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1、 General introduction to motion modeling interfaces 

1.1 Design idea of motion model for unmanned system on RflySim pl

atform 

1.1.1 Extracting similar components from different systems 

控制系统传感器 执行器

机体 环境

固定翼 多旋翼 复合飞行器

船 车 直升机

操作系统

驱动接口

底层：控制算法

顶层：人工智能AI

中间层：

安全保护逻辑IMU 气压计

视觉
GPS

 

控制

信号

传感器

数据

力和力矩

运动和动态 偏转或喷射

螺旋桨

电池

轮胎

地面

水

空气

风

障碍物

电
机

舵机

 

 

 

Figure 1.1 Common system architecture of different types of unmanned vehicle systems11 

Different types of unmanned systems (such as unmanned vehicles, unmanned aerial vehicles, 

unmanned ships, etc.) have different shapes and operating environments, but they have many com

mon characteristics from the system structure diagram that can be reused in a large number of mod

eling and simulation systems. Therefore, the model framework here adopts a modular approach to 

divide the entire unmanned model system into several subsystems, so as to maximize these comm

on factors and simplify the complex modeling problem. At the same time, this approach also helps

 to share the same model between different types of unmanned systems, and can be automatically i

mplemented in model-based design software (such as MATLAB/Simulink). The corresponding en

vironment configuration is shown in 2. 
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1.1.2 From component model to complete machine model 
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FIG. 1.2 Unified framework of motion model12 

Unmanned system vehicle motion model can be decomposed into errors through physical and

 virtual components 错误!未找到引用源。Unified modeling framework shown. In this framewor

k, the whole motion model system can be divided into three subsystems: the body subsystem, the s

ensor subsystem and the three-dimensional environment subsystem. 

⚫ The body subsystem includes actuator, body, operating environment, force and torque, 

which is the overall description of the body's motion, energy consumption and fault char

acteristics in the environment. 

⚫ The sensor model is mainly used to describe all the electronic hardware models except t

he control software, which mainly includes sensor data, communication protocol, conne

ction interface and other characteristics. 

⚫ The 3D environment model is mainly used to describe the 3D visual environment of UA

V flight (including trees, obstacles, roads, etc.), which is used to provide visual data sim

ulation for the autonomous control system. 

Each subsystem can be subdivided into smaller independent subsystem modules, and finally f

orm a modular unified modeling framework as shown in the figure above. 

1.1.3 General Modeling interface 

See 3, Basic operation process 

See 5, DLL/SO model and Communication interface for general input and output interface 

1.2 Overall classification of RflySim platform motion models 

1.2.1 Dynamic model 

Without the controller, only according to the dynamic characteristics of the unmanned system
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 modeling, see 6, Simulink modeling template introduction 

1.2.2 Synthesis model 

The controller is implemented based on the original dynamic model, see 9. Synthesis Model 

2. Environment configuration 

2.1 Visual Studio Installation 

RflySim model development requires Visual Studio compiler, such as the use of MATLAB S-

Function Builder module, Simulink automatic generation of C/C++ model code, etc. It is 

recommended to install Visual Studio 2017 here. The online installation steps (Internet connection 

required) are as follows: 

Step 1: Double-click to run "RflySimAPIs3.0\4.RflySimModel\ 1.Basicexps \VS2017Installe

r\vs_community2017.exe"; 

 

Step 2: Select "Desktop Development using C++", click "Install" in the bottom right corner, 

and wait for the installation to complete. 

 

Note: 1. Higher version of MATLAB can also install VS2019, but MATLAB can only 

recognize Visual Studio lower than its own version, so MATLAB2017b cannot recognize VS2019. 

2, please do not change the default VS installation directory (such as installing to the D disk), 
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it will cause MATLAB can not recognize. 

2.2 MATLAB compilation environment configuration 

In the MATLAB command line window, enter the command "mex-setup", in general, the VS 

2017 compiler will be automatically recognized and installed, as shown in the right picture, "MEX 

configuration uses' Microsoft Visual C++ 2017 'for compilation" shows that the installation is 

correct. 

 

2.3 Simulink code generation setup 

Before using the RflySim platform to simulate the hardware/software in the loop of the 

vehicle model, it is necessary to compile the Simulink source program of the model and generate 

the DLL file. 

The steps of Simulink model compilation setup are as follows: 

Step 1: Open the Simulink "Settings" page and set the simulation as a Fixed-step long, 

fourth-order Runge-Kutta solver with a step size of 0.001s (or other Settings can be set according 

to requirements). 
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Step 2: Choose ert.tlc code generation method, which can be used in windows, Linux and 

various embedded platforms; Choose C++ language, easy to call through inheritance code 

generation; The compilation process selects "code and tools packaging", and the Zip file name is 

set to "MulticopterModel". 

 

Step 3: Because it contains continuous modules (integral modules), it is necessary to check 

continuous time, otherwise the compilation will give an error. In addition, the Parametervisibility 

is set to public, and the parameter structure is a common variable for easy access. 
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Step 4: In the Codeplacement page, set the file packing type to compact to avoid generating 

extra files and make the code the most readable. 

 

Step 5: Set the parameters to be Tunable so that we can modify the parameters at runtime. 

Note: inline form is more memory saving, but it is not easy to access parameters, it is not easy to 

realize real-time parameter modification or model fault injection. 
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After completing the vehicle Simulink model compilation setting, click the Simulink 

compilation button to generate C/C++ code, as follows: For MATLAB 2019a and previous 

versions, the toolbar style is shown below, directly click its compilation button "Build". 

 

For 2019b and later versions, click Aps-Code GENERATION -- Embedded Coder to pop up 

the CODE GENERATION toolbar. In the toolbar, click "C++CODE" - "Generate Code" - "Build" 

button as shown below to compile and generate code. 

 

2.4 Environment Configuration for Linux version 

3. Basic operation process 

3.1 Vehicle Simulink model development 

The RflySim vehicle model is developed based on MATLAB/Simulink, and the modular 

modeling idea is adopted. The dynamic motion model of unmanned vehicle is divided into motor 

module, force and torque module, link module, 6-DOF module and sensor module. 

RflySim supports the software and hardware in the loop simulation of any PX4 controllable 

model. All supported models can be viewed from the Airframe page of QGroundControl, as shown 

in the following figure. 
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At present, RflySim includes rotor, fixed wing, unmanned vehicle, unmanned ship, standard 

vertical take-off and landing UAV, quadrotor tail type vertical UAV and helicopter. Other models 

need to be built by users in Simulink according to the RflySim model template. 

The RflySim model template is shown in 

RflySimAPIs3.0\4.RflySimModel\0.SourceCode\DLLModelTemp. The criteria for evaluating the 

completion of model development are: the model logic is correct; No errors were reported when 

the model was run. 

3.2 The model is compiled to produce C/C++ files 

After the vehicle Simulink model is developed, open the model source file through MALTAB 

(for example, MulticopterNoCtrl.slx for quadrotor). 
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In the upper menu bar of Simulink, click compile command (MATLAB 2017b~2019b 

version can be directly click compile in the menu bar, 2022a and above version operation process 

is: APP-Embedded Coder-compile). 

 

 

Click the View diagnostics command at the bottom of Simulink, and a diagnostic dialog box 

will pop up to view the compilation process. In the diagnostic box, "Build process completed 

successfully" will pop up, which means that the compilation is successful. 
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After the Simulink model has been compiled, the ***_ert_rtw folder and the 

MulticopterModel.zip compression package will be generated, indicating that the model has been 

compiled successfully. 

 

3.3 DLL/SO model generation 

The DLL(under windows)/SO (under Linux) model needs to be imported into CopterSim to 

form the motion simulation model when the vehicle software and hardware are simulated in the 

loop using RflySim platform. Therefore, the C++ files corresponding to the model need to be 

packaged into the DLL/SO model after the model compilation is completed. 

Under Windows system: 

Once you have the ***_ert_rtw folder and the MulticopterModel.zip archive, run 

GenerateModelDLLFile.p to get the DLL model. 
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As shown below, the DLL model is successfully generated. 

 

On Linux: 

 

3.4 Introduction of PX4 mixed control rules 

Users in the use of RflySim software and hardware in the loop simulation platform for 

vehicle, need to confirm the rack type, PX4 website frame definition to view frame reference | 

PX4 autopilot user guide. 

