below to compile and generate code.

P4 MulticopterCtrivelocity/Force and Moment Model - Simulink

SIMULATION DEBUG MODELING FORMAT —
++ x
(% Search e —
or = =l B openReport ~
Get
. opterNoCtrl Generate View 3% Remove Highlighting
GRS Code v| Code
* B = 4
ENVIRONMENT tel (=i ‘GENERATE CODE
Lt Embedded Simulink AUTOSAR HDL .
N Coder Coder e Coder Generatelode and build model

2.4 Environment Configuration for Linux version

3. Basic operation process

3.1 Vehicle Simulink model development

The RflySim vehicle model is developed based on MATLAB/Simulink, and the modular
modeling idea is adopted. The dynamic motion model of unmanned vehicle is divided into motor
module, force and torque module, link module, 6-DOF module and sensor module.

RflySim supports the software and hardware in the loop simulation of any PX4 controllable
model. All supported models can be viewed from the Airframe page of QGroundControl, as shown

in the following figure.



At present, RflySim includes rotor, fixed wing, unmanned vehicle, unmanned ship, standard

vertical take-off and landing UAV, quadrotor tail type vertical UAV and helicopter. Other models
need to be built by users in Simulink according to the RflySim model template.

The RflySim model template is shown in
RflySimAPIs3.0M.RflySimModel\0.SourceCode\DLLModelTemp. The criteria for evaluating the
completion of model development are: the model logic is correct; No errors were reported when

the model was run.

3.2 The model is compiled to produce C/C++ files

After the vehicle Simulink model is developed, open the model source file through MALTAB

(for example, MulticopterNoCtrl.sIx for quadrotor).



BFR -

#.) GenerateModelDLLFile.p

ﬂ Init.m

* Init_control.m

E MavLinkStruct.mat

. MulticopterNoCtrl.dll

& MulticopterNoCtrl.slx

[*] MulticopterNoCtrIHITLRun.bat
[*.] MulticopterNoCtrISITLRun.bat
& readme.pdf

In the upper menu bar of Simulink, click compile command (MATLAB 2017b~2019b
version can be directly click compile in the menu bar, 2022a and above version operation process

is: APP-Embedded Coder-compile).

‘i MulticopterNoCtrl - Simulink
File Edit View Display Diagram Simulation Analysis Code Tools Help

R2017b~2019b
P~ 3 ~ Le=i %S ~E-w g b v s Accelerator - @ & -

MulticopterNoCtrl

C++ 8 =
4 b @ L E pwme - & |
WA - C++ | BRERS | (/C++ MR @ gz ~ HEED ‘Tailgiﬂer ‘ : EEAS Sy usswBs | WEUES | EE
Etes =D EE 377 2] &5 $iF #E
%54 (C

Click the View diagnostics command at the bottom of Simulink, and a diagnostic dialog box
will pop up to view the compilation process. In the diagnostic box, "Build process completed

successfully” will pop up, which means that the compilation is successful.

E-E-&-%-| ¥ [&] @- @
MulticopterNoGtrl
The output(s) read after the base-rate model step reflects intervening minor time steps. To observe data that
is a snapshot of output(s) at major time steps, do one of the following:
* Place a Zero-Order Hold block before the continuous output port *MulticopterNoCtrl/MavHILSensor®.
* Clear Single output/update function, and read model output values after model output call and before

model_update call.
For more details, see “Single output/update function® in the Simulink documentation.

Component Simulink | Category: Block warning
### Invoking Target Language Compiler on MulticopterNoCtrl.rtw

### Using System Target File: D:\MATLAB\R2017b\rtw\c\ertlert.tlc
### Loading TLC function libraries r201 7b"’201 9bH&ZK

### Initial pass through model to cache user defined code
### Caching model source code

##% Writing header file MulticopterNoCtrl.h
### Writing source file MulticopterNoCtrl.cpp
### Writing header file rtwtypes.h

### Writing source file ert_main.cpp

##% TLC code generation complete.
### Successful completion of code generation for model: MulticopterNoCtrl

‘ Build process completed successfully
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{RIFTEATE: oh em 17.389s

After the Simulink model has been compiled, the *** ert rtw folder and the
MulticopterModel.zip compression package will be generated, indicating that the model has been

compiled successfully.

SEDGE e
=11
MulticopterNoCtrl_ert_rtw
slprj
*:| GenerateModelDLLFile.p
‘j Init.m
#) Init_control.m
o MavlinkStruct.mat
a MulticopterModel.ziII!I::J
- MulticopterNoCtrl.
*& MulticopterNoCtrl.slx
[*] MulticopterNoCtrIHITLRun.bat
[*] MulticopterNoCtrISITLRun.bat
& readme.pdf

3.3 DLL/SO model generation

The DLL(under windows)/SO (under Linux) model needs to be imported into CopterSim to
form the motion simulation model when the vehicle software and hardware are simulated in the
loop using RflySim platform. Therefore, the C++ files corresponding to the model need to be
packaged into the DLL/SO model after the model compilation is completed.

Under Windows system:

Once you have the *** ert rtw folder and the MulticopterModel.zip archive, run

GenerateModelDLLFile.p to get the DLL model.
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AR
MulticopterNoCtrl_ert_rtw
= slprj
™ Init.m EEEaEs
#init ca  iBfT F9
i Mavlin  rmpEmEsEseR
# w Multic
o Multic BlE Zip 3%
M Multic Saz F2
[ %] Multic
%] Multic =3 Delete
g readm
P >
B Ctrl+X
=1 Ctrl+C
Ctrl+V
v IETRAEREERRE

As shown below, the DLL model is successfully generated.

wmSTEO
modeldllgen. cpp
cl modeldllgen. obj MulticopterNoCtrl.obj /link /DLL /out:MulticopterNoCtrl. dll
BT =64 B Microsoft (R) c/c++ {fiiké4RiE2E 19. 16. 27051 i
A Fr A (C) Microsoft Corporatione. RERETF .

Microsoft (R) Incremental Linker Version 14.16.27051.0
Copyvright (C) Microsoft Corporation. All rights reserved

Jout:modeldllgen. exe
/DLL
Jout:MulticopterNoCtrl. d11
modeldllgen. obj
MulticopterlNoCtrl. obj
FHEBIERE MulticopterNoCtrl. 1ib #¥HE MulticopterNoCtrl. exp
IComp:'Ll:'Lng Successfullyl the MulticopterNoCtrl. dl1l has been generated.

fx

On Linux:

3.4 Introduction of PX4 mixed control rules

Users in the use of RflySim software and hardware in the loop simulation platform for

vehicle, need to confirm the rack type, PX4 website frame definition to view frame reference |

PX4 autopilot user guide.

The flying wing model, for example, how to confirm the official flyer frame type and mixed

control file:

11
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Step 1:

In the frame of reference | PX4 autopilot find Flying Wing in the user quide, can be seen in

the following figure, rack, called Generic Flying Wing, SYS_AUTOSTART = 3000.

Plane

Flying Wing

Name

Generic Flying Wing

Step 2:

Maintainer: John Doe <john@example.com>

SYS_AUTOSTART = 3000

Open the path "PX4PSP\Firmware\ROMFS\px4fmu_common\init.d\airframes” to find the

corresponding rack file.

» Windows (C:) > PX4PSP > Firmware > ROMFS > px4fmu_common > init.d > airframes

s

B

D 1002_standard_vtol.hil
D 1100 _rc_quad_x_sih.hil
D 2100 standard_plane
[ ] 2105_maja

D 2106_albatross

D 2200 _mini_talon

D 2507 _cloudship

[ 3000_generic_wing

0 3030 io_camflyer
0 3031_phantom

0 3032 _skywalker x5
0 3033 wingwing
[ 3034 79

W 3035 _viper

W 3036_pigeon

Step 3:

ELTBHE

2021/9/29 10:56

2021/9/29 10:56

2021/9/29 10:54

2021/9/29 10:54

2021/9/29 10:54

2021/9/29 10:54

2021/9/29 10:54

2021/9/29 10:54

2021/9/29 10:54

2021/9/29 10:56

2021/9/29 10:54

2021/9/29 10:56

2021/9/29 10:56

2021/9/29 10:54

2021/9/29 10:56
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HIL 3245

HIL 3245

pra iy

34

34

34

3%

pra s

pra s

pra s

pra s

pra s

pra s

pra s

pra s

2 KB

1 KB

1 KB

2 KB

2 KB

2 KB

1 KB

1 KB

2 KB

2 KB

1 KB

2 KB

1 KB

1 KB

2 KB


https://docs.px4.io/main/zh/airframes/airframe_reference.html

Open the rack file 3000_generic_wing with Vs Code, you can see that the mix control

file is set in the file.

> Firmware nx4fmu_common > init.d > airfram eneric_wing

13



Windows (C:) » PX4PSP : Firmware > ROMFS > px4fmu common > mixers

s

EIR EEEE Egidl F
5!] dodeca_bottom_cox.aux.mix 2021/9/29 10:56 MIX 245 1 KB
=) dodeca_top_cox.main.mix 2021/9/29 10:56 MIX 3245 1 KB
;"u firefly6.aux.mix 2021/9/29 10:56 MIX 324 1 KB
;'ﬂﬁreﬂyﬁ.main.mix 2021/9/29 10:56 MIX 3245 1 KB
=] fw_generic_wing.main.mix 2021/9/29 10:54 MIX 3245 2 KB
5!] FX79.main.mix 2021/9/29 10:56 MIX 3245 2 KB
=) generic_diff_rover.main.mix 2021/9/29 10:54 MIX 3245 1 KB
;"u hexa_+.main.mix 2021/9/29 10:54 MIX 324 1 KB
;"u hexa_cox.main.mix 2021/9/29 10:54 MIX 3248 1 KB
;“u hexa x.main.mix 2021/9/29 10:54 MIX 3744 1 KB
;‘ﬂ 10_pass.main.mix 2021/9/29 10:54 MIX 3245 1 KB
;“u mount.aux.mix 2021/9/29 10:54 MIX 324 1 KB
5!] mount_legs.aux.mix 2021/9/29 10:56 MIX 245 1 KB
;‘QJ octo_+.main.mix 2021/9/29 10:54 MIX 3748 1 KB
;"u octo_cox.main.mix 2021/9/29 10:54 MIX 3245 1 KB

Step 4:

Open the mix file fw_generic_wing.main.mix with Vs Code with the following content:

14



frmu_commic i neric_wing.main.mix

This file defines mixers suitable for controlling a delta wing aircraft.
The configuration assumes the elevon servos are connected to servo
outputs @ and 1 and the motor speed control to output 3. output 2 is
assumed to be unused.

Inputs to the mixer come from channel group @ (vehicle attitude), channels @
(roll), 1 (pitch) and 3 (thrust).

See the README for more information on the scaler format.
Elevon mixers
Three scalers total (output, roll, pitch).

on the assumption that the two elevon servos are physically reversed, the pitch
input is inverted between the two servos.

The scaling factor for roll inputs is adjusted to implement differential travel

for the elevons.

© -8000 0 -10000
1 6000 B -100080

e -8ooo 8 -loeeo
1 -6B00 B -loeeo
Output 2

This mixer is empty.

Motor speed mixer

Two scalers total (output, thrust).

This mixer generates a full-range output (-1 to 1) from an input in the (@ - 1)
range. Inputs below zero are treated as zero.

0 20000 -10000 -10000 10000

At this point, we have understood the PX4 wing rack file and mixing control file, the
following introduces the PX4 mixing control rules.
PX4 mixed control rules:

Note: detailed definition see mixed controller and actuator | PX4 autopilot user guide

PX4 architecture to ensure the core controller does not need to do special processing for
fuselage layout. Hybrid control refers to the distribution of input commands (e.g., remote control

to turn right) to the motor and actuator commands (e.g., steering or servo PWM) of the servo. In

15


https://docs.px4.io/v1.12/zh/concept/mixing.html

the case of fixed wing aileron control, each aileron is controlled by a servo, then the meaning of

mixed control is to control one aileron to lift and the other aileron to fall. Similarly, for a

multirotor, the pitch operation requires changing the speed of all the motors. Separating the

mixing logic from the actual attitude controller can greatly improve reusability.

The specific controller sends a specific normalized force or torque command (scaled to -1..

+1) to the mixer, which sets each individual actuator accordingly. Control output drivers (e.g.

UART, UAVCAN, or PWM) put the output of the mixer in the native units when the actuator is

actually running, e.g., output a PWM instruction with a value of 1300.

‘//,{/(/,f——b Actuator 5

Attitude Controller —» Actuator Control Group 0

HMEH%E““%——» Actuator 6

Gimbal Controller |——» Actuator Control Group 2 —— Actuator 5

There are four main Control groups at the output of the PX4 control channel, which are:

» actuator_controls_0: The main control channel of flight control, used to output the control

quantity of pitch, roll, yaw, throttle and other channels. It is defined as follows:

Control Group #0 (Flight Control)

0:

7:

o 0o F W NP

roll (-1.. 1)

pitch (-1.. 1)

yaw (-1.. 1)

throttle (0.. 1 normal range, -1.. 1 for variable pitch / thrust reversers)
flaps (-1.. 1)

spoilers (-1.. 1)

airbrakes (-1.. 1)

landing gear (-1.. 1)

» actuator_controls_1: Alternate control channel, used in VTOL to output control output of

fixed wing mode. It is defined as follows:

Control Group #1 (Flight Control VTOL/Alternate)

0:

O o FE W NP

/5

roll ALT (-1.. 1)

pitch ALT (-1.. 1)

yaw ALT (-1.. 1)

throttle ALT (0.. 1 normal range, -1.. 1 for variable pitch / thrust reversers)
reserved / aux0

reserved / auxl

reserved / aux2

reserved / aux3

» actuator_controls_2: Pan/tilt control channel. It is defined as follows:

Control Group #2 (Gimbal)

0:

gimbal roll

1: gimbal pitch
2: gimbal yaw

3:
i}

: reserved

gimbal shutter

16



5: reserved
6: reserved
7: reserved (parachute, -1.. 1)

»  actuator_controls_3: Remote control mapping channel. It is defined as follows:

Control Group #3 (Manual Passthrough)
0: RC roll

RC pitch

RC yaw

RC throttle

RC mode switch

RC auxl

RC aux2

7: RC aux3

PX4 mixer file syntax

O o FE W NP

A Mixer file is a text file that defines one or more Mixer definitions: a mapping between one
or more inputs and one or more outputs. There are four main types of definitions: multirotor mixer,
helicopter mixer, Large mixer, and null mixer.

»  multirotor mixer: Defines a type + or x rotor vehicle with output 4, 6, or 8.
> helicopter mixer: Defines the output of the helicopter swash plate server and the main motor

ESCs (the tail rotor is a separate mixer).

»  Macromixer: Combines zero or more control inputs into a single actuator output. The inputs
are scaled and the mixing function sums the results before applying the output scaler.
»  Macromixer: Produces an actuator output with zero output (when not in fail-safe mode).

The amount of output produced by each mixer depends on the type and configuration of the
mixer. For example: the multirotor mixer can have 4, 6, or 8 outputs depending on its model,
while the Macromixer or Macromixer produces only one output. Multiple mixers can be specified
in each file. The output order (which assigns mixers to actuators) is specific to the device that
reads the mixer definition, and for PWM, the output order matches the declared order.