The flying wing model, for example, how to confirm the official flyer frame type and mixed 

control file: 

https://docs.px4.io/main/zh/airframes/airframe_reference.html
https://docs.px4.io/main/zh/airframes/airframe_reference.html
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Step 1: 

In the frame of reference | PX4 autopilot find Flying Wing in the user guide, can be seen in 

the following figure, rack, called Generic Flying Wing, SYS_AUTOSTART = 3000. 

 

Step 2: 

Open the path "PX4PSP\Firmware\ROMFS\px4fmu_common\init.d\airframes" to find the 

corresponding rack file. 

 

Step 3: 

https://docs.px4.io/main/zh/airframes/airframe_reference.html


 

13 

Open the rack file 3000_generic_wing with Vs Code, you can see that the mix control 

file is set in the file. 
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Step 4: 

Open the mix file fw_generic_wing.main.mix with Vs Code with the following content: 
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At this point, we have understood the PX4 wing rack file and mixing control file, the 

following introduces the PX4 mixing control rules. 

PX4 mixed control rules: 

Note: detailed definition see mixed controller and actuator | PX4 autopilot user guide 

PX4 architecture to ensure the core controller does not need to do special processing for 

fuselage layout. Hybrid control refers to the distribution of input commands (e.g., remote control 

to turn right) to the motor and actuator commands (e.g., steering or servo PWM) of the servo. In 

https://docs.px4.io/v1.12/zh/concept/mixing.html
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the case of fixed wing aileron control, each aileron is controlled by a servo, then the meaning of 

mixed control is to control one aileron to lift and the other aileron to fall. Similarly, for a 

multirotor, the pitch operation requires changing the speed of all the motors. Separating the 

mixing logic from the actual attitude controller can greatly improve reusability. 

The specific controller sends a specific normalized force or torque command (scaled to -1.. 

+1) to the mixer, which sets each individual actuator accordingly. Control output drivers (e.g. 

UART, UAVCAN, or PWM) put the output of the mixer in the native units when the actuator is 

actually running, e.g., output a PWM instruction with a value of 1300. 

 

There are four main Control groups at the output of the PX4 control channel, which are: 

➢ actuator_controls_0: The main control channel of flight control, used to output the control 

quantity of pitch, roll, yaw, throttle and other channels. It is defined as follows: 

Control Group #0 (Flight Control) 

•  0: roll (-1.. 1) 

•  1: pitch (-1.. 1) 

•  2: yaw (-1.. 1) 

•  3: throttle (0.. 1 normal range, -1.. 1 for variable pitch / thrust reversers) 

•  4: flaps (-1.. 1) 

•  5: spoilers (-1.. 1) 

•  6: airbrakes (-1.. 1) 

•  7: landing gear (-1.. 1) 

➢ actuator_controls_1: Alternate control channel, used in VTOL to output control output of 

fixed wing mode. It is defined as follows: 

Control Group #1 (Flight Control VTOL/Alternate) 

•  0: roll ALT (-1.. 1) 

•  1: pitch ALT (-1.. 1) 

•  2: yaw ALT (-1.. 1) 

•  3: throttle ALT (0.. 1 normal range, -1.. 1 for variable pitch / thrust reversers) 

•  4: reserved / aux0 

•  5: reserved / aux1 

•  6: reserved / aux2 

•  7: reserved / aux3 

➢ actuator_controls_2: Pan/tilt control channel. It is defined as follows: 

Control Group #2 (Gimbal) 

•  0: gimbal roll 

•  1: gimbal pitch 

•  2: gimbal yaw 

•  3: gimbal shutter 

•  4: reserved 
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•  5: reserved 

•  6: reserved 

•  7: reserved (parachute, -1.. 1) 

➢ actuator_controls_3: Remote control mapping channel. It is defined as follows: 

Control Group #3 (Manual Passthrough) 

•  0: RC roll 

•  1: RC pitch 

•  2: RC yaw 

•  3: RC throttle 

•  4: RC mode switch 

•  5: RC aux1 

•  6: RC aux2 

•  7: RC aux3 

 PX4 mixer file syntax 

A Mixer file is a text file that defines one or more Mixer definitions: a mapping between one 

or more inputs and one or more outputs. There are four main types of definitions: multirotor mixer, 

helicopter mixer, Large mixer, and null mixer. 

➢ multirotor mixer: Defines a type + or x rotor vehicle with output 4, 6, or 8. 

➢ helicopter mixer: Defines the output of the helicopter swash plate server and the main motor 

ESCs (the tail rotor is a separate mixer). 

➢ Macromixer: Combines zero or more control inputs into a single actuator output. The inputs 

are scaled and the mixing function sums the results before applying the output scaler. 

➢ Macromixer: Produces an actuator output with zero output (when not in fail-safe mode). 

The amount of output produced by each mixer depends on the type and configuration of the 

mixer. For example: the multirotor mixer can have 4, 6, or 8 outputs depending on its model, 

while the Macromixer or Macromixer produces only one output. Multiple mixers can be specified 

in each file. The output order (which assigns mixers to actuators) is specific to the device that 

reads the mixer definition, and for PWM, the output order matches the declared order. 

The statement defined at the beginning of each mixer file is: 

<tag>: <mixer arguments> 

Where tag indicates the selected mixer type, as follows: 

R: Multirotor mixer 

H: Helicopter mixer 

M: Summing mixer 

Z: Null mixer 

Macromixer - Additive Mixer 

The Large Mixer is used to control UAV actuators and servos. It combines zero or more 

control inputs into a single actuator output. The inputs are scaled and the blending function sums 

the results before applying the output scaler. The minimum actuator traversal time limit can also 

be specified in the output scalar (inverse of the slew rate). A simple mixer definition is as follows: 

M: <control count> 

O: <-ve scale> <+ve scale> <offset> <lower limit> <upper limit> <traversal time> 
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If <control count> is zero, the sum is effectively zero and the mixer will output a fixed value, 

which is constrained by <lower limit> and <upper limit>. 

The second line defines the output scalars with the scalar parameters described above. While 

the computation is performed as a floating-point operation, the values stored in the definition file 

are scaled by a factor of 10,000; That is, an offset of -0.5 is encoded as -5000. The <traversal 

time>(optional) on the output scale is used for actuators that may damage the aircraft if it is too 

large - for example, the tilt actuator on a tilt-rotor VTOL aircraft. Can be used to limit the rate of 

change of the actuator (if not specified, no rate limit is applied). For example: a <traversal time> 

value of 20000 will limit the change rate of the actuator such that it takes at least 2 seconds from 

<lower limit> and <upper limit>, and vice versa. 

Note 1: <traversal time> should only be used when the hardware requires it! 

Note 2: Do not place any restrictions on actuators that control the attitude of the vehicle (such 

as servos for pneumatic surfaces), as this can easily lead to controller instability. 

Go ahead and define the inputs to <control count> and their scaling in the form: 

S: <group> <index> <-ve scale> <+ve scale> <offset> <lower limit> <upper limit> 

Note 3: S: must be below O:. 

Note 4: Any mixer output with throttle input (<group>=0 and <index>=3 in S:) will not work 

in the unlocked or pre-unlocked state. For example: a server with four inputs (roll, pitch, yaw, and 

throttle) will not move in the unlocked state even with roll/pitch/yaw signals. 

The <group> value identifies the control group to be read by the scaler, and the <index> value 

indicates the offset in that group. These values are specific to the device defined by the reading 

mixer. When used for hybrid vehicle control, mixer group 0 is the vehicle attitude control group, 

while 0 to 3 are usually roll, pitch, yaw, and thrust, respectively. The remaining fields are 

configured to control the scaler using the parameters discussed above. When the calculation is 

performed as a floating-point operation, the values stored in the definition file are scaled by a 

factor of 10,000; That is, an offset of -0.5 is encoded as -5000. An example of a typical mixer file 

is explained below. Example analysis in detail, please see: 

https://docs.px4.io/v1.13/en/dev_airframes/adding_a_new_frame.html#mixer-file. 

Null Mixer - Null mixer 

This mixer does not consume any control channels and produces a single actuator output 

whose value is always zero. Typically, Null Mixer is used as a placeholder in a collection of 

mixers to implement a particular pattern of actuator output. It can also be used to control the value 

of the output used for fail-safe devices (output is 0 in normal use; During fail-safe, the mixers are 

ignored and fail-safe values are used instead). The definition is as follows: 

Z: 

Multirotor Mixer - Multirotor mixer 

https://docs.px4.io/v1.13/en/dev_airframes/adding_a_new_frame.html#mixer-file
https://docs.px4.io/v1.13/en/dev_airframes/adding_a_new_frame.html#mixer-file
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The Multirotor Mixer combines four control inputs (roll, pitch, yaw, thrust) into a single set 

of actuator outputs that are used to drive the motor speed controller. It is defined as follows: 

R: <geometry> <roll scale> <pitch scale> <yaw scale> <idlespeed> 

The supported models are: 

➢ 4x - Quadrotor x configuration 

➢ 4+ - Quadrotor + type configuration 

➢ 6x - Six rotor x configuration 

➢ 6+ - Six rotor + type configuration 

➢ 8x - ocrotor Type x configuration 

➢ 8+ - octortor + type configuration 

Roll, pitch, and yaw ratio values determine the ratio of roll, pitch, and yaw control relative to 

thrust control. When the calculation is performed as a floating-point operation, the values stored in 

the definition file are scaled by a factor of 10,000; For example: 0.5 is encoded as 5000. Roll, 

pitch, and yaw inputs range from -1.0 to 1.0, while thrust inputs range from 0.0 to 1.0. The output 

of each actuator ranges from -1.0 to 1.0. 

The idling speed ranges from 0.0 to 1.0. Idling speed is relative to the maximum speed of the 

motor, which is the speed at which the motor is commanded to rotate when all control inputs are 

zero. In the case of actuator saturation, the values of all actuators are readjusted so that the 

saturated actuator limit is 1.0. 

Helicopter Mixer - A helicopter mixer 

The Helicopter Mixer combines three control inputs (roll, pitch, thrust) into four outputs 

(rotary swash plate and main motor ESC setting). The first output of the helicopter mixer is the 

throttle setting of the main motor. The subsequent output is the servo that rotates the swash plate. 

The tail rotor can be controlled by adding a simple mixer. Thrust control inputs are used for the 

main motor Settings as well as the collective pitch of the swash plate. It uses a throttle curve and a 

pitch curve, both made up of five points. 

Note: The throttle and pitch curves map the "thrust" rod input position to the throttle value 

and the pitch value (respectively). This allows flight characteristics to be adjusted for different 

types of flight. 

The Helicopter Mixer is defined as follows: 

H: <number of swash-plate servos, either 3 or 4> 

T: <throttle setting at thrust: 0%> <25%> <50%> <75%> <100%> 

P: <collective pitch at thrust: 0%> <25%> <50%> <75%> <100%> 

T: The point that defines the throttle curve. P: The point that defines the pitch curve. Both 

curves contain five points between 0 and 10,000. For a simple linear change, the five values of the 

curve would be 0, 2500, 5000, 7500, 10,000. 

Each swash server (3 or 4) is defined as follows: 
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S: <angle> <arm length> <scale> <offset> <lower limit> <upper limit> 

<angle> is in degrees, 0 degrees is the direction of the nose. Positive angles are clockwise. <arm 

length> is the normalized length, that is, 10,000 equals 1. If all the servo arms are the same length, 

the value should all be 10,000. A larger arm length will reduce the amount of servo deflection, 

while a shorter arm length will increase it. The servo output is scaled by <scale> / 10000. After 

scaling, <offset> is applied and its value should be between -10000 and +10000. In the full servo 

range, <lower limit> and <upper limit> should be -10000 and +10000. 

The tail rotor can be controlled by adding a large Mixer: 

M: 1 

S: 0 2  10000  10000      0 -10000  10000 

By mapping the tail rotor directly to the yaw command. This applies to the two servo-

controlled tail rotor, as well as the tail rotor with dedicated motors. 

The 130-blade helicopter mixer file looks like this: 

H: 3 

T:      0   3000   6000   8000  10000 

P:    500   1500   2500   3500   4500 

# Swash plate servos: 

S:      0  10000  10000      0  -8000   8000 

S:    140  13054  10000      0  -8000   8000 

S:    220  13054  10000      0  -8000   8000 

 

# Tail servo: 

M: 1 

S: 0 2  10000  10000      0 -10000  10000 

• At 50% thrust, the slope of the throttle curve is slightly steeper, reaching 6000(0.6). 

• At 100% thrust, reach 10,000 (1.0) with a smaller slope. 

• The pitch curve is linear, but its entire range will not be used. 

• At 0% throttle, the total distance to the joystick setting is already at 500(0.05). 

• At maximum throttle, the total distance to the joystick is only 4500(0.45). 

• Using higher values for this type of helicopter will stall the blades. 

• The rotary swash plate system for this helicopter is located at 0, 140, and 220 degrees 

angles. 

• The servo arms are not equal in length. 

• Compared to the first servo, the second and third servos have an arm length of 1.3054. 

• The servos are limited to -8000 and 8000 because they are mechanical constraints. 

VTOL Mixer - VTOL Drone Mixer 

The VTOL system uses a multi-rotor mixer as the output in multi-rotor mode and a sum 

mixer as the output in fixed-wing mode. Mixer systems for VTOL Uavs can either be combined 

into a single mixer, where all actuators are connected to IO or FMU ports, or split into separate 

mixer files for IO and AUX. 
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3.5 Modification of bat script related parameters 

3.5.1 Hardware-in-the-loop simulation script 

The conventional hardware-in-the-loop simulation script supports the input of serial port 

sequence (separated by comma ",") to start the hardware-in-the-loop simulation of multiple 

computers 

Note: The line at the beginning of REM is a comment statement and will not be executed. 

Other bat script syntax rules can be searched and learned by yourself. 

Note: The position of the aircraft in this script is automatically generated by the 

script according to the rectangular queue. The control variables include: 

SET /a START_INDEX=1 (initial aircraft serial number, CopterID of the aircraft generated 

by this script, START_INDEX as the initial value, in turn incremented by 1) 

SET /a TOTOAL_COPTER=8 (Total number of aircraft, amplitude is only needed in the multi-

aircraft online simulation, tell this script the actual total number of aircraft, to determine 

the side length of the rectangular queue) 

SET UE4_MAP=Grasslands (set map name) 

SET /a ORIGIN_POS_X=0 (origin X position of rectangular formation in meters, integer 

input only) 

SET /a ORIGIN_POS_Y=0 (origin Y position of rectangular formation, in meters, integer 

input only) 

SET /a ORIGIN_YAW=0 (yaw Angle of origin of rectangular formation, unit degree, integer 

input only) 

SET /a VEHICLE_INTERVAL=2 (Aircraft interval in rectangular formation, in meters, integer 

input only) 

SET /a UDP_START_PORT=20100 (UDP communication interface for receiving external control 

data, 2 is automatically added to CopterID, this usually does not need to be modified, only if 

the computer port is occupied) 

set DLLModel=0 (Used to set the name of the DLL model to be imported into CopterSim for 

hardware-in-loop simulation. It is determined by the filename of the DLL model generated by 

the Simulink model compiled through GenerateModelDLLFile.p. When set to 0, Quadrotor DLL model 

is used by default) 

set SimMode=0 (Simulation mode, here set to 0 or PX4_HITL for hardware-in-the-loop 

simulation) 

SET IS_BROADCAST=0 (online emulation or not, the destination IP address sequence can be 

entered here) 

SET UDPSIMMODE=0 (UDP_START_PORT port received data protocol, UDP mode transmission is 

the platform private structure, support Simulink control; MAVLink mode transmits MAVLink 

protocol and supports Python and mavros control modes) 

3.5.2 Software-in-the-loop simulation script 

Conventional software-in-the-loop script supports input of the number of aircraft and 

automatically starts multi-aircraft software-in-the-loop simulation 

Compared with HITLRun.bat, the key code is as follows 

set SimMode=2 (here set to software in loop mode, corresponding to the value of 

CopterSimUI) 

set PX4SitlFrame=iris (This is used to set the PX4 simulation rack type, set to the non-

digital part of the rack file, for example, iris for quadrotor, generic_wing for flying wing, 

hexa_x for hexrotor, standard_plane for fixed wing, See 3.4 Introduction of PX4 mixed control 

rules for confirmation method of frame type)3.4 Introduction of PX4 mixed control rules 

3.6 SITL simulation 

The RflySim software-in-the-loop simulation system is available through the software-in-the-

loop simulation script (e.g. After the script is run, the PX4 simulation environment, CopterSim, 
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QGroundControl and 3D engine (RflySim3D/RflySimUE5) will be started on the computer, and 

the communication port will be automatically configured. The RflySim platform (including 

CopterSim, QGroundControl and 3D engine) communicates with PX4 via MAVLink messages. 