The statement defined at the beginning of each mixer file is:
<tag>: <mixer arguments>
Where tag indicates the selected mixer type, as follows:

R: Multirotor mixer
H: Helicopter mixer
M: Summing mixer

Z: Null mixer

Macromixer - Additive Mixer

The Large Mixer is used to control UAV actuators and servos. It combines zero or more
control inputs into a single actuator output. The inputs are scaled and the blending function sums
the results before applying the output scaler. The minimum actuator traversal time limit can also

be specified in the output scalar (inverse of the slew rate). A simple mixer definition is as follows:

M: <control count>
0: <-ve scale> <+ve scale> <offset> <lower limit> <upper limit> <traversal time>
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If <control count> is zero, the sum is effectively zero and the mixer will output a fixed value,
which is constrained by <tower limit>and <upper limit>.

The second line defines the output scalars with the scalar parameters described above. While
the computation is performed as a floating-point operation, the values stored in the definition file
are scaled by a factor of 10,000; That is, an offset of -0.5 is encoded as -5000. The <traversal
time>(optional) on the output scale is used for actuators that may damage the aircraft if it is too
large - for example, the tilt actuator on a tilt-rotor VTOL aircraft. Can be used to limit the rate of
change of the actuator (if not specified, no rate limit is applied). For example: a <traversal time>
value of 20000 will limit the change rate of the actuator such that it takes at least 2 seconds from
<lower limit> and <upper limit>, and vice versa.

Note 1: <traversal time> should only be used when the hardware requires it!

Note 2: Do not place any restrictions on actuators that control the attitude of the vehicle (such
as servos for pneumatic surfaces), as this can easily lead to controller instability.

Go ahead and define the inputs to <control count> and their scaling in the form:
S: <group> <index> <-ve scale> <+ve scale> <offset> <lower limit> <upper limit>

Note 3: s: must be below o:.

Note 4: Any mixer output with throttle input (<group>=6 and <index>=3 in s:) will not work
in the unlocked or pre-unlocked state. For example: a server with four inputs (roll, pitch, yaw, and
throttle) will not move in the unlocked state even with roll/pitch/yaw signals.

The <group> value identifies the control group to be read by the scaler, and the <index> value
indicates the offset in that group. These values are specific to the device defined by the reading
mixer. When used for hybrid vehicle control, mixer group 0 is the vehicle attitude control group,
while 0 to 3 are usually roll, pitch, yaw, and thrust, respectively. The remaining fields are
configured to control the scaler using the parameters discussed above. When the calculation is
performed as a floating-point operation, the values stored in the definition file are scaled by a
factor of 10,000; That is, an offset of -0.5 is encoded as -5000. An example of a typical mixer file
is explained below. Example analysis in detail, please see:

https://docs.px4.i0/v1.13/en/dev airframes/adding a new frame.html#mixer-file.

Null Mixer - Null mixer

This mixer does not consume any control channels and produces a single actuator output
whose value is always zero. Typically, Null Mixer is used as a placeholder in a collection of
mixers to implement a particular pattern of actuator output. It can also be used to control the value
of the output used for fail-safe devices (output is 0 in normal use; During fail-safe, the mixers are

ignored and fail-safe values are used instead). The definition is as follows:
Z:
Multirotor Mixer - Multirotor mixer
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The Multirotor Mixer combines four control inputs (roll, pitch, yaw, thrust) into a single set

of actuator outputs that are used to drive the motor speed controller. It is defined as follows:
R: <geometry> <roll scale> <pitch scale> <yaw scale> <idlespeed>

The supported models are:

4x - Quadrotor x configuration

4+ - Quadrotor + type configuration
6x - Six rotor x configuration

6+ - Six rotor + type configuration

8x - ocrotor Type x configuration

YV V V VYV V VY

8+ - octortor + type configuration

Roll, pitch, and yaw ratio values determine the ratio of roll, pitch, and yaw control relative to
thrust control. When the calculation is performed as a floating-point operation, the values stored in
the definition file are scaled by a factor of 10,000; For example: 0.5 is encoded as 5000. Roll,
pitch, and yaw inputs range from -1.0 to 1.0, while thrust inputs range from 0.0 to 1.0. The output
of each actuator ranges from -1.0 to 1.0.

The idling speed ranges from 0.0 to 1.0. Idling speed is relative to the maximum speed of the
motor, which is the speed at which the motor is commanded to rotate when all control inputs are
zero. In the case of actuator saturation, the values of all actuators are readjusted so that the
saturated actuator limit is 1.0.

Helicopter Mixer - A helicopter mixer

The Helicopter Mixer combines three control inputs (roll, pitch, thrust) into four outputs
(rotary swash plate and main motor ESC setting). The first output of the helicopter mixer is the
throttle setting of the main motor. The subsequent output is the servo that rotates the swash plate.
The tail rotor can be controlled by adding a simple mixer. Thrust control inputs are used for the
main motor Settings as well as the collective pitch of the swash plate. It uses a throttle curve and a
pitch curve, both made up of five points.

Note: The throttle and pitch curves map the "thrust” rod input position to the throttle value
and the pitch value (respectively). This allows flight characteristics to be adjusted for different
types of flight.

The Helicopter Mixer is defined as follows:

H: <number of swash-plate servos, either 3 or 4>
T: <throttle setting at thrust: 0%> <25%> <50%> <75%> <100%>
P: <collective pitch at thrust: 0%> <25%> <50%> <75%> <100%>

T: The point that defines the throttle curve. p: The point that defines the pitch curve. Both
curves contain five points between 0 and 10,000. For a simple linear change, the five values of the
curve would be 0, 2500, 5000, 7500, 10,000.

Each swash server (3 or 4) is defined as follows:

19



S: <angle> <arm length> <scale> <offset> <lower limit> <upper limit>

<angle> iS in degrees, 0 degrees is the direction of the nose. Positive angles are clockwise. <arm
length> is the normalized length, that is, 10,000 equals 1. If all the servo arms are the same length,
the value should all be 10,000. A larger arm length will reduce the amount of servo deflection,
while a shorter arm length will increase it. The servo output is scaled by <scale> / 1e000. After
scaling, <offset> is applied and its value should be between -10000 and +10000. In the full servo
range, <lower limit> and <upper limit> should be -10000 and +1eceee.

The tail rotor can be controlled by adding a large Mixer:

M: 1

S: 0 2 10000 10000 0 -10000 10000

By mapping the tail rotor directly to the yaw command. This applies to the two servo-

controlled tail rotor, as well as the tail rotor with dedicated motors.

The 130-blade helicopter mixer file looks like this:
H: 3

T O 3000 6000 8000 10000
P: 500 1560 2500 3560 4500
# Swash plate servos:
S
S
S

0 10000 10000 0 -8000 8600
140 13054 10000 0 -8000 8600
220 13654 10000 0 -8000 8600
# Tail servo:
M: 1
S: 6 2 10000 10000 0 -10000 10000

* At 50% thrust, the slope of the throttle curve is slightly steeper, reaching 6000(0.6).

* At 100% thrust, reach 10,000 (1.0) with a smaller slope.

*  The pitch curve is linear, but its entire range will not be used.

* At 0% throttle, the total distance to the joystick setting is already at 500(0.05).

* At maximum throttle, the total distance to the joystick is only 4500(0.45).

*  Using higher values for this type of helicopter will stall the blades.

*  The rotary swash plate system for this helicopter is located at 0, 140, and 220 degrees

angles.

*  The servo arms are not equal in length.

»  Compared to the first servo, the second and third servos have an arm length of 1.3054.

*  The servos are limited to -8000 and 8000 because they are mechanical constraints.
VTOL Mixer - VTOL Drone Mixer

The VTOL system uses a multi-rotor mixer as the output in multi-rotor mode and a sum
mixer as the output in fixed-wing mode. Mixer systems for VTOL Uavs can either be combined
into a single mixer, where all actuators are connected to 10 or FMU ports, or split into separate

mixer files for 10 and AUX.
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3.5 Modification of bat script related parameters

3.5.1 Hardware-in-the-loop simulation script

The conventional hardware-in-the-loop simulation script supports the input of serial port
sequence (separated by comma ",") to start the hardware-in-the-loop simulation of multiple
computers

Note: The 1line at the beginning of REM is a comment statement and will not be executed.
Other bat script syntax rules can be searched and learned by yourself.

Note: The position of the aircraft in this script is automatically generated by the
script according to the rectangular queue. The control variables include:

SET /a START_INDEX=1 (initial aircraft serial number, CopterID of the aircraft generated
by this script, START_INDEX as the initial value, in turn incremented by 1)

SET /a TOTOAL_COPTER=8 (Total number of aircraft, amplitude is only needed in the multi-
aircraft online simulation, tell this script the actual total number of aircraft, to determine
the side length of the rectangular queue)

SET UE4_MAP=Grasslands (set map name)

SET /a ORIGIN_POS_X=0 (origin X position of rectangular formation in meters, integer
input only)

SET /a ORIGIN_POS_Y=0 (origin Y position of rectangular formation, in meters, integer
input only)

SET /a ORIGIN_YAW=0 (yaw Angle of origin of rectangular formation, unit degree, integer
input only)

SET /a VEHICLE_INTERVAL=2 (Aircraft interval in rectangular formation, in meters, integer
input only)

SET /a UDP_START_PORT=20100 (UDP communication interface for receiving external control
data, 2 is automatically added to CopterID, this usually does not need to be modified, only if
the computer port is occupied)

set DLLModel=0 (Used to set the name of the DLL model to be imported into CopterSim for
hardware-in-loop simulation. It is determined by the filename of the DLL model generated by
the Simulink model compiled through GenerateModelDLLFile.p. When set to 0, Quadrotor DLL model
is used by default)

set SimMode=0 (Simulation mode, here set to O or PX4_HITL for hardware-in-the-loop
simulation)

SET IS_BROADCAST=0 (online emulation or not, the destination IP address sequence can be
entered here)

SET UDPSIMMODE=0 (UDP_START_PORT port received data protocol, UDP mode transmission is
the platform private structure, support Simulink control; MAVLink mode transmits MAVLink

protocol and supports Python and mavros control modes)
3.5.2 Software-in-the-loop simulation script

Conventional software-in-the-loop script supports input of the number of aircraft and
automatically starts multi-aircraft software-in-the-loop simulation

Compared with HITLRun.bat, the key code is as follows

set SimMode=2 (here set to software in loop mode, corresponding to the value of
CopterSimUI)

set PXUSitlFrame=iris (This is used to set the PX4 simulation rack type, set to the non-
digital part of the rack file, for example, iris for quadrotor, generic_wing for flying wing,
hexa_x for hexrotor, standard_plane for fixed wing, See 3.4 Introduction of PX4 mixed control
rules for confirmation method of frame type)3.4 Introduction of PXU4 mixed control rules

3.6 SITL simulation

The RflySim software-in-the-loop simulation system is available through the software-in-the-

loop simulation script (e.g. After the script is run, the PX4 simulation environment, CopterSim,
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QGroundControl and 3D engine (RflySim3D/RflySimUES) will be started on the computer, and
the communication port will be automatically configured. The RflySim platform (including
CopterSim, QGroundControl and 3D engine) communicates with PX4 via MAVLink messages.
During SITL simulation, these messages are processed by

PX4PSP\Firmware\src\modules\simulator\ Simulator_mavlink-cpp.

N g e e g

JEEZ s Sy (IR

[ihIkeLERRS
- inPWM.
mavlink_hil_actuator_controls e ‘l‘ Msﬁguﬁs/
BRI R
{25 &GPSEHf MavHiILSensor
D E—— —— MavHILGPS l R R
mavlink_hil_sensor. mavlink_hil_gps

ok ert_tw L (CH+)

#-| > inCopterData GenerateModelDLLFilep
&> Mavlink 57t B
% DLL/SOMM
KA R AT FUEUR Mav\Vehile3DInfo
T, UDP 20101++2 ExToUE4PX4 inPWMs
ﬂﬁﬁ%ﬁf %IJ JE TerrainZ MavHILSensor
inCopterData MavHILGPS
VU T R 2 £ inSILInts Mav Vehile3DInfo
P = B o inFloatsCollision inSILFloats EXTOUE4PX4
UDP 30100++2 " Terrainz inFloatsCollision outCopterData
JEEAT7IUDP R %
SRR T (P IR ) o linsiLints
UDP 30100++2 " inSILFloats
QGroundControl <« B IO Mav\Vehile3DInfo
UDP 30101++2 outCopterData _
A i A
UDP 18570 UDP 14550 Kk A ¥R &
IR & [V — . . i
UDP 20101++2 UDPS AL
SN A Mavlink ¥4
Python MATLAB L p. VoIS
UDP 20100++2
A il e Y | PXdExiMsg
UDP 40101++2 o (dly )
ShEpE RS »
>
YIBRE SR Mavlink 4

After running the specified SITLRun.bat script, a prompt box will pop up. You can create the
corresponding number of unmanned vehicles in the 3D scene and complete the initialization by
inputting the number at the cursor. A single computer supports multi-computer simulation, and the
number of unmanned vehicles that can be simulated at the same time is determined by computer

performance and communication load.

1 C\WINDOWS\system32\cmd.

Please input UAV swarm number:

In the following, the four-rotor software in the ring startup script is explained. Enter 1 at the
cursor of the prompt box and then enter. The system will launch QGroundControl, RflySim3D and
CopterSim three software. When "GPS 3D fixed&EKEF initialization finished" is indicated in the
message prompt bar at the bottom left of CopterSim, it indicates that the software is changing the

simulation initialization is completed and the simulation can be started.
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3.7 HITL simulation

Hardware-in-the-loop simulation (HITL or HIL) is a simulation mode that runs PX4
firmware on real flight controller (i.e., flight control) hardware. During hardware-in-the-loop
simulation, the flight controller is connected to the host through USB, and then the communication

between the RflySim platform and the flight controller can be realized by means of serial port.
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Taking the quadrotor model as an example, the general configuration steps of the flight
control before the start of the loop simulation are introduced:

Note: The routine path is *:\PX4PSP\RflySimAPIs\4.RflySimModel\2.AdvExps\e2_MultiMo
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delCtrl\2.MultiModelCtrl

Step 1: Determine the type of flight control and firmware version used for simulation. The

platform recommends the use of Pixhawk 6C flight control with firmware version 1.13.3.

Step 2: Connect the flight control to the USB port of the computer through the USB-TYPEC

cable.
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Step 3: Open the QGC ground station in the Rflytools folder.
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Set the rack model as "Generic Quadcopter" in the rack interface (the rack is determined by

the simulation model and the corresponding official rack file), and click "Apply and Restart" on
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the right after setting.

QGroundControl Daily = [m] X

Back < g@ Vehicle Setup

PID Tuning tove Simulation (Copter) Simulation (Plane)

Flight Behavior

Step 4: In the "Safety” interface, select "HITL enabled” to start the hardware-in-the-loop

simulation and replug and unplug the flight control.

QGroundControl Daily - [u] X

A T R

PID Tuning

Flight Behavior

ERAHTL: HITL enabled

it

Step 5: Click "Parameters"”, enter "UAVCAN_ENABLE" in the search bar, and set it to
"Disabled" in the pop-up box. After saving, replug and unplug the flight control to complete the

configuration before the hardwire-in-the-loop simulation.
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QGroundControl Daily = |m| X

% Back < ?,O Vehicle Setup

HEARIME

Disabled

Disabled

Sensors Manual Config
Sensors Automatic Config

Sensors and Actuators (ESCs) Automatic Config
update. Also sets the motor control outputs to UAVCAN.