During SITL simulation, these messages are processed by 

PX4PSP\Firmware\src\modules\simulator\ Simulator_mavlink-cpp. 

底层控制器 运动仿真模型

自驾仪软件在环仿真

PX4 SITL Win10WSL

QGroundControl
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ExtToUE4PX4
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inSILFloats

外部接口(控制&故障)

四面射线碰撞信息

mavlink_hil_actuator_controls

CopterSim
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Simulink

模型开发

代码生成

DLL/SO模型

inPWMs
TerrainZ

inCopterData
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inSILFloats
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MavHILSensor
 MavHILGPS
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ExtToUE4PX4
outCopterData
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电机控制指令

传感器&GPS数据
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MavVehile3DInfo
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飞机位姿仿真数据

UDP 30101++2

飞控状态数据

外部控制指令
UDP 20100++2

UDP 20101++2 UDP结构体或

Mavlink数据流
 

本地
日志

飞控自定义消息

UDP 40101++2

PX4ExtMsg
(rfly_px4)

Mavlink数据流

UDP 14550UDP 18570

***_ert_rtw文件夹（C++）

飞控状态数据

外部控制指令

地面控制站

GenerateModelDLLFile.p

自动编译

 

After running the specified SITLRun.bat script, a prompt box will pop up. You can create the 

corresponding number of unmanned vehicles in the 3D scene and complete the initialization by 

inputting the number at the cursor. A single computer supports multi-computer simulation, and the 

number of unmanned vehicles that can be simulated at the same time is determined by computer 

performance and communication load. 

 

In the following, the four-rotor software in the ring startup script is explained. Enter 1 at the 

cursor of the prompt box and then enter. The system will launch QGroundControl, RflySim3D and 

CopterSim three software. When "GPS 3D fixed&EKF initialization finished" is indicated in the 

message prompt bar at the bottom left of CopterSim, it indicates that the software is changing the 

simulation initialization is completed and the simulation can be started. 
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3.7 HITL simulation 

Hardware-in-the-loop simulation (HITL or HIL) is a simulation mode that runs PX4 

firmware on real flight controller (i.e., flight control) hardware. During hardware-in-the-loop 

simulation, the flight controller is connected to the host through USB, and then the communication 

between the RflySim platform and the flight controller can be realized by means of serial port. 

底层控制器 运动仿真模型

自驾仪硬件在环仿真

Pixhawk/PX4

UE4/RflySim3D UE5/RflySimUE5
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mavlink_hil_actuator_controls

CopterSim

MATLAB/
Simulink

模型开发

代码生成

DLL/SO模型

inPWMs
TerrainZ

inCopterData
inSILInts

inSILFloats
inFloatsCollision

MavHILSensor
 MavHILGPS

MavVehile3DInfo
ExtToUE4PX4
outCopterData

串口通讯

UDP 30100++2

UDP 30100++2

飞控自定义rfly_px4消息

外部自定义rfly_ctrl消息

电机控制指令

传感器&GPS数据

mavlink_hil_sensor、mavlink_hil_gps

inPWMs

MavHILSensor
 MavHILGPS

ExtToUE4PX4

PX4ExtMsg
mavlink_actuator_control_target

mavlink_hil_actuator_controls

外部控制指令

飞控状态数据

MAVLink协议
串口通讯

→ inCopterData

→Mavlink数据流

MavVehile3DInfo
outCopterData

飞机位姿仿真数据

UDP 30101++2

飞控状态数据

外部控制指令
UDP 20100++2

UDP 20101++2 UDP结构体或

Mavlink数据流
 

本地
日志

飞控自定义消息

UDP 40101++2

PX4ExtMsg
(rfly_px4)

Mavlink数据流

UDP 14550

***_ert_rtw文件夹（C++）

飞控状态数据

外部控制指令

地面控制站

GenerateModelDLLFile.p

自动编译

 Taking the quadrotor model as an example, the general configuration steps of the flight 

control before the start of the loop simulation are introduced: 

Note: The routine path is *:\PX4PSP\RflySimAPIs\4.RflySimModel\2.AdvExps\e2_MultiMo
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delCtrl\2.MultiModelCtrl 

Step 1: Determine the type of flight control and firmware version used for simulation. The 

platform recommends the use of Pixhawk 6C flight control with firmware version 1.13.3. 

Step 2: Connect the flight control to the USB port of the computer through the USB-TYPEC 

cable. 

 

Step 3: Open the QGC ground station in the Rflytools folder. 

 

Set the rack model as "Generic Quadcopter" in the rack interface (the rack is determined by 

the simulation model and the corresponding official rack file), and click "Apply and Restart" on 
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the right after setting. 

 

Step 4: In the "Safety" interface, select "HITL enabled" to start the hardware-in-the-loop 

simulation and replug and unplug the flight control. 

 

Step 5: Click "Parameters", enter "UAVCAN_ENABLE" in the search bar, and set it to 

"Disabled" in the pop-up box. After saving, replug and unplug the flight control to complete the 

configuration before the hardwire-in-the-loop simulation. 
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3.8 Perform simulation test through QGC or remote control 

 

3.9 External interface communication debugging 

4, DLL file generation script -GenerateModelDLLFile.p 

 

5, DLL/SO model and communication interface 

5.1 General Introduction 

From the perspective of implementation mechanism, RflySim platform can be divided into 

five parts: motion simulation model, underlying controller, 3D engine, external control and ground 

control station. 

After model development is completed based on MATLAB/Simulink, C++ files are 

automatically generated by code and DLL models are generated through the platform 

GenerateModelDLLFile.p interface. DLL models are imported into CopterSim when RflySim 

platform is used for software/hardware in-loop simulation. The motion simulation model is 

formed. The motion simulation model has multiple input and output interfaces to exchange data 

with the underlying controller, 3D engine, ground control station and external control. See 错误!

未找到引用源。The reference source was not found. 
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Among them, when the software is in the loop simulation, the data exchange between the 

bottom controller and the motion simulation model is in the way of network communication, and 

when the hardware is in the loop simulation, the data exchange between the bottom controller and 

the motion simulation model is in the way of serial communication. 

底层控制器 运动仿真模型

自驾仪硬件在环仿真
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自驾仪软件在环仿真
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飞控自定义rfly_px4消息

外部自定义rfly_ctrl消息

电机控制指令
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FIG. 0.1 Illustration of data interaction between motion simulation model and other modules01 

5.2 Important Parameters 

The RflySim motion simulation model has the corresponding Init.m file, which defines the 

parameters needed for the motion simulation model, including the model formula coefficients 

(such as the propeller tension coefficient and torque coefficient in the multi-rotor), the noise 

coefficient, the sensor coefficient and the related variables that will affect the RflySim3D display, 

etc. The important parameters in the model are introduced in the following. 

5.2.1 ModelInit_PosE 

This parameter is the position initialization parameter in the world coordinate system of the 

motion simulation model, and the 3D data are [x,y,z], respectively. Through this parameter, 

RflySim can initialize the specified X and Y positions of the UAV displayed in the RflySim3D 

map before the simulation begins. 

ModelInit_PosE = 0, 0; 
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5.2.2 ModelInit_AngEuler 

This parameter is the attitude initialization parameter of the motion simulation model, 3D 

data, respectively, through this parameter, RflySim can initialize the display of the UAV in 

RflySim3D with a specified yaw Angle before the simulation begins.[𝜑, 𝜃, 𝜓] 

ModelInit_AngEuler = 0, 0; 

 

5.2.3 ModelInit_Inputs 

This parameter is the input initialization parameter of the motion simulation model actuator, 

which is a 16-dimensional data. For the aircraft with specific requirements, for example, the initial 

state of the throttle needs to be at the minimum value (-1), that is, this parameter is needed to 

modify the input initialization value of the actuator. 

ModelInit_Inputs = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; 
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5.2.4 ModelParam_uavtype 

This parameter determines the display model in RflySim3D to be called during simulation. 

For example, when ModelParam_uavType is 3, the display model in RflySim3D is quadrotor, and 

ModelParam_uavType is 100, The display model in RflySim3D is a conventional small fixed 

wing. 

ModelParam_uavType = int16(3); 

 

At the same time, in view of the propeller Model of the rotor, ModelParam_uavType can also 

used for computer rack and Moment distribution, specific see 6.2 Force and Moment Model Force 

and Moment module, 𝑺 - FM. 
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5.2.5 ModelParam_GPSLatLong 

This parameter is used to configure the longitude and latitude information of the aircraft, 

two-dimensional data, respectively [ModelParam_envLatitude, ModelParam_envLongitude], 

through which the aircraft display coordinates in QGC can be adjusted. 

ModelParam_envLongitude = 116.259368300000; 
ModelParam_envLatitude = 40.1540302; 
ModelParam_GPSLatLong = [ModelParam_envLatitude ModelParam_envLongitude]; 

 

5.2.6 ModelParam_envAlitude 

This parameter is used to configure the altitude information of the aircraft. The z-axis is 

positive downward, and the altitude display of the aircraft in QGC can be adjusted by this 

parameter. 

ModelParam_envAltitude = -50 
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5.3 Data Protocol 

5.3.1 Flight control simulation input interface 

5.3.1.1 inPWMs (Motor Control Input) 

The 16-dimensional actuator control input, which has been normalized to -1 to 1 scale, comes 

from controls on the motor control MAVLink message sent back by the flight control. During the 

loop simulation, the software and hardware can view the controls changes in real time through the 

MAVLink detection function in the Analyze Tools of QGroundControl. 

Figure 0.1 shows that when the software is in the loop simulation, the motor control 

command is sent from the PX4 SITL controller through the TCP 4561 series port to the inPWMs 

interface of the motion simulation model by the MAVLink protocol, while the hardware is in the 

loop simulation, FIG. 0.1 Illustration of data interaction between motion simulation model and 

other modules01The command is sent from the flight controller to the inPWMs interface of the 

motion simulation model through the serial port with the MAVLink protocol. 
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5.3.1.2 inCopterData (Flight Control State Input) 

inCopterData is a 32-dimensional double data. The first eight dimensions store the PX4 state, 

and the current 1-6 dimensions are as follows: 

⚫ inCopterData(1) : The unlock bit of PX4 

⚫ inCopterData(2) : The total number of RC channels received. This value should be 0 

when there are no RC channels available. 

⚫ inCopterData(3) : Simulation mode flag bit, 0: HITL, 1: SITL, 2: SimNoPX4. 

⚫ inCopterData(4) : 3D fixed flag in CoperSim. 

⚫ inCopterData(5) : VTOL_STATE flag bit from PX4. 

⚫ inCopterData(6) : LANDED_STATE bit from PX4. 

Dimensions 9-24 receive ch1-ch16 RC channel signals (remote control input), and 

dimensions 25-32 listen for rfly_px4 uORB messages. 

5.3.2 Flight control simulation output interface 

5.3.2.1 MavHILSensor 

This output signal is a collection of various sensor data sent by the model to the flight control, 

which corresponds to the mavlink_hil_sensor_t message of MAVLink. The output signal includes 

the acceleration value of the acceleration sensor, the angular velocity value of the gyroscope 

sensor, the magnetic field value of the magnetic compass sensor, and the pressure value of the air 

pressure and airspeed sensors. 

5.3.2.2 MavHILGPS (GPS interface) 

This output signal is the GPS data value sent by the model to the flight control, which 

corresponds to the mavlink_hil_gps_t structure of the MAVLink message. The output signal 

contains the data of longitude and latitude height, horizontal and vertical accuracy, ground speed, 

northeast ground speed, yaw Angle, positioning status, and the number of satellites. 

It should be noted that the values of these sensors are provided by the platform model in the 

simulation, and by the real sensor chip when the real aircraft is flying. Figure 1 shows that when 

the software is in the loop simulation, the sensor and GPS data are sent from the MavHILSensor 

and MavHILGPS interfaces of the motion simulation model and sent to the PX4 SITL controller 

in the form of MAVLink protocol through TCP 4561 series ports, while the hardware is in the loop 

simulation, These data are sent to the flight control through the serial port. 

5.3.3 Simulation data output interface 

5.3.3.1 MavVehile3Dinfo (Real Simulation Data Output) 

The output signal is the real simulation data sent by the model to RflySim3D, which is the 

ideal value of smoothness. These data can be used for software simulation test of flight control 
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and model under Simulink. Because the true value of the model is not available in the real test, 

only the state estimation of the PX4 autopilot (with delay, noise and interference) can be used, 

which leads to the poor effect of the Simulink controller to the PX4 in the loop simulation and the 

real test, so it needs to be adjusted. 

5.3.3.2 outCopterData (Custom log output) 

32-dimensional double, the contents of which can be customized to send data. The data sent 

to this interface, on the one hand, will be written to the local log log (in C:\PX4PSP\CopterSim 

new CopterSim*.csv, will start to record the data of the * aircraft, note that the * should be 

replaced with the aircraft ID here). On the other hand, this data will be transmitted to the 30101 

series port via UDP (supplement readme). 

5.3.3.4 ExtToUE4 (Custom display data output) 

The 16-dimensional double data is sent to RflySim3D via port 20100 series to be displayed 

as actuator control messages for dimensions 9-24 (supplementary readme). 

5.3.4 Automatic code generation of controller communication interfaces 

5.3.4.1 ExtToPX4 (Custom uORB Data Output) 

16-dimensional float data, uORB message rfly_ext sent to PX4 via serial port, used to 

transfer other sensor or necessary data to flight control (supplement readme). 

5.3.4.2 inCopterData (uORB Data input) 

32 dimensions, of which the last 8 receive PX4 messages, data from uORB msg 

rfly_px4.control[0:7]. 

5.3.5 Collision Data Receiving Interface - inFloatsCollision 

inFloatsCollision is used to implement a simple physics engine, which can realize the 

functions of bouncing back when hitting obstacles and crashing when hitting other planes 

according to the four distance data returned by RflySim3D (supplementary readme). 

5.3.6 External data incoming interface 

5.3.6.1 inSILInts (Integer Data Input) 

8 dimensional Int32 type input, obtained through UDP protocol, from 30100++2 series port 

number, software and hardware in the ring simulation, can input some quantities to the model 

through this port; At the same time, this interface is the key interface to realize the synthesis model. 

5.3.6.2 inSILFloats 

20 dimensional float input, obtained through UDP protocol, from 30100++2 series port 

number, software and hardware in the ring simulation, can input some quantities to the model 

through this port; At the same time, this interface is the key interface to realize the synthesis model. 
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5.3.6.3 inFromUE (RflySim3D Data Input) 

16-dimensional double data from 3D engine (Rflysim3D/RflySimUE5), which can be used to 

implement ground interaction, collision engine and other related functions that need to interact 

with 3D engine data. 

5.3.6.4 TerrainZ (Terrain height input) 

1D terrain height signal, since the earth fixed coordinate system (ground coordinate system) 

here is NED, the vertical ground downward is positive. The initial position height of the model 

can be determined. 

5.3.6.5 inCtrlExt (Floating Point Data Input) 

Includes inCtrlExt1-inCtrlExt5 series interface, requiring 28-dimensional data, data type is Si

ngle. It is obtained through UDP protocol and comes from 30100++2 series port number. When th

e software and hardware are in the ring simulation, they can input some quantities to the model thr

ough this port. 

 

5.3.7 Real-time parameter modification interface - FaultParamsAPI 

Real-time parameter modification by means of Matlab: 

0.ApiExps\10.FaultParamsDynMod\Readme.pdf 

Live parameter modification via Pythond: 0.ApiExps\19.initParamModAPI_py\readme.pdf 

Live parameter changes via csv: 0.ApiExps\18.initParamModAPI_csv\Readme.pdf 

5.4 Communication interfaces 

5.4.1 20100++2 series port 

The 20100++2 system port is the UDP receiving port of CopterSim, which mainly receives 

external control instructions. 

5.4.2 20101++2 series port 

Port 20101++2 is the UDP initiator of CopterSim. The data sent from port 20101++2 mainly 

include: 

0.ApiExps/10.FaultParamsDynMod/Readme.pdf
0.ApiExps/10.FaultParamsDynMod/Readme.pdf
0.ApiExps/19.initParamModAPI_py/readme.pdf
0.ApiExps/18.initParamModAPI_csv/Readme.pdf
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1） During simulation, the simulation data of the aircraft position and attitude sent to the 3D 

engine. 

2） For external control, the flight control status data is sent. 

5.4.3 30100++2 Series port 

The 30100++2 series port is the UDP receiving port of CopterSim, and the data it receives 

mainly includes: 

1) The four-sided ray collision information from the 3D engine is used to implement the 

collision function. 

2) Data from external control (Python/MATLab), including control or fault injection, etc. 