K: 3 Bik: 0
UAVCAN_ENABLE

Vehicle reboot required after change

3.8 Perform simulation test through QGC or remote control

3.9 External interface communication debugging

4, DLL file generation script -GenerateModelDLLFile.p

5, DLL/SO model and communication interface

5.1 General Introduction

From the perspective of implementation mechanism, RflySim platform can be divided into
five parts: motion simulation model, underlying controller, 3D engine, external control and ground
control station.

After model development is completed based on MATLAB/Simulink, C++ files are
automatically generated by code and DLL models are generated through the platform
GenerateModelDLLFile.p interface. DLL models are imported into CopterSim when RflySim
platform is used for software/hardware in-loop simulation. The motion simulation model is
formed. The motion simulation model has multiple input and output interfaces to exchange data
with the underlying controller, 3D engine, ground control station and external control. See 4§ %!
## 25| FJE. The reference source was not found.
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Among them, when the software is in the loop simulation, the data exchange between the
bottom controller and the motion simulation model is in the way of network communication, and
when the hardware is in the loop simulation, the data exchange between the bottom controller and
the motion simulation model is in the way of serial communication.

JR I BB B
e SHAELSE Xefly_ il B EXTOUE4PX4

mavlink_hil_actuator_controls
KT 5E Srfly_pxailf B
= Cp P PX4EXtMsg
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/ mavlink_hil_acuator_controls & ’\glArrLLIﬁE/
AR
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< e —— MavHILGPS ARTAE R
mavlink_hil_sensor. mavlink_hil_gps
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» } w ert_twICHEE (CH+)
K $2HR A Rk
o fy d g - MAVLINK | R | > inCopterData GenerateModelDLLFilep
FI2 AT AE 3R 3 i — vk i L
! ShEEETES R R
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N UDP 20101++2 ExtToUE4PX4 iPWMs
i 73 4|57,
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UDP 18570 UDP 14550 i
UDPZ5 Ak
Mavlink ¥
Python MATLAB g | VRV
AhiE B X | PxaEvg
UDP 40101++2 7 (fly_pxd)
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FIG. 0.1 lllustration of data interaction between motion simulation model and other modulesO1
5.2 Important Parameters

The RflySim motion simulation model has the corresponding Init.m file, which defines the
parameters needed for the motion simulation model, including the model formula coefficients
(such as the propeller tension coefficient and torque coefficient in the multi-rotor), the noise
coefficient, the sensor coefficient and the related variables that will affect the RflySim3D display,
etc. The important parameters in the model are introduced in the following.

5.2.1 Modellnit_PosE

This parameter is the position initialization parameter in the world coordinate system of the
motion simulation model, and the 3D data are [x,y,z], respectively. Through this parameter,
RflySim can initialize the specified X and Y positions of the UAV displayed in the RflySim3D

map before the simulation begins.
ModelInit_Posk = 0, 0;
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(%&f Biock Parameters: Custom Variable Mass 600F (Quaternion) x
6DOF EoM (Body Axis) (mask) (link)

60O Bus

11111

5.2.2 Modellnit_AngEuler

This parameter is the attitude initialization parameter of the motion simulation model, 3D
data, respectively, through this parameter, RflySim can initialize the display of the UAV in
RflySim3D with a specified yaw Angle before the simulation begins.[¢, 8,]

ModelInit_AngEuler = 0, 0O;

55 6DOF (Quaternion) x

‘Custom Variatie Mazs GDOF (Qualerrson)

5.2.3 Modellnit_Inputs

This parameter is the input initialization parameter of the motion simulation model actuator,
which is a 16-dimensional data. For the aircraft with specific requirements, for example, the initial
state of the throttle needs to be at the minimum value (-1), that is, this parameter is needed to

modify the input initialization value of the actuator.

ModelInit_Inputs = [0 0O OO 0O OO0OOO0006060];
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Block Parameters: InitinputNoArmed X :
~ ; Constant

PWM inputs from autopilot (16- . . s . |
dimensional float vector, range Output the constant specified by the "Constant value' parameter. If I

from -1-1) "Constant value’ is a vector and ' Interpret vector parameters as 1-D’ is
on, treat the constant value as a 1-D array. Otherwise, output a matrix E
with the same dimensions as the constant value. ]
i B
inPWhis Main  Signal Attributes C
—u\— Constant value: i

> >0 == 5
pModelInit Inputs] Hill |

—o

||

Interpret vector parameters as 1-D
Modellnit_Inputs If armed .
Sample time:

InitinputNoArmed inf

\) Cancel Help \pp i
@ ‘ ‘ dimensional fl
sl |

from 0-1)

5.2.4 ModelParam_uavtype

This parameter determines the display model in RflySim3D to be called during simulation.
For example, when ModelParam_uavType is 3, the display model in RflySim3D is quadrotor, and
ModelParam_uavType is 100, The display model in RflySim3D is a conventional small fixed
wing.

ModelParam_uavType = int16(3);

copterlD

CopterlD
vehicleType
ModelParam_uavType
UAVType
runnedTime

[Pal Block Parameters: UAVType b _
Cons VelE
cc :cified by the *Constant value’ eter. If

M m Vehile3Dinfo

AngEuler
ramcters as 1-D ’—b_—t
AngQuatern
o N e S
MotorRPMS
J ok | cancel Help m
‘ _ AccB
d oo RateB

A 4

PosGPS

At the same time, in view of the propeller Model of the rotor, ModelParam_uavType can also

used for computer rack and Moment distribution, specific see 6.2 Force and Moment Model Force

and Moment module, S - FM.
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‘ ModelParam_uavType I P uavType

ModelParam.uavType

L1 ‘\, P MotorRads
MotorRads
PR Fb
»| uavDearo
‘ ModelParam_rotorCm I » Cm

ModelParam_rotorCt |i P Ct fen
ModelParam_motorJm |i P Jm

ModelParam.motorJm

ModelParam_uavCd » P Cd

ModelPamm.uavCd Propeller Model old Version

5.2.5 ModelParam_GPSLatLong

This parameter is used to configure the longitude and latitude information of the aircraft,
two-dimensional data, respectively [ModelParam_envLatitude, ModelParam_envLongitude],

through which the aircraft display coordinates in QGC can be adjusted.

ModelParam_envLongitude = 116.259368300000;
ModelParam_envLatitude = 46.1540302;
ModelParam_GPSLatLong = [ModelParam_envLatitude ModelParam_envLongitude];

Block Parameters: Flat Earth to LLA X
Flat Earth to LLA (mask) (link)

Estimate geodetic latitude, longitude, and altitude from flat
Earth position. The flat Earth coordinate system assumes the z—
axis is positive downwards.

Parameters
> X, plf——— Units: Metric (MKS) ©
ModelParam_envAliitude h h Planet model: Earth (WGS84) =2
ModelParam.envAltitude Flat Earth to LLA Initial geodetic latitude and longitude [degl:

ModelParam GPSLatLong

Direction of flat Earth x-axis (degrees clockwise from north):
0

(% OK Cancel Help

5.2.6 ModelParam_envAlitude

This parameter is used to configure the altitude information of the aircraft. The z-axis is
positive downward, and the altitude display of the aircraft in QGC can be adjusted by this

parameter.
ModelParam_envAltitude = -50
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Block Parameters: ModelParam.envAltitude X
Constant

Output the constant specified by the 'Constant value’ parameter. If
"Constant value’ is a vector and ' Interpret vector parameters as 1-D° is
on, treat the constant value as a 1-D array. Otherwise, output a matrix
with the same dimensions as the constant value.

Main Signal Attributes
Xe pl Constant value:
3 lode1Param_envAltitudel B
ModelParam_envAltitude |—> h h b
Interpret vector parameters as 1-D

ModelParam.envAltitude . )
Sample time:

inf

J Cancel Help

5.3 Data Protocol

5.3.1 Flight control simulation input interface

5.3.1.1 inPWMs (Motor Control Input)

The 16-dimensional actuator control input, which has been normalized to -1 to 1 scale, comes
from controls on the motor control MAVLink message sent back by the flight control. During the
loop simulation, the software and hardware can view the controls changes in real time through the
MAVL.ink detection function in the Analyze Tools of QGroundControl.

Figure 0.1 shows that when the software is in the loop simulation, the motor control
command is sent from the PX4 SITL controller through the TCP 4561 series port to the inPWMs
interface of the motion simulation model by the MAVLink protocol, while the hardware is in the
loop simulation, FIG. 0.1 Illustration of data interaction between motion simulation model and
other modules01The command is sent from the flight controller to the inPWMs interface of the

motion simulation model through the serial port with the MAVLink protocol.

® aGroundCentrol Daily - [s] *
47 Back < @1 Analyze Tools

LEF4 ST MAVLInk .8

ALTITUDE
ATTITUDE
ATTITUDE_QUATERNION
ATTITUDE_TARGET
T
ESTIMATOR_STATUS
EXTENDED_S¥S_STATE
GLOBAL_POSITION_INT
GPS_GLOBAL_ORIGIN

1 GPS_RAW_INT 1.0Hz

1 HEARTBEAT 1.0H

1 HOME_POSITION 0.2Hz

1 LINK_NODE_STATUS 1.0H:

1 LOCAL_POSITION_NED

1 MISSION_CURRENT 9.2Hz

PING 0.0Hz

POSITION TARGET INCAI NEN &0 1Hs
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5.3.1.2 inCopterData (Flight Control State Input)
inCopterData is a 32-dimensional double data. The first eight dimensions store the PX4 state,
and the current 1-6 dimensions are as follows:
® inCopterData(1) : The unlock bit of PX4
® inCopterData(2) : The total number of RC channels received. This value should be 0
when there are no RC channels available.
inCopterData(3) : Simulation mode flag bit, 0: HITL, 1: SITL, 2: SimNoPX4.

°

® inCopterData(4) : 3D fixed flag in CoperSim.

® inCopterData(5) : VTOL_STATE flag bit from PX4.

® inCopterData(6) : LANDED_STATE bit from PX4.

Dimensions 9-24 receive chl-chl6 RC channel signals (remote control input), and

dimensions 25-32 listen for rfly_px4 uORB messages.

5.3.2 Flight control simulation output interface

5.3.2.1 MavHILSensor
This output signal is a collection of various sensor data sent by the model to the flight control,
which corresponds to the mavlink_hil_sensor_t message of MAVLink. The output signal includes
the acceleration value of the acceleration sensor, the angular velocity value of the gyroscope
sensor, the magnetic field value of the magnetic compass sensor, and the pressure value of the air

pressure and airspeed sensors.
5.3.2.2 MavHILGPS (GPS interface)

This output signal is the GPS data value sent by the model to the flight control, which
corresponds to the mavlink_hil_gps_t structure of the MAVLink message. The output signal
contains the data of longitude and latitude height, horizontal and vertical accuracy, ground speed,
northeast ground speed, yaw Angle, positioning status, and the number of satellites.

It should be noted that the values of these sensors are provided by the platform model in the
simulation, and by the real sensor chip when the real aircraft is flying. Figure 1 shows that when
the software is in the loop simulation, the sensor and GPS data are sent from the MavHILSensor
and MavHILGPS interfaces of the motion simulation model and sent to the PX4 SITL controller
in the form of MAVLink protocol through TCP 4561 series ports, while the hardware is in the loop

simulation, These data are sent to the flight control through the serial port.
5.3.3 Simulation data output interface

5.3.3.1 MavVehile3Dinfo (Real Simulation Data Output)

The output signal is the real simulation data sent by the model to RflySim3D, which is the

ideal value of smoothness. These data can be used for software simulation test of flight control
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and model under Simulink. Because the true value of the model is not available in the real test,
only the state estimation of the PX4 autopilot (with delay, noise and interference) can be used,
which leads to the poor effect of the Simulink controller to the PX4 in the loop simulation and the
real test, so it needs to be adjusted.
5.3.3.2 outCopterData (Custom log output)
32-dimensional double, the contents of which can be customized to send data. The data sent
to this interface, on the one hand, will be written to the local log log (in C:\PX4PSP\CopterSim
new CopterSim*.csv, will start to record the data of the * aircraft, note that the * should be
replaced with the aircraft ID here). On the other hand, this data will be transmitted to the 30101
series port via UDP (supplement readme).
5.3.3.4 ExtToUE4 (Custom display data output)
The 16-dimensional double data is sent to RflySim3D via port 20100 series to be displayed

as actuator control messages for dimensions 9-24 (supplementary readme).

5.3.4 Automatic code generation of controller communication interfaces

5.3.4.1 ExtToPX4 (Custom uORB Data Output)
16-dimensional float data, uUORB message rfly_ext sent to PX4 via serial port, used to
transfer other sensor or necessary data to flight control (supplement readme).
5.3.4.2 inCopterData (UORB Data input)
32 dimensions, of which the last 8 receive PX4 messages, data from uORB msg
rfly_px4.control[0:7].
5.3.5 Collision Data Receiving Interface - inFloatsCollision
inFloatsCollision is used to implement a simple physics engine, which can realize the
functions of bouncing back when hitting obstacles and crashing when hitting other planes

according to the four distance data returned by RflySim3D (supplementary readme).

5.3.6 External data incoming interface

5.3.6.1 inSILInts (Integer Data Input)

8 dimensional Int32 type input, obtained through UDP protocol, from 30100++2 series port
number, software and hardware in the ring simulation, can input some quantities to the model
through this port; At the same time, this interface is the key interface to realize the synthesis model.

5.3.6.2 inSILFloats

20 dimensional float input, obtained through UDP protocol, from 30100++2 series port
number, software and hardware in the ring simulation, can input some quantities to the model

through this port; At the same time, this interface is the key interface to realize the synthesis model.
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5.3.6.3 inFromUE (RflySim3D Data Input)
16-dimensional double data from 3D engine (Rflysim3D/RflySimUES), which can be used to
implement ground interaction, collision engine and other related functions that need to interact
with 3D engine data.
5.3.6.4 TerrainZ (Terrain height input)
1D terrain height signal, since the earth fixed coordinate system (ground coordinate system)
here is NED, the vertical ground downward is positive. The initial position height of the model
can be determined.
5.3.6.5 inCtrlExt (Floating Point Data Input)
Includes inCtrlExt1-inCtrlExt5 series interface, requiring 28-dimensional data, data type is Si
ngle. It is obtained through UDP protocol and comes from 30100++2 series port number. When th
e software and hardware are in the ring simulation, they can input some quantities to the model thr

ough this port.

inCtriExt1

C—3

inCtrlExt2

inCtriExt3

inCtrlExt4

inCtriExt5

5.3.7 Real-time parameter modification interface - FaultParamsAPI

Real-time parameter modification by means of Matlab:

0.ApiExps\10.FaultParamsDynMod\Readme.pdf

Live parameter modification via Pythond: 0.ApiExps\19.initParamModAPI_py\readme.pdf

Live parameter changes via csv: 0.ApiExps\18.initParamModAPI_csv\Readme.pdf

5.4 Communication interfaces

5.4.1 20100++2 series port

The 20100++2 system port is the UDP receiving port of CopterSim, which mainly receives

external control instructions.
5.4.2 20101++2 series port
Port 20101++2 is the UDP initiator of CopterSim. The data sent from port 20101++2 mainly

include:

34


0.ApiExps/10.FaultParamsDynMod/Readme.pdf
0.ApiExps/10.FaultParamsDynMod/Readme.pdf
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1) During simulation, the simulation data of the aircraft position and attitude sent to the 3D
engine.
2) For external control, the flight control status data is sent.

5.4.3 30100++2 Series port

The 30100++2 series port is the UDP receiving port of CopterSim, and the data it receives
mainly includes:

1) The four-sided ray collision information from the 3D engine is used to implement the
collision function.

2) Data from external control (Python/MATLab), including control or fault injection, etc.
5.4.4 30101++2 series port

Port 30101++2 series is the UDP receiving port of CopterSim, and the data sent by it mainly
includes:

1) Simulation data of aircraft position and attitude.

2) Custom log data from the outCopterData interface of the motion simulation model.
5.4.5 TCP port

TCP port is the communication port between the PX4 controller and the motion simulation
model when the software is in the loop simulation. During the simulation, the PX4 controller
sends the motor control commands to the inPWMs interface of the motion simulation model
through the TCP 4561 series port. And the model fed back the sensor and GPS data to the PX4

controller through TCP 4561 series port to form a simulation closed loop.
5.4.6 Flight control USB serial port

When the hardware is in the loop simulation, the PX4 flight control and the motion
simulation model communicate through the serial port. The data sent by the PX4 flight control
mainly include:

1) Motor control commands sent by MavLink message mavlink_hil_actuator_control.

2) the flight control custom message rfly_px4 message issued through the MavLink message
mavlink_actuator_control_target.

3) Flight control status data.

The data sent by the model mainly include:

1) Sensor and GPS data sent through MavLink messages mavlink_hil_sensor and

mavlink_hil_gps.

2) Externally customize the rfly_ctrl message.

3) External control instructions.
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6. Introduction of Simulink modeling template

The vehicle motion model of the unmanned system can be decomposed into the unified mode
ling framework shown in Figure 1.2 through physical and virtual components. FIG. 1.2 Unified fra
mework of motion model12In this framework, the motion model system can be divided into three
subsystems: the body subsystems, .., $34the 3D environment model subsystemsS.., and the senso
r model subsystem. These three subsystems need to be connected with the control system to form
a complete closed loop, which can realize the simulation of all scenes in the real outdoor environm
ent. S.,1 The input, output and signal connection relationship between them can be expressed in th

e simplified form of the subsystem as follows

Yerrl = Scrrt (Ueer), Uetrl = Vsens
Yvehi = Sveni (Wyeni), Wyehi = {yctrl: y3d}
¥3d = S3d(U3q), U3d = Yveni
YVsens = Ssens (usens)l Usens = {yvehi' y3d}

® The body subsystem includes actuator, body, operating environment, force and torque,
which is the overall description of the body's motion, energy consumption and fault

characteristics in the environment.SyepiS actShodyS envS fim

B Vehicle y
Rl - p States B - Yim
kA Yo T RS Voo L& T R% «
Yooy ZLBLIE T 554 -
PITBTRE v yYoowy v | R arou
env
Bl | ) pedE ST L BT Feo v 5 | yon
5% RA (R
L AL & P |, [T R oA
Yetn Yact JIR D356
N PP L R i

The input and output can be described as follows
Ybody = Shody (Uetrl) Uetrl = Yim
Yim = St (Usn), Usm = {Ybodys Yact Yen )
Veny = SenyUeny) Ueny = Vbody Y34}
Vact = Sact (Uact), Uaet = {yctrl' Ybody» yenv}

®  Sensor model is mainly used to describe all electronic hardware models except control
software, mainly including sensor data, communication protocol, connection interface
and other features;

® The 3D environment model is mainly used to describe the 3D visual environment of
UAV flight (including trees, obstacles, roads, etc.), which is used to provide visual data

simulation for the autonomous control system.
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In the following, taking the multi-rotor model as an example, several functional modules of

Simulink modeling template are introduced

6.1 Motor ModelS

The actuator subsystem is mainly used to generate the output state of the actuator according
to the control instructions sent by the control system. S,..¥.umYaccIN real systems, most actuators
usually have their own control unit for feedback control to ensure that the motion law of the
actuator follows the pre-programmed characteristics. For example, the commonly used electric
control products of UAV usually have a certain speed feedback function, which can ensure that the
output speed and the output throttle meet the linear relationship; The engine system and steering
system commonly used in unmanned vehicles are usually controlled by Electronic Control Unit
(ECU), so that the output of the engine and the input of the throttle meet the specific programming
relationship. Considering that the input-output relationship of the actuator follows the artificial
preset programming law rather than the natural model law, it is very difficult to use the
mathematical method to deduce its model. It usually needs to use the method of system
identification.

A complex actuator model can be decomposed into a steady-state process and a dynamic
process under the rated operation state. f;s;(-)Gss;(s)The rated operation state here, for the multi-
rotor is the hovering flight state, for the vehicle, it is the state of driving forward at the rated speed,
and for the fixed-wing vehicle, it is the state of cruising at the rated speed.

1) Model of the multirotor power unit

For a certain power unit (electric regulation + motor + propeller) in the multi-rotor power
system, it can be simplified as a first-order (or second-order) inertial link superimposed on a linear
steady state function, and the corresponding transfer function can be expressed as

1
61’ = Gss,i(s) : fss,i(o—i) = ks + 1 (kzo'i + k3)
1

Where, is the Laplacian operator, represents the input control signal of the actuator,
represents the output state value of the actuator, is the constant parameter to be identified, and the

corresponding simulink module is as follows:sa;8;k4, k4, ks

- drate/dt

Lt

1
motorT i * P 1)

motor_rate_act

Modellnit_RPM
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2) Overall inputoutput

A quadrotor motor usually consists of the motor body, rotor, stator and controller. The
propeller on the rotor generates lift and thrust by turning the motor, while the controller is
responsible for adjusting the speed and direction of the motor. So as to realize the stable hovering,
forward, backward, and steering actions of the UAV. In this module, the input is the PWM value,
and the motor speed is obtained after the nonlinear dynamic model of each motor. The output of
the module is the motor speed (radian per second) of the input force and torque model respectively.
For the motor speed (RPM) input to UE, since the input unit of the 3D model of the multi-rotor in
UE is RPM, the unit conversion is done on the speed transmitted to UE.

Motor Model

[T

10

6.2 Force and Moment Model Force and moment moduleSg,,

The force and moment subsystem is mainly used to calculate the resultant force and moment
of the airframe subsystem by integrating the actuator state, the flight environment state and the
body motion state. Sg,YactYenvYbodySbodyYm = {°F, M}In order to facilitate the use of 6-DOF

airframe _motion model, the resultant forces and torques usually need to be uniformly mapped
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(coordinate transformed) into the airframe coordinate system.

The modeling process of the resultant force is described in the following, and the modeling
process of the resultant torque is similar. The source of the resultant force on the body can be
expressed as the following superposition form:

°F = Faero + "Fgray + "Feont + X Fact

Where, represents the aerodynamic force vector, represents the gravity vector, represents the
contact force vector (from the ground support force or the physical collision force of obstacles),
represents the driving force vector generated by a certain actuator.’F e, € R*PFyp,, € R*PF ) €
R3PF, . € R®
1) The force of gravity in the body coordinate system”Fg,.av

0
PFgay = (R O

m-g
Where, represents the gravity acceleration and represents the body mass, corresponding to the

simulink module as followsgm

From earth to body frame

<DCM>

Matrix
Multiply

Gravity

2) Propeller driving force in the body coordinate system”Fact,i

PFacti = Facti(Prms Yenv Yoody» 1)

Where, represents the current real-time state of this actuator (e.g., propeller speed, steering
gear deflection Angle, tire driving torque, etc.), which can be obtained from the actuator
subsystem; &; € y..Sacc The expression is directly related to the motion state of the body, the
environment state, and the position and direction distribution of the actuator. The specific
modeling method can be referred to the literature. f,c.; () YenyYenyFOr example, the output force
and torque of a single propeller as a function of the rotational speed of the propeller can be
obtained by decomposing the force and torque into three-dimensional vectors in the body
coordinate system according to the rotor installation information. TMTMVF,.; The most
important difference between different types of vehicle systems is that the position distribution

and direction of the actuator force are not the same. Therefore, for different types of aircraft, it is
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only necessary to establish different actuator force models through the above equation. In this way,

the body subsystem proposed in this subsection can be used on any type of aircraft.

[E—
Gravity
ModelParam_uavType
L b uavrype

ModelParam.uavType

N
D —— > MotorRads e
Fb N

MotorRads

|

: -
ModelParam.rotorCm
m M
3y
ModelParam.rotorCt
it
[ eceparan. oo | ’

ModelParam_motorJm
M Mb
MeodelParam.motorJm ™

Jm

ModelParam.uavCd

Propeller Model old Version

ModelParam_uavCd ‘ e

3) Aerodynamic force in body coordinate system (simplified aerodynamic model of

multi-rotor)?F ..,

PFacro = faero(@fm Paero Yeny)

The aerodynamic forces of conventional multi-rotor are mainly air resistance and air damping
torque, which respectively represent the resistance to prevent the aircraft from moving forward
and the torque to prevent the aircraft from rotating.

® Only the drag effect is considered, that is, the direction of the aerodynamic force is the

same as the direction of the relative wind speed (the incoming flow) (note: the lift is
perpendicular to the incoming flow direction);

® Theoretically, the propeller will be affected by the incoming flow, resulting in a

decrease in the size of the pull force. Since the forward flight speed of the conventional
multi-rotor is low, this effect is not significant. We assume that the propeller tension is
always the same, and the tensile loss of the propeller due to the incoming flow is
included in the drag coefficient.

® The windward area corresponding to different pitch angles of the multirotor is different,

so the drag coefficient will change with the change of pitch Angle (and roll Angle)

o IR Y1
T G
=350TE
E:> 4]
"5
8— —— — —
En Vo




Relative velocity of air flow vb:Pv, 2 [u v w]T

Air resistance vector Fd:?F; = C; - [u2 v2 w?]”
Airflow relative speed wh:Pew, 2 [@x ®y @z]T
Damping torque vector Md:?M; = Cpq - [w? w3 a)ZZ]T

Where, is the average drag and drag coefficient in nominal condition (rated forward flight

speed and altitude). C,, C,qMore complicated, the coefficient can be extended to a curve related to

the Angle of attack, and different coefficients can be taken in the three axes.

4)

5)

L{]

1
Force and Moment Model Bus

e

_uavCCm

MaodelParam uavCCm

MadePamm_uavleam

MedelParam e Daare

uavDearn

Bardy AcraCenter

The impact force of the body in the body coordinate system?F .,

See the following two modules for details:

PhysicalCollisionModel

GroundSupportModel

Overall input and output (control efficiency model)

Simulate the external forces and torques that the UAV is subjected to. For example, the multi-

rotor models all the external forces and torques such as the propeller pull, the aerodynamic force

of the fuselage, its own gravity, and the ground support in this module. The input of the module is

the motor speed MotorRads, the aircraft kinematic attitude 6DOF and the terrain height input tZ,

and the output is the multi-rotor resultant Force, combined torque Force and Moment Model Bus.
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MatorRads (- —

Kinatics Infi
M-Forc\e and Moment Model Bus

GDOF Bus [w—

Force and Moment Model

6.3 PhysicalCollisionModel (Collision detection function is only

supported by personal advanced version or above)

The collision module can detect whether the multi-rotor flight has collided with the object,
and the type of the collision object and make a response in accordance with the physical law.
When the collision mode is turned on, the speed of the multi-rotor meets the impulse theorem
when it collides with the plane. When it collides with the fixed object such as the house, the multi-

rotor will bounce back toward the obstacle in the opposite direction, and the rebound speed is 1/10

of the original speed.

42



———¥ Termain

ColFM ——

IsCrash f——

——®|inFicatsCofision

PhysicalCollisionbodel

— P uFloats

_,—P DCM

—’ ve ‘ tzf——mmmm
fen

——W|mass
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CollisionDetection

It can be seen from the figure that the input of the collision module is uFloats, DCM, ve,
mass, t, and the output is fm, tz, isCrash.

Where uFloats are 20-dimensional external input floating point signals, this port is reserved
for the collision model and can be transmitted from UE4 over a UDP network. DCM is the
direction cosine matrix, ve is the velocity at the time of collision, mass is the mass of the
multirotor, and t is the timestamp. The output fm force and torque directly act on the 6DOF to
affect the body motion, tz represents the height of the multi-rotor from the ground and the
coordinates of XYZ, isCrash is the collision judgment, if the collision occurs, the three motors are

damaged. The specific collision logic can be clicked into the module for detailed understanding.

6.4 GroundSupportModel Ground support module

The collision force of the body mainly comes from the supporting force and
friction force of the ground, as well as the physical collision force when
there are obstacles and obstacles. F,Due to the complexity of the shape of the
object, it is very difficult to solve the physical contact point and calculate
the collision force for the complex shape, and in most cases, such a high-
precision collision force is not necessary. At present, most physics engines
use a simplified method to solve the physical force, that is, all objects are

simplified into a relatively simple basic geometry (such as a cylinder or a
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cuboid) to calculate the physical contact force between them and the ground or
other objects. Each object has a spring—cushioning model under each surface to
simulate the contact, collision and cushioning of the actual object. By
adjusting the stiffness of the spring, the surface softness of different
objects can be simulated, or the buffering effect of the ground can be
simulated. The cushioning contact of a typical ground support force used in
this model can be expressed as follows:

s _{ 0, Az >0
27 \~kyAz — k,Az, Az<0

Where, represents the displacement of the body from the ground surface in
the z direction; AzAz > 0Indicates that the body is located above the ground,
and there is no contact, so the force is 0; Az < 0It means that the object is
under the ground (falling into the ground). At this time, the ground generates
a feedback controller and generates a support force to try to control the
displacement to 0, so as to realize the simulation of ground contact and buffer.
Az In the above equation, and is the buffer coefficient of the spring. The
larger the value is, the stronger the action force to restore deformation is,
the greater the hardness of the object surface is, and the greater the

instantaneous reaction force when the collision occurs. ky > 0k, >0

—»{6DOF

GroundSupportModel
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6.5 6DOF rigid body moduleSyqy

The main role of the fuselage subsystem is to calculate the motion state of the aircraft
according to the total force and torque on the fuselage. SpoayYmYnoay IN the actual aircraft
modeling, two basic assumptions are usually used. The first assumption is the flat earth
assumption, that is, the aircraft movement range is small, and the curvature of the earth surface
can be ignored. Secondly, rigid body assumption, that is, the body of the aircraft is assumed to be
rigid and will not be deformed randomly. The above assumption applies to most unmanned vehicle
systems. On this basis, the motion of the vehicle body can usually be expressed as a quaternion

based dynamic equation with six degrees of freedom as follows

ep=°y =R Py

. bp
bU = —[bw]x . bU +z
, 1
do =—§q5-”w

) 1
qv = E(q013 + [‘h]x)bw
J Pw=—-bwx (- Pw)+>M

ep € R3Is the position vector of the aircraft defined in the earth coordinate system;’v € R®

Is the velocity vector of the aircraft defined in the body coordinate system;?w € R3 Is the angular
velocity vector of the aircraft defined in the body coordinate system;R¢ € R**3 Is the rotation
matrix that transforms the vector from the body coordinate system to the earth coordinate
system;J € R3%3 Andm € R™ are the moment of inertia matrix and mass of the aircraft, and
denote a cross-product matrix operator. For example, let, then the cross-product matrix operator is

defined as follows[ ], @ 2 [wy, w,, ws]”

0 —W3 Wy
[bw]x 2| ws 0 Wi
_Wz Wl 0
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To define the quaternion, letq? € R*q2=1[qy q1 92 951" = [q0 q,"1"

Then we have

1y,
p 1 [ 0 —taf ] p =lao_a,"1" do=75qw @
e b _rb e 1
@ [ w]x Gy = E(qol3 + [qv]x)bw

In practice, the angular velocity can be approximately measured by a three-

b

axis gyroscope, and the above differential equation is linear’w

1-2(q5 +43) 2(q192 — 9093) 2(q193 + 9092)
Ry =C(q2) = |2(q192 + q093) 1-2(qf +a3) 2(q295 — 90q1)
2(193 — 9092)  2(q293 + qoq1) 1 —2(qf +q3)
The 6-DOF module of the UAV is used to describe the attitude and position

changes of the UAV when it moves in the air. This model is based on the
principle of rigid body dynamics, which considers the UAV as a rigid body and
takes into account the rotational motion of the UAV in three coordinate axes
(pitch, roll and yaw) and the translational motion between the body and the
earth coordinate system (front-back, left-right and up—down).