5.4.4 30101++2 series port 

Port 30101++2 series is the UDP receiving port of CopterSim, and the data sent by it mainly 

includes: 

1) Simulation data of aircraft position and attitude. 

2) Custom log data from the outCopterData interface of the motion simulation model. 

5.4.5 TCP port 

TCP port is the communication port between the PX4 controller and the motion simulation 

model when the software is in the loop simulation. During the simulation, the PX4 controller 

sends the motor control commands to the inPWMs interface of the motion simulation model 

through the TCP 4561 series port. And the model fed back the sensor and GPS data to the PX4 

controller through TCP 4561 series port to form a simulation closed loop. 

5.4.6 Flight control USB serial port 

When the hardware is in the loop simulation, the PX4 flight control and the motion 

simulation model communicate through the serial port. The data sent by the PX4 flight control 

mainly include: 

1) Motor control commands sent by MavLink message mavlink_hil_actuator_control. 

2) the flight control custom message rfly_px4 message issued through the MavLink message 

mavlink_actuator_control_target. 

3) Flight control status data. 

The data sent by the model mainly include: 

1） Sensor and GPS data sent through MavLink messages mavlink_hil_sensor and 

mavlink_hil_gps. 

2） Externally customize the rfly_ctrl message. 

3） External control instructions. 
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6. Introduction of Simulink modeling template 

The vehicle motion model of the unmanned system can be decomposed into the unified mode

ling framework shown in Figure 1.2 through physical and virtual components. FIG. 1.2 Unified fra

mework of motion model12In this framework, the motion model system can be divided into three 

subsystems: the body subsystem𝑺vehi, 𝑺3dthe 3D environment model subsystem𝑺sens and the senso

r model subsystem. These three subsystems need to be connected with the control system to form 

a complete closed loop, which can realize the simulation of all scenes in the real outdoor environm

ent. 𝑺ctrlThe input, output and signal connection relationship between them can be expressed in th

e simplified form of the subsystem as follows 

𝒚ctrl = 𝑺ctrl(𝒖ctrl), 𝒖ctrl = 𝒚sens
𝒚vehi = 𝑺vehi(𝒖vehi), 𝒖vehi = {𝒚ctrl, 𝒚3d}

𝒚3d = 𝑺3d(𝒖3d), 𝒖3d = 𝒚vehi
𝒚sens = 𝑺sens(𝒖sens), 𝒖sens = {𝒚vehi, 𝒚3d}

 

⚫ The body subsystem includes actuator, body, operating environment, force and torque, 

which is the overall description of the body's motion, energy consumption and fault 

characteristics in the environment.𝑺vehi𝑺act𝑺body𝑺env𝑺fm 
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The input and output can be described as follows 

𝒚body = 𝑺body(𝒖ctrl), 𝒖ctrl = 𝒚fm

𝒚fm = 𝑺fm(𝒖fm), 𝒖fm = {𝒚body, 𝒚act, 𝒚env}

𝒚env = 𝑺env(𝒖env), 𝒖env = {𝒚body, 𝒚3d}

𝒚act = 𝑺act(𝒖act), 𝒖act = {𝒚ctrl, 𝒚body, 𝒚env}

 

⚫ Sensor model is mainly used to describe all electronic hardware models except control 

software, mainly including sensor data, communication protocol, connection interface 

and other features; 

⚫ The 3D environment model is mainly used to describe the 3D visual environment of 

UAV flight (including trees, obstacles, roads, etc.), which is used to provide visual data 

simulation for the autonomous control system. 
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In the following, taking the multi-rotor model as an example, several functional modules of 

Simulink modeling template are introduced 

6.1 Motor Model𝑺act 

The actuator subsystem is mainly used to generate the output state of the actuator according 

to the control instructions sent by the control system. 𝑺act𝒚ctrl𝒚actIn real systems, most actuators 

usually have their own control unit for feedback control to ensure that the motion law of the 

actuator follows the pre-programmed characteristics. For example, the commonly used electric 

control products of UAV usually have a certain speed feedback function, which can ensure that the 

output speed and the output throttle meet the linear relationship; The engine system and steering 

system commonly used in unmanned vehicles are usually controlled by Electronic Control Unit 

(ECU), so that the output of the engine and the input of the throttle meet the specific programming 

relationship. Considering that the input-output relationship of the actuator follows the artificial 

preset programming law rather than the natural model law, it is very difficult to use the 

mathematical method to deduce its model. It usually needs to use the method of system 

identification. 

A complex actuator model can be decomposed into a steady-state process and a dynamic 

process under the rated operation state. 𝑓ss,𝑖(⋅)𝐺ss,𝑖(𝑠)The rated operation state here, for the multi-

rotor is the hovering flight state, for the vehicle, it is the state of driving forward at the rated speed, 

and for the fixed-wing vehicle, it is the state of cruising at the rated speed. 

1) Model of the multirotor power unit 

For a certain power unit (electric regulation + motor + propeller) in the multi-rotor power 

system, it can be simplified as a first-order (or second-order) inertial link superimposed on a linear 

steady state function, and the corresponding transfer function can be expressed as 

𝛿𝑖 = 𝐺ss,𝑖(𝑠) ⋅ 𝑓ss,𝑖(𝜎𝑖) =
1

𝑘1𝑠 + 1
(𝑘2𝜎𝑖 + 𝑘3) 

Where, is the Laplacian operator, represents the input control signal of the actuator, 

represents the output state value of the actuator, is the constant parameter to be identified, and the 

corresponding simulink module is as follows:𝑠𝜎𝑖𝛿𝑖𝑘1, 𝑘2, 𝑘3 
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2) Overall inputoutput 

A quadrotor motor usually consists of the motor body, rotor, stator and controller. The 

propeller on the rotor generates lift and thrust by turning the motor, while the controller is 

responsible for adjusting the speed and direction of the motor. So as to realize the stable hovering, 

forward, backward, and steering actions of the UAV. In this module, the input is the PWM value, 

and the motor speed is obtained after the nonlinear dynamic model of each motor. The output of 

the module is the motor speed (radian per second) of the input force and torque model respectively. 

For the motor speed (RPM) input to UE, since the input unit of the 3D model of the multi-rotor in 

UE is RPM, the unit conversion is done on the speed transmitted to UE. 

 

 

6.2 Force and Moment Model Force and moment module𝑺fm 

The force and moment subsystem is mainly used to calculate the resultant force and moment 

of the airframe subsystem by integrating the actuator state, the flight environment state and the 

body motion state. 𝑺fm𝒚act𝒚env𝒚body𝑺body𝒚fm ≜ { 𝑭 
𝑏 ,   𝑴 

𝑏 }In order to facilitate the use of 6-DOF 

airframe motion model, the resultant forces and torques usually need to be uniformly mapped 
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(coordinate transformed) into the airframe coordinate system. 

The modeling process of the resultant force is described in the following, and the modeling 

process of the resultant torque is similar. The source of the resultant force on the body can be 

expressed as the following superposition form: 

𝑭 
𝑏 = 𝑭 

𝑏
aero + 𝑭 

𝑏
grav + 𝑭 

𝑏
cont +∑ 𝑭 

𝑏
act,𝑖 

Where, represents the aerodynamic force vector, represents the gravity vector, represents the 

contact force vector (from the ground support force or the physical collision force of obstacles), 

represents the driving force vector generated by a certain actuator. 𝑭 
𝑏
aero ∈ ℝ3 𝑭 

𝑏
grav ∈ ℝ3 𝑭 

𝑏
cont ∈

ℝ3 𝑭 
𝑏
act,𝑖 ∈ ℝ3 

1) The force of gravity in the body coordinate system 𝑭 
𝒃

grav 

𝑭 
𝑏
grav = (𝑹𝑏

𝑒)−1 [
0
0

𝑚 ⋅ 𝑔
] 

Where, represents the gravity acceleration and represents the body mass, corresponding to the 

simulink module as follows𝑔𝑚 

 

2) Propeller driving force in the body coordinate system 𝑭 
𝒃

act,𝒊 

𝑭 
𝑏
act,𝑖 = 𝒇act,𝑖(𝜱fm, 𝒚env, 𝒚body, 𝛿𝑖) 

Where, represents the current real-time state of this actuator (e.g., propeller speed, steering 

gear deflection Angle, tire driving torque, etc.), which can be obtained from the actuator 

subsystem; 𝛿𝑖 ∈ 𝒚act𝑺actThe expression is directly related to the motion state of the body, the 

environment state, and the position and direction distribution of the actuator. The specific 

modeling method can be referred to the literature. 𝒇act,𝑖(⋅)𝒚env𝒚envFor example, the output force 

and torque of a single propeller as a function of the rotational speed of the propeller can be 

obtained by decomposing the force and torque into three-dimensional vectors in the body 

coordinate system according to the rotor installation information. 𝑇𝑀𝑇𝑀 𝑭 
𝑏
act,𝑖 The most 

important difference between different types of vehicle systems is that the position distribution 

and direction of the actuator force are not the same. Therefore, for different types of aircraft, it is 
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only necessary to establish different actuator force models through the above equation. In this way, 

the body subsystem proposed in this subsection can be used on any type of aircraft. 