The inputs of the model are the force and torque of the body, and the outputs are the velocity
and acceleration in the body coordinate system, the velocity in the earth coordinate system, the
position, the Euler Angle, the direction cosine matrix (rotation matrix), the angular velocity and

angular acceleration.

[ Bl

—® Force and Moment Model Bus

— fColi BDOF Bus | ———

—® Wind

EDOF
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Through the mathematical modeling of these degrees of freedom, the module
can derive the dynamic equation of the UAV when it moves in the air, which can
be used for control system design, path planning and flight simulation. In
addition, the model can be extended according to the actual needs to consider
more factors, such as the nonlinear characteristics of the aircraft,

aerodynamic force and moment of inertia.

—
e e—

6.6 SensorOutput Sensor output moduleSg.,

The module includes the environment model, sensor model and GPS model. The
environment model simulates the impact of gravity and atmospheric pressure on the flight of the
unmanned system. In the sensor model, the magnetometer and inertial navigation are modeled,
and the noise simulation is added. The GPS model is used to calculate the GPS data, which is fed
back to the PX4 controller during simulation.

The input of the module is a 6DOF Bus structure, and the output is MavHILSensor and
MavHILGPS. The platform is mask encapsulated. Users only need to copy the module to the
unmanned vehicle model and input data to the module according to the 6DOF Bus structure to

complete the sensor and GPS modeling.
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MavHILSensor

aaaaaaaaaaaaaa

MavHILGPS

SensorOutput

6.7 3DOutput 3D display moduleSs4

The input of this module is:

1) UAVType: 3D display ID, from ModelParam_uavType in ***_init.m, determined by XML
file in 3D model file, for example: UAVType is 3 for regular quadrotor and 100 for small fixed
wing.

2) ActuatorToUE: from the motor model, it determines the rotation of the motor/servo of the
unmanned vehicle system in the 3D engine.

3) 6DOF: The 6DOF Bus input from the 6DOF model receives information such as position,
velocity, attitude, and acceleration of the unmanned vehicle system.

The output is Mav\Vehile3DInfo: in the 3D display module, the input information will be
packaged according to the protocol, and the data will be sent to the 3D engine through the

interface to realize visualization processing.

ModelParam_uavType UAVType

UAVType

\ 4

ActuatorToUE Vehile3DInfo »{ 3 )
MavVehile3DInfo

P 6DOF

3D0utput
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../3.RflySim3DUE/API.pdf
../3.RflySim3DUE/API.pdf

6.8 Gazebo Model Module

At present, there are six types of Gazebo model modules that have been completed in the
RflySim platform, namely ESC module, Motor module, LiftDrag module, ESC_AIl module,
Motor_ALL module and LiftDrag_ALL module. Among them, ESC_AIlI module is a composite
module composed of 8 ESC modules, similarly, Motor_ALL module and LiftDrag_ALL module

can be obtained.

ESC

ESC_All

Motor

LiftDrag

Motor_ALL

LiftDrag_ALL

Users can use the Gazebo model module to realize the modeling of rack types supported by

Gazebo platform on RflySim platform, such as rotor, fixed wing, car, etc.
6.8.1ESC_ALL module

1) Feature introduction

[Pa] Etnzag EsC_All X
- .
ESC_al WEQ | MO | #He  mlw |

L LHE0 RN BB N
Module input

(1) inPWMs: PWM signal (8 channels, data from the controls of the motor control
mavlink_hil_actuator_controls_t message returned by the PX4 flight control, and the same order
as the channel definition at the end of the corresponding "xxx.sdf" file in Gazebo).

(2) armed: the Boolean logic variable of external input. False means that the output of
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ESC_ALL module is blocked, and the output is 0. Otherwise, the output of ESC_ALL module is
enabled. The value here generally comes from the first dimension data of the inCopterData
interface, which is the unlocking flag bit from CopterSim, so as to ensure that the aircraft motor
should not turn and maintain the initial value when it is not unlocked in the simulation process.
Only after unlocking can the inPWMs input be turned on, so as to avoid that in some cases, When
the simulation starts but the aircraft is not unlocked, it is the case that the aircraft is disorderly.
Module output

MotorRads_reference: expected speed, the expected value of 8 motor control signals,
including two control types: motor speed and elevator and other parts rotation. The

MotorRads_reference is an 8-dimensional vector.

€D

amed

| pam

v

input_reference_

| amed

ESC1

| pam

v

input_reference_

| amed

ESC2

| pam

v

input_reference_

| amed

ESC3

| pam

v

input_reference_

| aned W)

inPYWIs ESC4 (1)

. MotorRads_reference

v

input_reference_

| amed

ESCS

| pam

v

input_reference_

| amed

ESCT

|

input_reference_ »

| amed

ESCH

| pam

input_reference_ »
anmed

ESCB

2) Module parameters

The ESC_ALL module is masked and contains eight ESC submodules. The input parameters
are the "ESC" structure vector in the "ModelName_init.m" file, ESC(1), ESC(2), ESC(3)... Are the
parameter structures for each channel, in the same order as the channel definition at the end of the
"xxx.sdf*  file  corresponding to  the Gazebo model (file path is
*\PX4PSP\Firmware\Tools\sitl_gazebo\models).

The "ESC" struct vector in the "ModelName_init.m" file is as follows.

% Electrical tuning parameter template
ESCTmp.isEnable= false; % Whether this switch is enabled or not
ESCTmp. input_offset = 0; % input offset
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ESCTmp.input_scaling = 1; % input scaling factor

ESCTmp.zero_position_disarmed = 0; % zero position unlock value
ESCTmp.zero_position_armed = 0; % zero position lock value

ESCTmp. joint_control_type=1; % joint control type, 0: velocity, 1: the position,...

% Define the order of ESC channels and ESCTmp parameter values according to
control_channels at the end of xxx.sdf.jinja file.
ESC = [ESCTmp, ...
ESCTmp, ...
ESCTmp, ...
ESCTmp, ...
ESCTmp, ...
ESCTmp, ...
ESCTmp, ...
ESCTmp]l; % electrically adjusted data structure, expanded to 8 dimensions

6.8.2 ESC module
Below is the ESC module of Gazebo model module. This module is also masked. The input

parameter is the "ESC(1)" structure in the "ModelName_init.m" file.

[Pl s ESC X

Subsystem (mask)

o

L4 Esc(l)

ESC
\ B || WmE® | R @

Input:

(1) pwm: PWM signal, the data in the simulation comes from one of the channels of the
inPWMs interface of the model, and the size is between -1 and 1.

(2) armed: unlock flag bit, external input Boolean logic variable, same as armed of ESC_ALL
module.

Output:

input_reference_ : The desired speed corresponding to the motor/servo in RPM.
6.8.3 Motor_ALL module
1) Function introduction

[Pl BREE Motor ALL e

Subsystem (mask)

%ﬂ%‘ﬁ notor|

BE© | mee i@

Motor_ALL

Enter:

(1) input_reference_ : The control signal processed by the ESC module expects the motor
speed control type signal to be input to the interface of the motor module.
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(2) Windb: Input from the external Environment Model Bus, representing the relative wind
speed of the body, as a 1x3 matrix variable.

(3) wh: Input from the external 6DOF Bus, representing the rotational angular velocity of the
body.

Output:

FM: The force and torque generated by the motor in the body coordinate system, 6-
dimensional vector, the first 3 dimensions are the resultant force generated by the motor module,
and the last 3 dimensions are the resultant torque generated by the motor module.

2) Parameters of the module

Motor_ALL is masked, the input parameter is the "motor" structure vector in the
"ModelName_init.m" file, and the parameter values refer to the part of the parameters of the
motor_model plug-in in the xxx.sdf.jinja file. It contains 8 Motor sub-modules, which process one
of the channel control signals of input_reference_ respectively, and can support the control of up

to 8 motors of UAV.

input_reference_

Windo Fu|

—

i

input_reference_
Windh FM
i

input_reference_

Windo Fu|

i

input_reference_

Windo Fu|

i

Windb FM|
Mo L’ +

input_reference

—
—
—
—

I —

i

input_reference_

Windo Fu|

i

input_reference

Windo Fu|

i

6.8.4 Motor module

The motor sub-module is also masked. The input parameter is "motor(1)" in the
"ModelName_init.m" file, which is defined and initialized in "ModelName_init.m". The final
output of the module is the force and torque of a single motor module, with force in the first three

dimensions and torque in the second three dimensions.

input_reference_ D)



[Pa] =tz Motor X
Subsystem (mask)

\ ZH
ik /e o tor (1)
Motor RE© || mB® | mA@
6.8.5 LiftDrag_ALL module
1) Feature introduction
[Pa] =R LiftDrag_ALL be

Subsystem (mask)

| 54
SR

BOs© | e | K@

LiftDrag_ALL

Enter:

(1) Windb: Input from the external Environment Model Bus, representing the relative wind speed
of the body, as a 1x3 matrix variable.

(2) wh: Input from outside the 6DOF Bus, which represents the rotational angular velocity of the
body.

(3) CtrlSurfaces: 8-dimensional vector, output signal from ESC module (rudder surface control
signal only).

(4) airdensity: The density of the air, used to calculate the dynamic pressure,.

f — ; P> N\ —

Output:
FM: The force and torque in the body coordinate system generated by the rudder surface such as
elevator and rudder, 6-dimensional vector, the first 3 dimensions are the resultant force, and the
last 3 dimensions are the resultant torque.
2) Module parameters

The "LiftDrag_ALL" module is masked, and the input parameters are the LiftDrag structure
variables in the "ModelName_init.m" file, LiftDrag (1), LiftDrag (2), LiftDrag (3)... Are the
parameter structures for each rudder surface, or elevator, rudder and other different parts, and the

order is the same as the channel definition order at the end of Gazebo "xxx.sdf" file.
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6.8.6 LiftDrag module

[Pa] BrEEK: LiftDrag X
Subsystem (mask)

el

ESesiAlull i ftDrag (1)

Hiibrag mE© | mh® | mie

It is used to calculate the lift, drag and torque of the components responsible for the elevator,
rudder, aileron and so on. The input parameters of the LiftDrag module are from the LiftDrag (1)

structure in the "ModelName_init.m" file, which is defined and initialized in "ModelName_init.m".

7. RflySim has supported the introduction of vehicle
simulation operation

7.1 Multi-rotor model

The modeling and simulation case of any multi-rotor model is based on the platform unified

Simulink modeling template proposed above. The only difference between them is the control

efficiency model that maps the force and torque of all rotors (projection and summation of
magnitude and direction) to the resultant force of the fuselage. This is achieved in the platform

modeling template through the ModelParam_uavType parameter to the computer frame and torque

distribution. At the same time, to realize different multi-rotor models, the parameters in the table

below should be adapted
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Table 1 Comparison table of model constant parametersl

Parameter names

The name of the parameter in the

.m file parameter name

formula
Total mass m ModelParam.uavMass
Gravitational acceleration g ModelParam.envGravityAcc
Matrix of moment of inertia ] ModelParam.uavJ
. . d
Multirotor fuselage radius > ModelParam.uavR
Propeller pull factor cr ModelParam.rotorCt
Propeller torque coefficient M ModelParam.rotorCm
Throttle to motor steady-state speed
Cr ModelParam.motorCr
curve slope
Throttle to motor steady-state speed
Wy ModelParam.motorwWb
curve zero
Motor propeller moment of inertia Jrp ModelParam.motorJm
Motor response time constant T ModelParam.motorT
Drag coefficient Cy ModelParam.uavCd
Damping moment coefficient Cam ModelParam.uavCCm

7.1.1 Quadrotor

7.1.1.1 Modeling principle

1) Control efficiency model (force and torque)

Map the force and torque of all rotors (projection and sum of magnitude and direction) to the

body net force. Regarding the control efficiency model of the multi-rotor, we mainly divide it into
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two aspects, the single propeller tension and inverse torque model and the overall machine tension
and torque model.

@O Single propeller pull and reverse torque model

When the multi-rotor is hovering in the absence of wind, is the speed of the propeller, is the
rate of change of the angular velocity of the propeller (theoretically, it is no change of the speed
when hovering in the absence of wind, but the change of battery power and the wear of the
propeller may make a small change of the angular velocity of the propeller), and is a constant and
can be determined by experimentsw;iw;icycy

The propeller pulling force can be expressed as follows. T; = cyw@?

The static antitorsional torque can be expressed as:M; = ¢y @}

The dynamic antitorsion moment can be expressed as follows.M; = cy@w? + Jrp;

@ Complete machine tension and torque model

For the multi-rotor, in order to achieve control allocation, it is first necessary to determine the

position of all motors in the body coordinate system.

Xy X,
BREHR 1 B 3 PRES 1
BRTER 2
m W W
WRIE 4
Rl 3 R 2 HEHE 4

(a) +7 % (b) X7
The Angle between the body shaft and the support arm where each motor is located is, and

the distance between the center of the body and the motor is denoted as.o,x,¢@; € R, U {0}d €

R, U {0}
For the X-shaped quadrotor, the pull and torque generated by the propeller can be expressed
as follows.
Cr Cr cr Cr
V2 V2 V2 V2 @i
f __dCT _dCT _dCT —_dCT ]é
Te|_| 2 2 2 2 @
Ty V2 V2 V2 V2 w3
T, 7dCT —7dCT 7dCT —7dCT ‘(D'f
Cm Cm —Cum —Cum

Where is the total pulling force, and, are the combined torques in the X, y and z directions,

respectively.f 7,7, 1,
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2) Power unit model
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The power unit model is the whole power mechanism which is a group of brushless DC
motor, electric and propeller. The input is the motor throttle command of 0 ~ 1, and the output is
the propeller speed.

After receiving the throttle command and the battery output voltage, the electric regulator
generates the equivalent average voltage as. U, U,,, = aU,Firstly, a voltage signal is input, and
the motor can rotate to a steady speed. @y This relationship is usually linear and is denoted by

wys = U, + @y = Cro + @y

Where, and are constant parameters. C, = C, U, C,@,Secondly, when a throttle command is
given, it takes some time for the motor to reach the steady-state speed, which determines the
dynamic response of the motor and is denoted as. @, T, In general, the dynamic process of BLDC
motor can be simplified as a first-order low-pass filter, and its transfer function can be written as

follows.
1
w = mwss
In other words, when a desired steady-state speed is given, the motor speed cannot be

reached immediately, but needs to be adjusted over a period of time. @w,,w,,Combining the above

two equations, the complete power unit model can be obtained as follows:
1
T=r—7 (Cro + @p)
7.1.1.2 Modeling and simulation case

1) Quadrotor model based on maximum template

*\PX4PSP\RflySimAPIs\4.RflySimModel\2.AdvExps\e2 MultiModelCtrI\1.MultiModelCtrl

\ Readme.pdf

2) Quadrotor model with collision detection

*\PX4PSP\RflySimAPIs\4.RflySimModel\2.AdvExps\e2 MultiModelCtrl\2.MultiModelCtrl
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2.AdvExps/e2_MultiModelCtrl/1.MultiModelCtrl/Readme.pdf
2.AdvExps/e2_MultiModelCtrl/1.MultiModelCtrl/Readme.pdf
2.AdvExps/e2_MultiModelCtrl/2.MultiModelCtrlColl/Readme.pdf

Coll\Readme.pdf

7.1.2 hexacopter

7.1.2.1 Modeling principle
The only difference from the quadrotor is the control efficiency model, for the multirotor, in
order to realize the control allocation, it is first necessary to determine the position of all the

motors in the body coordinate system.

IZhE n, e 1

BRER 2

For a multirotor with one propeller, label the propellers clockwise from to, as shown in the
image above. n,.i = 1i = n,. = 5The Angle between the body shaft and the support arm where
each motor is located is denoted by, and the distance between the center of the body and the first
motor is denoted by.o,x,@; € R, U {0}id; € R, U{0},i =1,2,..,n,

The pull force and torque generated by the propeller can be expressed as follows.

f Cr Cr

| —dicrsing; —dycrsing, .. —d cTsmq)n H
T, —dicrcos@p; —dycrcos@, ... —dy cTcoswn
T, cydyq cu6s

7.1.2.2 Modeling and simulation cases

1) Six rotor model based on maximum template

*\PX4PSP\RflySimAPIs\4.RflySimModel \2.AdvExps\e2 MultiModelCtrI\4.HexModelCtrl\

Readme.pdf

7.1.3 Quad-axis ocrotor

7.1.3.1 Modeling principle

Refer to the modeling principle of the six rotor and the four rotor

7.1.3.2 Modeling and simulation case

1) Quad-axis ocrotor model based on maximum template

*\PX4PSP\RflySimAPIs\4.RflySimModel
\2.AdvExps\e2 MultiModelCtrI\5.0ctoCoxRotor\Readme.pdf
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2.AdvExps/e2_MultiModelCtrl/2.MultiModelCtrlColl/Readme.pdf
2.AdvExps/e2_MultiModelCtrl/4.HexModelCtrl/Readme.pdf
2.AdvExps/e2_MultiModelCtrl/4.HexModelCtrl/Readme.pdf
2.AdvExps/e2_MultiModelCtrl/5.OctoCoxRotor/Readme.pdf
2.AdvExps/e2_MultiModelCtrl/5.OctoCoxRotor/Readme.pdf

7.1.4 Octocoxrotor

7.1.4.1 Modeling principle

Refer to the modeling principle of the six rotor and the four rotor

7.1.4.2 Modeling and simulation case

1) Eight-rotor model based on maximum template

*\PX4PSP\RflySimAPIs\4.RflySimModel
\2.AdvEXxps\e2 MultiModelCtrI\6.OctoX\Readme.pdf

7.2 Small fixed wing

7.2.1.1 Modeling principle

1) Aerodynamic forces and torques

ye ()
Ze (ﬂﬂ)

Figure 0.1 Inertial coordinate system and body coordinate system01
@  Longitudinal aerodynamics
Longitudinal aerodynamic forces and moments include lift, drag and pitch moments, under
which the body will move in the plane (inertial coordinate system: North East ground), which is

also known as the pitch planeo,x,z,
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2.AdvExps/e2_MultiModelCtrl/6.OctoX/Readme.pdf
2.AdvExps/e2_MultiModelCtrl/6.OctoX/Readme.pdf

Lift, drag and pitch moments are all mainly affected by the change in Angle of attack. «lt is

also affected by the pitch rate of the body and the elevator. w,,, 6. Therefore, the formulas for lift,

drag and pitching moment can be written as

. 1
Liftfy, ~ EpVaZSCL(a: Wy, 5e)
1
Dragfa, = EpVaZSCD (0(, Wyys 5e)

Pitch momentM,,,, ~ %pVaZSch(a, wy,,8¢)

Model simplification: Perform a first-order Taylor expansion on the above equation, and then
dimensionless the partial derivative after the approximate linearization process
FEHRH ac,  ac, ac, = TR
CL=>CL0+%a+%wyb+a5 e == Cp, +Ca+ (o
Finally, the longitudinal aerodynamic forces and torques are expressed as

37 @ * G, Be

faz = > pV s (CLO +Cp,a+ Cp 5wy, + CL5863>

2V

fax =3 pV s (CDO + Cp,@ + Cp, 5wy, + CD(;E(Se)

2V

Mg, = EpVaZSc (Cmo + Cnp@ + O, W
a

wy, + Cm586€>

@ Lateral aerodynamics

The aerodynamic forces and moments in the transverse direction cause the fixed wing UAV
to move along the axis direction (the body coordinate system), and also cause the roll and yaw

motiono,y,
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wEhE

The aerodynamic force in the transverse direction is mainly affected by the sideslip Angle,

but also by the roll rate, yaw rate, ailerons and rudder, which is denoted by

Side forcesf,, ~ %pVaZSCy(ﬁ, W, Wz, 8, 6r)
Roll torqueM,, ~ %pVaZSbCl(ﬁ, W, Wgz,,8a,6r)

Yaw momentM,, ~ %pVaZSan(ﬁ, Wy, Wgz,, 84, 6r)

Model simplification: By applying the first-order Taylor expansion to the above equation and
then dimensionless the partial derivative after the approximate linearization process, the linear
representation of the aerodynamic force and moment in the transverse direction can finally be

obtained as

1

b b
fay = EpVaZS (CYO + CYBﬁ + CYPZ—Va(A)xb + CYrZ_Vawzb + CY5a5a + CYgr(sT)

1 b b
Max = EpVaZSb (Clo + CIBB + ClYp 2_‘/aa)xb + Clrz_Vawa + Cl5a6a + Cl5r6r)

b b
Wy, + Cy, 557 Wz, + Cn5a5a + Cn5,5r)

1 2
Mgy, = EpVa Sh (Cno + Cnl;ﬂ + Cnp m ny 2V,

2) The thrust of the dynamical system
In the modeling process, it is considered that the power system of the fixed-wing UAV is
installed along the body shaft, and the thrust generated by the propeller power system at zero
airspeed isopx,,
T =Crp (ﬁ)z Dy*
60
Therefore, when the airspeed is, the thrust of the power system is expressed as in the body

coordinate systemV,
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7.2.1.2 Modeling and simulation case

1) Fixed-wing model based on minimum input and output interface

*\PX4PSP\RflySimAPIs\4.RflySimModel\1.BasicExps\e2 FixWingModelCtrl\Readme.pdf

2) Fixed wing model with collision detection
*\PX4PSP\RflySimAPIs\4.RflySimModel\2.AdvExps\e3 FWingModelCtrI\1.FixWingMode
ICtrIColl\Readme.pdf

3) Fixed wing position control

*\PX4PSP\RflySimAPIs\4.RflySimModel\2.AdvExps\e3 FWingModelCtrl\2.FWPosCtrlAP

I\Readme.pdf

4) Fixed wing attitude control

*\PX4PSP\RflySimAPIs\4.RflySimModel\2.AdvExps\e3 FWingModelCtrl\3.FWALttCtrlAPI

\Readme.pdf
5) Fixed wing speed altitude yaw control
*\PX4PSP\RflySimAPIs\4.RflySimModel\2. AdvExps\e3_FWingModelCtrl\4.VelAltYawCtr
IAPI_Py\Readme.pdf
*\PX4PSP\RflySimAPIs\A.RflySimMode\2. AdvExps\e3_FWingModelCtrI\5.VelAltYawCtr

IAPI Mat\Readme.pdf
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1.BasicExps/e2_FixWingModelCtrl/Readme.pdf
2.AdvExps/e3_FWingModelCtrl/1.FixWingModelCtrlColl/Readme.pdf
2.AdvExps/e3_FWingModelCtrl/1.FixWingModelCtrlColl/Readme.pdf
2.AdvExps/e3_FWingModelCtrl/2.FWPosCtrlAPI/Readme.pdf
2.AdvExps/e3_FWingModelCtrl/2.FWPosCtrlAPI/Readme.pdf
2.AdvExps/e3_FWingModelCtrl/3.FWAttCtrlAPI/Readme.pdf
2.AdvExps/e3_FWingModelCtrl/3.FWAttCtrlAPI/Readme.pdf
2.AdvExps/e3_FWingModelCtrl/4.VelAltYawCtrlAPI_Py/Readme.pdf
2.AdvExps/e3_FWingModelCtrl/4.VelAltYawCtrlAPI_Py/Readme.pdf
2.AdvExps/e3_FWingModelCtrl/5.VelAltYawCtrlAPI_Mat/Readme.pdf
2.AdvExps/e3_FWingModelCtrl/5.VelAltYawCtrlAPI_Mat/Readme.pdf

7.3 Unmanned vehicles

7.3.1 Refine the unmanned vehicle model

7.3.1.1 Modeling principle

w R w AR T
U R R W

w ofBRHA ’
VAT 3EE E

Figure 0.2 Diagram of the vehicle coordinate system02

1) Force and torque model of the tire

[a] 1 J3 56

A3 7717

— '
ZEEAT I TT )
] O £

ENFE 1A
W 7158

i 73

Figure 0.3 Tire model diagram03
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Here, the mechanical characteristics of the vehicle tire are discussed based on the magic
formula tire model. The magic formula condition of the tire model is shown in the figure. The
input is the longitudinal slip rate, the lateral Angle, the inclination Angle, and the vertical load of
the wheel. The output is longitudinal force, lateral force, overturning moment, rolling resistance

moment and reversing moment.

A B i th 22 it
YIRS s Y1 S
1l a
A e kA e PO
T PR VS Eh WL R My
[a] 1E S35 M;

Figure 0.4 Magic formula schematic diagram04

@  Longitudinal slip rate s

Longitudinal tire slip rate refers to the degree of tire sliding in the longitudinal direction
during vehicle driving. It is calculated by comparing the difference between the actual sliding
speed of the tire and the theoretical sliding speed. The larger the value of the longitudinal slip rate
of the tire, the greater the sliding degree of the tire in the longitudinal direction, and its expression
is as follows:

s =Wx—Rw)/Vx

Here, Vy is the longitudinal velocity of the vehicle (in m/s), R is the radius of the tire (in m),

and o is the angular velocity of the tire (in rad/s).

@ The sideslip Angle o

Figure 0.4 shows that the side-slip Angle refers to the Angle between the tire and the vertical
direction when the vehicle is moving. Figure 0.4 Magic formula schematic diagram0O4It describes
the degree of deviation of the tire from the direction of travel of the vehicle when it is driving in a
turn or curve. The sidestep Angle of the tire has an important impact on the handling performance
and stability of the vehicle.

® Camber Angle y
Tire camber is the Angle at which the wheel tilts with respect to the vertical direction. It is an
important parameter in the vehicle suspension system, which can affect the handling, driving

stability and tire wear of the vehicle.
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Figure 0.5 Diagram of the camber Angle05

@  Wheel vertical load F
Wheel vertical load is the weight of the vehicle and the weight of the load distributed to a
single tire. Generally, the vehicle is running smoothly or stationary on the plane, and the vertical

load on each wheel is the same.

® Longitudinal force F
Longitudinal tire force refers to the force generated by the tire in the process of vehicle
driving and related to the longitudinal movement of the vehicle, it mainly includes traction and
braking force, traction is the force of the tire to push the vehicle forward, so that the vehicle can
accelerate or maintain constant speed. When the driving force is applied to the tire, the friction
between the tire and the ground will be generated, and this friction is the source of traction.
Braking force refers to the resistance generated by the tire when braking, slowing down or

stopping the vehicle.

E, = (D sin(C X arctan(BXl —E(BX; — arctan(BXl))))) + s,
X, =s+s,
C =B,
) D = B,F? + B,F,
B = (B3F? + B,F;) X e 552 /(C x D)
Sp = BoF; + By
s, =0
E = B¢F? + B;F, + Bg
Where, is the horizontal drift of the curve and is the vertical drift of the curve. s;s,C is the
shape factor of the curve, D is the peak factor of the curve, B is the stiffness factor, and E is the

curvature factor of the curve.
® Lateral force F

When the car is driving, due to the lateral tilt of the road surface, the centrifugal force when

the curve is driving, etc., the wheel center generates a lateral force along the axle direction.
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Because the wheel is elastic, so when the lateral force does not reach the maximum friction
between the wheel and the ground, the lateral force causes the tire to deform, so that the wheel tilts,

resulting in the wheel driving direction away from the predetermined driving route.

F, = (D sin(Carctan(BX, — E(BX, — arctan(BX,))))) + s,
X1 =a+ Sh
C = AO
< D = AjF? + A,F,

B = Az sin (2 arctani—z) X (1 —Asly])/(C x D)

4

Sp = Aok, + Ay + Agy
Sy = A By + AppF, + Ags
E = AGFZ + A7

@ Return to the positive moment M
The reverting torque is the torque that acts on the tire around the OZ axis when the tire is
sidetracked. In circular driving, the reverting torque is one of the main torques that bring the wheel

back to a straight driving position.

M, = (Dsin(Carctan(BX, — E(BX; — arctan(BX;)))) + S,)
X =a+ts,

C=C,

D=C, -F*+C, F,

|B=(C B2 +Cy E) (1= Co Iyl e - (=C5) - E)/(C - D)
Sp=C11'y+Cp-F+ (g3
$p=(CraF}+Cis )y +Cie-E+Cyy

E=(C, - F}+Cg-F,+Co)-(1—Cyo-lyD

The reversing torque M

The overturning torque is the torque exerted on the tire around the OX shaft when the tire is

sidetracked.
My = ~F, - D,

Where, is the lateral deformation and D, = F, /L,Ls is the lateral stiffness of the tire, which is
often assumed to be a constant in the tire model.

©@ Rolling resistance moment M

The torque opposite to the rolling direction of the tire is the tire rolling resistance.

M, =F,-R, ‘R,
Here, Re is the rolling radius of the tire; R is, the rolling resistance coefficient.

Table 2 Magic Formula parameter value table?