 

3) Aerodynamic force in body coordinate system (simplified aerodynamic model of 

multi-rotor) 𝑭 
𝒃
aero 

𝑭 
𝑏
aero = 𝒇aero(𝜱fm,𝜱aero, 𝒚env) 

The aerodynamic forces of conventional multi-rotor are mainly air resistance and air damping 

torque, which respectively represent the resistance to prevent the aircraft from moving forward 

and the torque to prevent the aircraft from rotating. 

⚫ Only the drag effect is considered, that is, the direction of the aerodynamic force is the 

same as the direction of the relative wind speed (the incoming flow) (note: the lift is 

perpendicular to the incoming flow direction); 

⚫ Theoretically, the propeller will be affected by the incoming flow, resulting in a 

decrease in the size of the pull force. Since the forward flight speed of the conventional 

multi-rotor is low, this effect is not significant. We assume that the propeller tension is 

always the same, and the tensile loss of the propeller due to the incoming flow is 

included in the drag coefficient. 

⚫ The windward area corresponding to different pitch angles of the multirotor is different, 

so the drag coefficient will change with the change of pitch Angle (and roll Angle) 
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Relative velocity of air flow vb: 𝒗 
𝒃
𝑎 ≜ [𝑢 𝑣 𝑤]𝑇 

Air resistance vector Fd: 𝑭 
𝒃
𝑑 = 𝐶𝑑 ⋅ [𝑢2 𝑣2 𝑤2]𝑇 

Airflow relative speed wb: 𝝎 
𝒃

𝑎 ≜ [𝜔𝑥 𝜔𝑦 𝜔𝑧]𝑇 

Damping torque vector Md: 𝑴 
𝒃

𝑑 = 𝐶md ⋅ [𝜔𝑥
2 𝜔𝑦

2 𝜔𝑧
2]
𝑇
 

Where, is the average drag and drag coefficient in nominal condition (rated forward flight 

speed and altitude). 𝐶𝑑, 𝐶mdMore complicated, the coefficient can be extended to a curve related to 

the Angle of attack, and different coefficients can be taken in the three axes. 

 

4) The impact force of the body in the body coordinate system 𝑭 
𝒃
cont 

See the following two modules for details: 

PhysicalCollisionModel 

GroundSupportModel 

5) Overall input and output (control efficiency model) 

Simulate the external forces and torques that the UAV is subjected to. For example, the multi-

rotor models all the external forces and torques such as the propeller pull, the aerodynamic force 

of the fuselage, its own gravity, and the ground support in this module. The input of the module is 

the motor speed MotorRads, the aircraft kinematic attitude 6DOF and the terrain height input tZ, 

and the output is the multi-rotor resultant Force, combined torque Force and Moment Model Bus. 
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6.3 PhysicalCollisionModel (Collision detection function is only 

supported by personal advanced version or above) 

The collision module can detect whether the multi-rotor flight has collided with the object, 

and the type of the collision object and make a response in accordance with the physical law. 

When the collision mode is turned on, the speed of the multi-rotor meets the impulse theorem 

when it collides with the plane. When it collides with the fixed object such as the house, the multi-

rotor will bounce back toward the obstacle in the opposite direction, and the rebound speed is 1/10 

of the original speed. 
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It can be seen from the figure that the input of the collision module is uFloats, DCM, ve, 

mass, t, and the output is fm, tz, isCrash. 

Where uFloats are 20-dimensional external input floating point signals, this port is reserved 

for the collision model and can be transmitted from UE4 over a UDP network. DCM is the 

direction cosine matrix, ve is the velocity at the time of collision, mass is the mass of the 

multirotor, and t is the timestamp. The output fm force and torque directly act on the 6DOF to 

affect the body motion, tz represents the height of the multi-rotor from the ground and the 

coordinates of XYZ, isCrash is the collision judgment, if the collision occurs, the three motors are 

damaged. The specific collision logic can be clicked into the module for detailed understanding. 

6.4 GroundSupportModel Ground support module 

The collision force of the body mainly comes from the supporting force and 

friction force of the ground, as well as the physical collision force when 

there are obstacles and obstacles. 𝐹𝑧Due to the complexity of the shape of the 

object, it is very difficult to solve the physical contact point and calculate 

the collision force for the complex shape, and in most cases, such a high-

precision collision force is not necessary. At present, most physics engines 

use a simplified method to solve the physical force, that is, all objects are 

simplified into a relatively simple basic geometry (such as a cylinder or a 
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cuboid) to calculate the physical contact force between them and the ground or 

other objects. Each object has a spring-cushioning model under each surface to 

simulate the contact, collision and cushioning of the actual object. By 

adjusting the stiffness of the spring, the surface softness of different 

objects can be simulated, or the buffering effect of the ground can be 

simulated. The cushioning contact of a typical ground support force used in 

this model can be expressed as follows: 

𝐹𝑧 = {
0, 𝛥𝑧 > 0

−𝑘1𝛥𝑧 − 𝑘2𝛥�̇�, 𝛥𝑧 ≤ 0
  

Where, represents the displacement of the body from the ground surface in 

the z direction; 𝛥𝑧𝛥𝑧 > 0Indicates that the body is located above the ground, 

and there is no contact, so the force is 0; 𝛥𝑧 < 0It means that the object is 

under the ground (falling into the ground). At this time, the ground generates 

a feedback controller and generates a support force to try to control the 

displacement to 0, so as to realize the simulation of ground contact and buffer. 

𝛥𝑧 In the above equation, and is the buffer coefficient of the spring. The 

larger the value is, the stronger the action force to restore deformation is, 

the greater the hardness of the object surface is, and the greater the 

instantaneous reaction force when the collision occurs.𝑘1 > 0𝑘2 > 0 
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6.5 6DOF rigid body module𝑺body 

The main role of the fuselage subsystem is to calculate the motion state of the aircraft 

according to the total force and torque on the fuselage. 𝑺body𝒚fm𝒚body In the actual aircraft 

modeling, two basic assumptions are usually used. The first assumption is the flat earth 

assumption, that is, the aircraft movement range is small, and the curvature of the earth surface 

can be ignored. Secondly, rigid body assumption, that is, the body of the aircraft is assumed to be 

rigid and will not be deformed randomly. The above assumption applies to most unmanned vehicle 

systems. On this basis, the motion of the vehicle body can usually be expressed as a quaternion 

based dynamic equation with six degrees of freedom as follows 

{
 
 
 
 

 
 
 
 

𝑝 𝑒 ̇ = 𝑣 
𝑒 = 𝑅𝑏

𝑒 ⋅ 𝑣 
𝑏

𝑣 𝑏 ̇ = −[ 𝝎 
𝑏 ]× ⋅ 𝑣 

𝑏 +
𝐹 
𝑏

𝑚

�̇�0 = −
1

2
𝑞𝑣
𝑇 ⋅ 𝝎 

𝑏

�̇�𝑣 =
1

2
(𝑞0𝐼3 + [𝑞𝑣]×) 𝝎 

𝑏

𝐽 ⋅ 𝝎 𝑏 ̇ = − 𝝎 
𝑏 × (𝐽 ⋅ 𝝎 

𝑏 ) + 𝑀 
𝑏

 

𝒑 
𝒆 ∈ ℝ3Is the position vector of the aircraft defined in the earth coordinate system; 𝒗 