A0 Al A2 A3 Ad A5 A6 A7 A8 A9
1.65 -34 1250 3036 12.8 0.005 0.021 0.7739 0.0022 0.0134
A10 All Al2 Al13 BO B1 B2 B3 B4 B5
0.0037 19.1656 12.1356 6.262 2.3737 9.46 1490 130 276 0.0886
B6 B7 B8 B9 B10 Co C1 Cc2 C3 Cc4
0.0040 0.0615 1.2 0.0299 0.176 2.34 1.4950 6.4166 3.574 0.0877
C5 C6 c7 C8 C9 C10 Ci11 C12 C13 C14
0.0984 0.00276 0.0001 0.1 1.3332 0.0255 0.0235 0.0302 0.0647 0.0211
C15 C16 C17

0.8946 0.0994 3.3369
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2) Force and torque model for the full vehicle

Fx1 Fx2
Fy1

Figure 0.6 Force diagram of the vehicle06

The force and torque model of the vehicle can be expressed as follows:

1 1 1 1
F 1 1 1 1
FX L, L, Ly Ly |[Fx1 Fn Fou Fu Fpy
MY |2 2 2 2 |[Fx2e B2 Fno Fn Fp
MX L L L L Fx3 Fy3 Fz3 Fz3 Fy3
v - - - _Z
2 2 2 21 F F. F, F, F.
MZ L L L L x4 x4 z4 z4 yv4
L 2 2 2 2

Where Fyx and F are the longitudinal force and lateral force of the vehicle
respectively,Mx,My,Mz are the torques of the vehicle in three directions; F.i(i=1,2,3,4),
Fyi(i=1,2,3,4) are the longitudinal and lateral forces of each tire, which have been obtained by the
magic formula of the tire model.
7.3.1.2 Modeling and simulation case

3.CustExps\e4 TrailerModelCtrl\Readme.pdf

7.3.2 Akaman Chassis unmanned vehicle

7.3.2.1 Modeling and simulation case
1) Akaman chassis unmanned vehicle model based on minimum input and output
interface

*\PX4PSP\RflySimAPIs\4.RflySimModel\1.BasicExps\e3 CarAckermanModeCtrl\Readme.

pdf
2) Position control for unmanned vehicles on Akaman chassis

*\PX4PSP\RflySimAPIs\4.RflySimModel\2.AdvExps\e5 CarAckermanCtrl\1.CarAckerman
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3.CustExps/e4_TrailerModelCtrl/Readme.pdf
1.BasicExps/e3_CarAckermanModeCtrl/Readme.pdf
1.BasicExps/e3_CarAckermanModeCtrl/Readme.pdf
2.AdvExps/e5_CarAckermanCtrl/1.CarAckermanPosCtrl_Py/Readme.pdf

PosCtrl Py\Readme.pdf

3) Akaman chassis unmanned vehicle speed control

*\PX4PSP\RflySimAPIs\4.RflySimModel\2.AdvExps\e5 CarAckermanCtrl\3.CarAckerman
VelCtrl Py\Readme.pdf

7.3.3 Differential autonomous vehicles

7.3.3.1 Modeling and simulation case

1) Differential unmanned vehicle model based on minimum input and output interface

*\PX4PSP\RflySimAPIs\4.RflySimModel\1.BasicExps\e4 CarR1DiffModelCtrl\Readme.pd

f

For the rest;: 2.AdvExps\e6 CarR1DiffCtrI\Readme.pdf

7.4VTOL UAV

7.4.1 4+1 droop

7.4.1.1 Modeling and simulation case
*:\PX4PSP\RflySimAPIs\4.RflySimModel\2.AdvExps\e4_VTOLModelCtrI\1.VTOLModelC

tr\Readme.pdf

7.4.2 Quadrotor tail-mount draping

7.4.2.1 Modeling and simulation case

*\PX4PSP\RflySimAPIs\4.RflySimModel\2.AdvExps\e4 VTOLModelCtrI\2. TailsitterMode
ICtr\Readme.pdf

7.5 Unmanned Vessel

Replenishment required
7.6 Helicopters

7.6.1.1 Modeling and simulation case

2.AdvEXxps\e8 Helicopter\Readme.pdf

7.7 Unmanned Underwater craft

7.7.1.1 Modeling and simulation case
2.AdvExps\e9 UUV\Readme.pdf
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2.AdvExps/e5_CarAckermanCtrl/1.CarAckermanPosCtrl_Py/Readme.pdf
2.AdvExps/e5_CarAckermanCtrl/3.CarAckermanVelCtrl_Py/Readme.pdf
2.AdvExps/e5_CarAckermanCtrl/3.CarAckermanVelCtrl_Py/Readme.pdf
1.BasicExps/e4_CarR1DiffModelCtrl/Readme.pdf
1.BasicExps/e4_CarR1DiffModelCtrl/Readme.pdf
2.AdvExps/e6_CarR1DiffCtrl/Readme.pdf
2.AdvExps/e4_VTOLModelCtrl/1.VTOLModelCtrl/Readme.pdf
2.AdvExps/e4_VTOLModelCtrl/1.VTOLModelCtrl/Readme.pdf
2.AdvExps/e4_VTOLModelCtrl/2.TailsitterModelCtrl/Readme.pdf
2.AdvExps/e4_VTOLModelCtrl/2.TailsitterModelCtrl/Readme.pdf
2.AdvExps/e8_Helicopter/Readme.pdf
2.AdvExps/e9_UUV/Readme.pdf

8. External control interface

8.1 QGC

QGC (QGroundControl) external control interfaces are mainly as follows:

MAVLink message interface: through the MAVLink message protocol, it communicates with
the flight control to realize the control and monitoring of the aircraft.

UDP command interface: Send and receive control instructions through UDP protocol to
realize the control of the aircraft.

TCP command interface: send and receive control instructions through TCP protocol to
realize the control of the aircraft.

WebSocket interface: data exchange and communication through WebSocket protocol to

realize the control and monitoring of the aircraft.

8.2 Simulink control interface

Simulink provides a variety of ways to implement the external control interface of the UAV.
The commonly used methods are:

Simulink Coder is used to generate the Simulink model into C code, and then the C code is
used to interact with the external control program.

UDP or TCP/IP protocol is used to communicate between Simulink and external control
program.

Use Simulink Real-Time Workshop and hardware connection boards for real-time control.

8.3 Python Control interface

Python external control interfaces generally control the speed, position, attitude and other
states of the vehicle. The following common interfaces are:
Fixed wing takeoff control interface: "sendMavTakeoff", controls the fixed wing to take off at

ad specified location.

def sendMavTakeOff(self,xM=0,yM=0,zM=0,YawRad=0,6PitchRad=0):
""" Send command to make aircraft takeoff to the desired local position (m)

Unlocking interface: "sendmMavarm", vehicle unlocking command.

def SendMavArm(self, isArm=0):
""" Send command to PX4 to arm or disarm the drone

Target position control interface: "sendposNED" to Send the target position as well as the yaw

Angle in the North East ground coordinate system.

def SendPosNED(self,x=0,y=0,2z=0,yaw=0):
""" Send vehicle targe position (m) to PX4 in the earth north-east-down (NED) frame
with yaw control (rad)

when the vehicle fly above the ground, then z < 0

Fixed wing cruise radius interface: "sendcruiseRadius", changes the cruise radius of the
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fixed wing.
def SendCruiseRadius(self,rad=0):

""" Send command to change the Cruise Radius (m) of the aircraft

Vehicle attitude sending interface: "sendattpxu", send the target attitude in the right front and

lower coordinate system.

def SendAttPXu(self,att=[0,0,0,0],thrust=0.5,CtrlFlag=0,AltFlg=0):
""" Send vehicle targe attitude to PX4 in the body forward-rightward-downward (FRD)
frame

Fixed wing cruise speed interface: "sendcruisespeed”, changes the cruise speed of the fixed

wing.
def SendCruiseSpeed(self,Speed=0):

"nt Send command to change the Cruise speed (m/s) of the aircraft

Target position control interface: "sendrosNEDNoYaw", Send the target position in the North

east ground coordinate system.

def SendPosNEDNoYaw(self,x=0,y=0,z=0):
""" Send vehicle targe position (m) to PX4 in the earth north-east-down (NED) frame
without yaw control (rad)
when the vehicle fly above the ground, then z < 0

Ground speed control interface: "sendGroundspeed”, controls the fixed wing ground speed.

def SendGroundSpeed(self,Speed=0):
"nv Send command to change the ground speed (m/s) of the aircraft

Target speed control interface: "sendvelNeDNovaw", send command to change the ground

speed (m/s) in the north east ground coordinate system.

def SendVelNEDNoYaw(self,vx,vy,vz):
"nn Send targe vehicle speed (m/s) to PX4 in the earth north-east-—down (NED) frame
without yaw control
when the vehicle fly upward, the vz < 0

Target speed control interface: "sendvelnED", sends the target speed as well as yaw angular

velocity in the North East ground coordinate system.

def SendVelNED(self,vx=0,vy=0,6vz=0,6yawrate=0):
"un Send targe vehicle speed (m/s) to PX4 in the earth north-east-down (NED) frame
with yawrate (rad/s)
when the vehicle fly upward, the vz < 0

Target speed control interface: "sendvelFrDp", sends the target speed as well as yaw angular

speed in the right front and bottom coordinate system.

def SendVelFRD(self,vx=0,vy=0,vz=0,yawrate=0):
""" Send vehicle targe speed (m/s) to PXd4 in the body forward-rightward-downward
(FRD) frame with yawrate control (rad/s)
when the vehicle fly upward, the vz < 0

Target speed control interface: "sendvelNovaw", sends the target speed in the right front and

lower coordinate system.

def SendVelNoYaw(self,vx,vy,vz):
"nn Send vehicle targe speed (m/s) to PXUd in the body forward-rightward-downward
(FRD) frame without yawrate control (rad)
when the vehicle fly upward, the vz < 0

Target position control interface: "sendposFrp", sends the target position and yaw Angle in
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the right front and bottom coordinate system.

def SendPosFRD(self,x=0,y=0,2z=0,yaw=0):
"nt Send vehicle targe position (m) to PX4 in the body forward-rightward-downward
(FRD) frame with yaw control (rad)
when the vehicle fly above the ground, then z < 0

Target position control interface: "sendPosFRDNovaw", Sends the target position in the right

front and lower coordinate system.

def SendPosFRDNoYaw(self,x=0,y=0,z=0):
nnn Send vehicle targe position (m) to PX4 in the body forward-rightward-downward
(FRD) frame without yaw control (rad)
when the vehicle fly above the ground, then z < 0

Maximum speed control interface: "SendCoptersSpeed", which Sets the maximum flight speed

of the rotor.

def SendCopterSpeed(self,Speed=0):
""" send command to set the maximum speed of the multicopter

Fixed wing landing control interface: "sendMmavLand" to Set the position where the fixed wing

is expected to land.

def sendMavLand(self, xM,yM,zM):
""" Send command to make aircraft land to the desired local position (m)

9 Synthesize the model

9.1 Synthesis Model Protocol

9.1.1 Background

The controller is implemented on the basis of the original dynamic model to form a
comprehensive model. The controller uses MATLAB Simulink to realize basic attitude control and
fixed-point function. The controller directly takes the real state of the model as input. The key of
synthesizing model protocol is to define the input and output interface. The overall interface
design only considers the full mode, while the simplified mode is considered in CopterSim.

Model parameters: Contains model parameters and controller parameters. Consider adding
an interface for setting controller parameters in CflightModel.

Input interface: Consider the messages that the synthesis model sends to or receives from
CopterSim.

Command input: Used to control basic processes such as unlocking, taking off, and landing

of the UAV. Command input goes inside InSIL.

Commands Support or not
Unlock Support
Take-off Support
Landing Support
Return flight Support
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Hover Suitable for fixed wing

Set the current desired Simply support the command to complete the trajectory
position control

Collision input: Given by the collision detection scheme.

typedef struct {

real_T TerrainZ;

real32_T inFloatsCollision[20];
} Collision_Multicopter_T;

OffBoard control: The PX4 can be controlled by an independent helper computer via cable
or wifi. The partner computers typically communicate via the MAVLink API. The vehicle
executes the position, speed, and attitude commands set by the offboard computer through
MVLink. Offboard mode is mainly used to perform complex air maneuvers, such as automatic
path tracking, target tracking, etc. For missions such as takeoff, landing, and return, specialized
flight modes such as AUTO.TAKEOFF, AUTO.LAND, and AUTO.RTL are often used

Rotorcraft Mavlink Offboard message

SET_POSITION_TARGET_LOCAL_NED

Desired position (X, y, z), desired velocity (v, vy, V2), desired acceleration (ax, as, ar). The desi
red velocity is added to the output of the position controller as the input to the velocity controll
er. The desired acceleration is added to the output of the velocity controller and is used to calcu
late the thrust vector. Supported coordinate systems include MAV_FRAME_LOCAL_NED, M
AV_FRAME_BODY_NED.

SET_POSITION_TARGET_GLOBAL_INT

Desired position (lat_int, lon_int, alt), desired velocity (vx, vy, Vz), desired acceleration (as, asy,
ar). The desired velocity is added to the output of the position controller as the input to the vel
ocity controller. The incorporation of the desired acceleration is not yet perfect. Supported coo
rdinate system MAV_FRAME_GLOBAL.

SET_ATTITUDE_TARGET

1 Attitude SET_ATTITUDE_TARGET.q+ Throttle SET_ATTITUDE_TARGET.thrust

2 Angular rate SET_ATTITUDE_TARGET body_roll_rate, body pitch_rate, body yaw_rate+
throttle set_attitude_target.thrust.

The above is the Offboard control message officially supported by PX4. The coordinate
system and various combination modes are more complex. The messages controlled by this
Offboard are mainly divided into two types. One is the position type, which is often used in

formation flight. One is the attitude class, which is often used for stunts.

# Set desired position, velocity, acceleration message, yaw Angle, yaw Angle rate,
integer for position when using latitude and longitude high

set_position_target_local_ned_send(self, time_boot_ms, target_system, target_component,
coordinate_frame, type_mask, x, vy, z, vx, vy, vz, afx, afy, afz, yaw, yaw_rate,
force_mavlinkl=False)

# Set desired pose, angular rate, throttle

set_attitude_target_send(self, time_boot_ms, target_system, target_component, type_mask,
q, body_roll_rate, body_pitch_rate, body_yaw_rate, thrust, force_mavlinkl=False)
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The Offboard control mode supported by the integrated model.

9.1.2 Synthesis model Offboard control design

Terminal Supported or not
python Offboard Support
Matlab Offboard Support

9.1.3 Complete typing with inSIL

inSlLInts protocol

The zeroth digit of the inSILInts is used to characterize and modify the state, and a

corresponding bit of 1 indicates that the system is in the corresponding state. For example, the first

bit indicates simulation mode, and when the first bit of the received inSILInts[0] is 1, it indicates

that the system enters simulation mode.

Only when 0:hasCMD s 1, the state should be set once, otherwise the integrated model will

continue to use the original state. The original state can come from the external setting value, or it

can be an internal state automatic transition. For example, after receiving the take-off command, it

first switches to the take-off mode, and automatically switches to the fixed-point mode after the

take-off is completed.

inSILInts[0] Vehicle Command Bitmap

0:hasCMD 1: SIL 2: 3: 4: 5: 6: 7
Armed

Have new | Emulation Unlock

orders

8:Takeoff 9: Position 10: 11: 12:Lotie | 13:Heigh | 14:Hor 15
Land Return |r t '

Take-off Fixed Landin | Turnin | Hover Fixed Horizonta

/waypoint g g back | (fixed height | position
wing) mode control

16:0ffboardPo | 17:0OffboardAt | 18: 19: 20: 21: 22: 23

S t :

Offboad Offboad

Position Position Pose

Control series | Series

24: 25: 26: 27: 28: 29: 30: 31

Note: When enabling position control, horizontal position and vertical position are enabled at

the same time

Bits 0-7 of inSILInts[1] are position class flags, and bits 8-15 are posture class flags.

inSILInts[1] Offboard control flag

O:hasPo

1:hasVel

‘ 2:hasAcc

‘ 3:hasYaw

4:hasYawRa ’5: ‘6: ’7: ’
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S te

Locatio | Speed Acceleration Yaw Angle Yaw Angle

n rate

8:hasAtt | 9:hasRollRat | 10:hasPitchRat | 11: hasThrust | 12 13 | 14 | 15
e e

Posture | Roll  Angle | Pitch Angle | Yaw angular | Throttle
rate rate rate

16:NED | 17:.Global 18: 19: 20: 21 |22 | 23

Position | Position and

and speed Global

speed

NED

24: 25: 26: 27: 28: 29 |30 | 31

Integer | Integer Type

type Precision

latitude

inSILInts[6] represents the latitude of the integer type, and inSILInts[7] represents the

longitude of the integer type.
Remark: The corresponding value is 1 for position control only, 2 for speed control only, 8
for yaw Angle control only, and 16 for angular rate control only. If the combination of multiple

controls is required, the value of the separate control is added.
The inSILFloats protocol

inSILFloats are used to store the actual data, and the meaning can change depending on what
you set up in inSILInts. The first three represent locations, but inSILInts controls which coordinate

system they are in.

inSILFloats[0-2] =pos;
inSILFloats[3-5]=vel; / / speed
inSILFloats [3] can be used as a rate
InSILFloats [6-8] = acc;
inSILFloats[9-11]=att;
for the user.
inSILFloats[12-14]=attRate;
inSILFloats[15]=thrust; // throttle

| pitch, roll and yaw of the remote control signal

// Attitude control uses Euler angles, which are more intuitive

9.1.4 The output interface

The integrated model output interface remains the same as the original output interface.

struct outHILStateData {
uint32_t time_boot ms; // message timestamp ms
uint32 t copterID; // aircraft ID
int32 t GpsPos[3]; // Filtered GPS latitude and longitude, where latitude and longitude
(degrees *1e7), height upward positive (in mkle3—>mm)
int32 t GpsVell3]; // Filtered GPS speed, NE ground, (in m/s*le2->cm/s)
int32 t gpsHome[3]; //GPS raw data, where latitude and longitude (degrees *le7), height

upward positive (in m¥le3—>mm)
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int32 t relative alt; // Filtered GPS relative height, NE, (in mkle3—>mm)
int32 t hdg; // filtered GPS heading Angle, NE ground, (in m¥le3—>mm)
int32 t satellites visible; //GPS raw data, number of satellites

int32 t fix type; //GPS raw data, positioning accuracy level, 3 means fixed
int32 t resrvelnit; // reserve bit Int

float AngEular[3]; // Filtered aircraft Euler Angle in rad

float localPos[3]; // filtered local location in m

float localVel[3]; // filtered local location in m/s

float pos horiz accuracy; // filter state, horizontal positioning error, in m

float pos vert accuracy; // filter status, vertical positioning error in m
float resrveFloat; // reserve bit Float

}
Simulink receives state structures

struct outHILStateShort{
int checksum; // checksum bit 1234567890

int32_t gpsHome[3]; //Home GPS position, lat&long: degxle7, alt: mxle3 and up
is positive

float AngEular([3]; //Estimated Euler angle, unit: rad

float localPos[3]; //Estimated locoal position, NED, unit: m Consider changing
it to double

float localvell[3]; //Estimated locoal velocity, NED, unit: m/s

}

9.2.Synthesis model implementation

The synthesis model is implemented using MATLAB automatic code generation DLL model,

which encapsulates the necessary interfaces for CopterSim to load and call.

9.2.1 Implementation of rotorcraft synthesis model

9.2.1.1 Protocol analysis

Protocol parsing is the parsing of network packets received by CopterSim into the
instructions of Section 3.2. inSILInts is an 8-dimensional input that currently only uses the zeroth
number instruction and the first number Offboard mode. Subsequent 6th and 7th numbers will be
used as integer representations of latitude and longitude in the Global coordinate system. In the

figure below, the inSILInts vector is broken down into eight individual numbers.

[VehicleCommandBitmap]

[OffboardBitmap]

4L Int{fj KL A

inSILInts

HHH“

Each bit of the insilints has a meaning, so we need to parse each bit further. The following

figure uses the Bitwise module to parse the bit.Bit 0 is not used yet. The first bit identifies whether



the simulation mode is used. When the bit is 1, it means that the simulation mode is used. When
the bit is 0, it means that the hardware is in the loop mode. The second bit indicates whether to

unlock, other bits also include the take-off, landing, and return functions, the specific meaning of
which is referred to Section 3.2.2.

Y

Bitwise
[VehicleCommandBitmap AND —M—DE
[NeicisCommanditmap] > AN et
Bitwise
» AND boolean lisSIL]
Sl e ]
Bitwise
B AND [Armed)
x4

Bitwise

0x100 . "
Bitwise

AND boolean [Land]
" | oxa00 ot -

Bitwise
— &
0x800

A

The following is a sign that indicates which offboard control information is available: The
protocol in Section 3.2.2 supports full PX4 offboard control, which supports the most urgent

requirements for the project at hand, including position, speed, yaw, and yaw Angle rate.

[Maving]

Bitwise
| [OffboardBitmap] AND beolean

0x1

Bitwise
AND »| bootean »" hasvel |
0x2  —
Bitwise
AND hasYaw
0x8

Bitwise
AND hasYawRate
0xi0

Further, parse the actual position, velocity values, etc. sent by the offboard as shown in the

A

A

figure below. In the top image, it is used to indicate whether the corresponding value exists or not,
while the bottom image shows the specific value. Currently only position, velocity, yaw, and yaw
Angle rate are used. In the parse of the figure below, the hasVel flag and the hasYawRate flag are
used. When these two flags are false, it means that there is no input for speed and yaw Angle rate,
at which point it will switch to remote control mode. In remote control mode, 1500 represents a

desired speed or desired yaw Angle rate of 0.
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9.2.1.2 Navigator

In order for the integrated model to be able to receive upper level commands, such as take-off,
landing, return and other functions, these upper level commands need to be converted into a series
of desired positions. This work is done by the Navigator module. The Navigator first needs to
receive these commands, and then it needs to rely on the current location information and the
desired location information set by the user to get the desired location. For example, the user can
set the altitude for take-off, return, and landing. In addition, the user only needs to send the take-
off command once by design, so the Navigator needs to determine whether the take-off is

complete by itself, so it needs to know both the desired position and the actual position.

rmm.
[EED .
HomePos] 3| HomePos
> -

Navigator

Below is the internal implementation of Navigator. At the top is the take-off module, which
has the lowest priority. That is, the priority relation of receiving takeoff, return and landing at the
same time is: takeoff < return < landing. When the user does not specify the height, its default
height is -10m under NED coordinates. Consider that by design, after a successful take-off

command is received, the Navigator will continue to generate the desired position until the
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specified altitude is taken off. So the Mode Trans module is designed. The function of the module
is to switch to the takeoff mode when the takeoff command is received, and it will switch to the
position mode when the aircraft reaches the specified altitude. In the process of takeoff, the
aircraft will not respond to the position set by the user.

On the return flight, the aircraft will return to the home point position from its current
position with the same altitude. The return altitude can also be set. When no altitude is specified,
the altitude at the previous moment is taken as the desired altitude, that is, altitude maintenance.
Because by default, when the height is not set, the height value is 0. Considering that the GPS
positioning accuracy is generally not more than 1m, 1m is used as the criterion for whether the
height is set. The home point is the initial position recorded during the first run to the location
acquisition when the model is running.

Landing is the highest priority command, and you can also specify the height when you land.
This is taking into account that landing does not necessarily land at the home point position. Other
external modules can detect the current distance from the ground to determine the landing altitude,

S0 a setting altitude interface is reserved for landing.

S

B
maEsy

Lplargt neight < >0
TranMode
ode Trans

TakeOff

Naving
(D e —
Return 4
TranMode . Oi
L < [nE’ Mode Trans2
(@D, home ]
HomePos L
—><horfe 7]
| =
= h=m M
== > ahy
Tzd]
o
T NavPos
@
Land
e E N
TranMode
@ b
Pos Mode Trans1

NavigatoriEpsLin

The output of the Navigator is NavPos, which refers to the desired position information.
Naving means that the Navigator is in the process of executing an instruction, and when Naving is

True, it sets hasPos to true.

9.2.1.3 Controllers

The rotorcraft integrated model is a four-stage PID controller, including a position loop, a
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velocity loop, an attitude loop and an angular velocity loop. Currently, the controller supports the

control of position, velocity, yaw Angle and yaw Angle rate. When no position control is

performed, the hasPos flag is false and the output of the position controller is 0, which can be

observed in the figure below. When no speed signal or yaw angular velocity signal is received, the

remote control mode will be entered. At present, only the remote control interface is reserved, the

value of the remote control is set to 1500, and the remote control is not really enabled.

[TargelAlRate] il ch4

[TrueEuler] double

[NavPos] >

ont

dou

chz
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o
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double v

double v

rargetEuler]

L >

yaw_d
J

Control System1

hasYawRate

¥

X

z

vy

yawrate

wd 4

| hasVel

yawrate_d ]

InputCond

itioning

9.2.1.4 Models

L
hasPos )

N

PWM oulputs

Shown below is the model of the quadrotor. The model can receive input from the internal

controller as well as input from the external controller. These two modes are controlled through

inSIL, and when this flag is true, it indicates the simulation mode and the PWM wave pulse width

is obtained from the internal controller. When the flag is false, the PWM wave will be obtained
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from the outside.

Main modules included in the model: motor model, 6DOF dynamics model, 6DOF
kinematics model, environment model, collision model, sensor model. For the internal control,
because no filter is designed, the true value is used directly. However, the sensor data output to

CopterSim is noisy, and the influence of the environment model will be reflected in the sensor.

e

9.2.2 Implementation of fixed-wing integrated model

9.2.2.1 Protocol analysis

Fixed wings and rotors follow mutually compatible protocols, but the fixed wing mode is
different from the rotor because the fixed wing cannot hover like the quadrotor. Shown below is a
breakdown of the protocol within the fixed-wing integrated model. Position, Height, Hor are
added, and the behavior of take-off, return, and landing is also different from that of rotorcraft.

Take off, control altitude and speed. Take off at a fixed pitch Angle when the fixed wing
receives the command to take off, default 15< The user can set the take-off height, and when the
take-off height is reached, the model will make a judgment internally and exit the take-off mode.
When the take-off is successful, if no further operation instructions are received, it will continue to
fly forward and no adjustments of throttle, pitch and roll will be made.

Position, while controlling horizontal position and altitude. The user can specify the position
control mode directly through the inSILInts, and the system can also automatically trigger the
position mode when returning or landing. In the position mode, if the corresponding position is set,
fly to the corresponding position first. After reaching the designated position, if the next position
is not specified, it will automatically hover. In the return mode, essentially the horizontal Position
is back to the starting point and supports the specified return height, so this function can be
implemented using the Position mode. On landing, the altitude of the aircraft is first adjusted, as

shown in the AdjustHeight diagram. The adjustment of the altitude of the aircraft is completed by
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circling, and the horizontal position will also change during circling, so the position mode is also
used for control.

Height mode controls the altitude and airspeed, but does not control the horizontal position,
that is, the aircraft will only fly forward. Height mode is used during take-off and at the end of the
landing phase (when the aircraft has reached its altitude).

Hor mode is to control the horizontal position alone. This mode is supported by current

models, but is generally less used.

Bitwise
[VehicleCommandBitmap] M AND
0x1
Bitwise
» AND fiESIL)
Ox2

Bitwise
Oxd

Bitwise
Q100

InReturm 23—

Bitwise

B AND —FIE » OR [Paosition]
Q200

AdjustHeight _Z—

Bitwise
B AND [Land]
OO0

Bitwise
»  AND [Return]
OeB00

InTakeoff >—m

Bitwise OR @
0x2000
[raars >

Bitwise
» AND [Hor]
04000

Unlike rotorcraft, fixed wings do not have free control of speed in all directions. It is possible
to set the speed in the horizontal direction. In the full protocol, the desired speed has 3
components and only use the first component as the rate in the horizontal direction in the fixed

wing.
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9.2.2.2 Navigator

The implementation of the fixed-wing Navigator is similar to that of the rotorcraft, but with
the addition of the InTakeoff, InReturn, InLand, AdjustHeight flags. Because the fixed wing has
different operations during take-off, return, and landing, these signs are used to make a distinction.
During take-off, the output of TECS controller pitch is masked and set directly to a fixed Angle of
15< While during the return flight, the complete position control needs to be triggered
automatically. For landing, there are two phases: an altitude adjustment phase, marked by
AdjustHeight, which triggers full position control; The other is the landing phase, which only
controls the altitude. Because the ground friction is not modeled, the speed of the landing is not
controlled for the time being.

In addition, after the return mode is executed, only the landing mode can be executed. In the

following mode switch, you will exit from the return mode only if you receive the landing

command.
S L_T ]
-
s < frame 1]
N
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9.2.2.3 Controller

The position controller for a fixed wing is very different from the position controller for a
rotorcraft because the fixed wing needs to maintain a certain speed once it takes off.

In the following figure, the L1 controller is used to control the horizontal position. The
internal implementation of the controller will not be explained here, only focusing on the input
and output of the controller. The L1 controller needs to calculate the desired roll Angle based on
the current desired horizontal position, the last desired horizontal position, the current horizontal
position, and the current horizontal speed jointly. It can be seen that the L1 controller has many
inputs, but only one roll Angle as its output. The L1 controller does not operate for the entire flight,

so using switch simplifies the internal implementation of the L1 controller.

@
:
@
:
4 .
@
;
G
RV Sgivi==zal
pd
] b
-
TECSIS BRIz = HI28

The TECS controller is used for altitude and speed control. For the fixed wing, only the
airspeed is controlled, and the speed in all directions cannot be arbitrarily controlled. TECS
provides a solution by reflecting the problem in terms of energy rather than the initial set point.
The total energy of a vehicle is the sum of the kinetic and potential energy of the vehicle. Thrust
(controlled through the throttle) can add to the total energy of the aircraft. A given total energy
state can be achieved by any combination of potential and kinetic energy. In other words, the total
energy of the vehicle flying at a low airspeed at a high altitude is equivalent to flying at a high
airspeed at a low altitude. We call this situation the specific energy balance, which is calculated
based on the current altitude and the true airspeed set point. The specific energy balance of the

vehicle can be controlled by controlling the pitch Angle. An increase in the pitch Angle converts
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kinetic energy to potential energy, and a decrease in the pitch Angle does the opposite. In this way,
the control problem is decoupled by converting the initial airspeed and altitude set points into
energy values (airspeed and altitude are coupled, but energy values can be controlled
independently). We use the throttle to adjust the specific total energy of the vehicle, and the pitch
Angle to maintain a specific balance between potential energy (altitude) and kinetic energy (true
airspeed).

The TECS controller inputs the desired rate and altitude values, feeds in the current height

and rate values, and finally outputs the desired pitch Angle and throttle values.
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