𝑏 ∈ ℝ3 

Is the velocity vector of the aircraft defined in the body coordinate system; 𝝎 
𝑏 ∈ ℝ3 Is the angular 

velocity vector of the aircraft defined in the body coordinate system;𝑹𝑏
𝑒 ∈ ℝ3×3 Is the rotation 

matrix that transforms the vector from the body coordinate system to the earth coordinate 

system;𝑱 ∈ ℝ3×3  And𝑚 ∈ ℝ+  are the moment of inertia matrix and mass of the aircraft, and 

denote a cross-product matrix operator. For example, let, then the cross-product matrix operator is 

defined as follows[ ]× 𝝎 
𝑏

 ≜ [𝑤1, 𝑤2, 𝑤3]
𝑇 

[ 𝝎 
𝑏 ]× ≜ [

0 −𝑤3 𝑤2
𝑤3 0 −𝑤1
−𝑤2 𝑤1 0

] 
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To define the quaternion, let𝒒𝑒
𝑏 ∈ ℝ4𝒒𝑒

𝑏 = [𝑞0  𝑞1  𝑞2  𝑞3]
𝑇 = [𝑞0 𝑞𝑣

𝑇]𝑇 

Then we have 

�̇�𝑒
𝑏 =

1

2
[
0 − 𝝎𝑻 

𝑏

𝝎 
𝑏 −[ 𝝎 

𝑏 ]×
] 𝒒𝑒
𝑏
𝒒𝑒
𝑏=[𝑞0 𝑞𝑣

𝑇]𝑇

⇒          {
�̇�0 = −

1

2
𝑞𝑣
𝑇 ⋅ 𝝎 

𝑏

�̇�𝑣 =
1

2
(𝑞0𝐼3 + [𝑞𝑣]×) 𝝎 

𝑏

 

In practice, the angular velocity can be approximately measured by a three-

axis gyroscope, and the above differential equation is linear 𝝎 
𝑏  

𝑅𝑏
𝑒 = 𝐶(𝒒𝑒

𝑏) = [

1 − 2(𝑞2
2 + 𝑞3

2) 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞1𝑞3 + 𝑞0𝑞2)

2(𝑞1𝑞2 + 𝑞0𝑞3) 1 − 2(𝑞1
2 + 𝑞3

2) 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞2𝑞3 + 𝑞0𝑞1) 1 − 2(𝑞1
2 + 𝑞2

2)

] 

The 6-DOF module of the UAV is used to describe the attitude and position 

changes of the UAV when it moves in the air. This model is based on the 

principle of rigid body dynamics, which considers the UAV as a rigid body and 

takes into account the rotational motion of the UAV in three coordinate axes 

(pitch, roll and yaw) and the translational motion between the body and the 

earth coordinate system (front-back, left-right and up-down). 

The inputs of the model are the force and torque of the body, and the outputs are the velocity 

and acceleration in the body coordinate system, the velocity in the earth coordinate system, the 

position, the Euler Angle, the direction cosine matrix (rotation matrix), the angular velocity and 

angular acceleration. 
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Through the mathematical modeling of these degrees of freedom, the module 

can derive the dynamic equation of the UAV when it moves in the air, which can 

be used for control system design, path planning and flight simulation. In 

addition, the model can be extended according to the actual needs to consider 

more factors, such as the nonlinear characteristics of the aircraft, 

aerodynamic force and moment of inertia. 

 

6.6 SensorOutput Sensor output module𝑺sens 

The module includes the environment model, sensor model and GPS model. The 

environment model simulates the impact of gravity and atmospheric pressure on the flight of the 

unmanned system. In the sensor model, the magnetometer and inertial navigation are modeled, 

and the noise simulation is added. The GPS model is used to calculate the GPS data, which is fed 

back to the PX4 controller during simulation. 

The input of the module is a 6DOF Bus structure, and the output is MavHILSensor and 

MavHILGPS. The platform is mask encapsulated. Users only need to copy the module to the 

unmanned vehicle model and input data to the module according to the 6DOF Bus structure to 

complete the sensor and GPS modeling. 
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6.7 3DOutput 3D display module𝑺3d 

The input of this module is: 

1) UAVType: 3D display ID, from ModelParam_uavType in ***_init.m, determined by XML 

file in 3D model file, for example: UAVType is 3 for regular quadrotor and 100 for small fixed 

wing. 

2) ActuatorToUE: from the motor model, it determines the rotation of the motor/servo of the 

unmanned vehicle system in the 3D engine. 

3) 6DOF: The 6DOF Bus input from the 6DOF model receives information such as position, 

velocity, attitude, and acceleration of the unmanned vehicle system. 

The output is MavVehile3DInfo: in the 3D display module, the input information will be 

packaged according to the protocol, and the data will be sent to the 3D engine through the 

interface to realize visualization processing. 

 

../3.RflySim3DUE/API.pdf
../3.RflySim3DUE/API.pdf
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6.8 Gazebo Model Module 

At present, there are six types of Gazebo model modules that have been completed in the 

RflySim platform, namely ESC module, Motor module, LiftDrag module, ESC_All module, 

Motor_ALL module and LiftDrag_ALL module. Among them, ESC_All module is a composite 

module composed of 8 ESC modules, similarly, Motor_ALL module and LiftDrag_ALL module 

can be obtained. 

 

Users can use the Gazebo model module to realize the modeling of rack types supported by 

Gazebo platform on RflySim platform, such as rotor, fixed wing, car, etc. 

6.8.1ESC_ALL module 

1) Feature introduction 

 

Module input 

(1) inPWMs: PWM signal (8 channels, data from the controls of the motor control 

mavlink_hil_actuator_controls_t message returned by the PX4 flight control, and the same order 

as the channel definition at the end of the corresponding "xxx.sdf" file in Gazebo). 

(2) armed: the Boolean logic variable of external input. False means that the output of 
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ESC_ALL module is blocked, and the output is 0. Otherwise, the output of ESC_ALL module is 

enabled. The value here generally comes from the first dimension data of the inCopterData 

interface, which is the unlocking flag bit from CopterSim, so as to ensure that the aircraft motor 

should not turn and maintain the initial value when it is not unlocked in the simulation process. 

Only after unlocking can the inPWMs input be turned on, so as to avoid that in some cases, When 

the simulation starts but the aircraft is not unlocked, it is the case that the aircraft is disorderly. 

Module output 

MotorRads_reference: expected speed, the expected value of 8 motor control signals, 

including two control types: motor speed and elevator and other parts rotation. The 

MotorRads_reference is an 8-dimensional vector. 

2) Module parameters 

The ESC_ALL module is masked and contains eight ESC submodules. The input parameters 

are the "ESC" structure vector in the "ModelName_init.m" file, ESC(1), ESC(2), ESC(3)... Are the 

parameter structures for each channel, in the same order as the channel definition at the end of the 

"xxx.sdf" file corresponding to the Gazebo model (file path is 

*\PX4PSP\Firmware\Tools\sitl_gazebo\models). 

The "ESC" struct vector in the "ModelName_init.m" file is as follows. 

% Electrical tuning parameter template 

ESCTmp.isEnable= false;     % Whether this switch is enabled or not 

ESCTmp.input_offset = 0;    % input offset 
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ESCTmp.input_scaling = 1;   % input scaling factor 

ESCTmp.zero_position_disarmed = 0; % zero position unlock value 

ESCTmp.zero_position_armed = 0; % zero position lock value 

ESCTmp.joint_control_type=1; % joint control type, 0: velocity, 1: the position,... 

 

% Define the order of ESC channels and ESCTmp parameter values according to 

control_channels at the end of xxx.sdf.jinja file. 

ESC = [ESCTmp, ... 

       ESCTmp, ... 

       ESCTmp,... 

       ESCTmp, ... 

       ESCTmp, ... 

       ESCTmp, ... 

       ESCTmp,... 

       ESCTmp]; % electrically adjusted data structure, expanded to 8 dimensions 

6.8.2 ESC module 

Below is the ESC module of Gazebo model module. This module is also masked. The input 

parameter is the "ESC(1)" structure in the "ModelName_init.m" file. 

 

Input: 

(1) pwm: PWM signal, the data in the simulation comes from one of the channels of the 

inPWMs interface of the model, and the size is between -1 and 1. 

(2) armed: unlock flag bit, external input Boolean logic variable, same as armed of ESC_ALL 

module. 

Output: 

input_reference_ : The desired speed corresponding to the motor/servo in RPM. 

6.8.3 Motor_ALL module 

1) Function introduction 

 

Enter: 

(1) input_reference_ : The control signal processed by the ESC module expects the motor 

speed control type signal to be input to the interface of the motor module. 
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(2) Windb: Input from the external Environment Model Bus, representing the relative wind 

speed of the body, as a 1x3 matrix variable. 

(3) wb: Input from the external 6DOF Bus, representing the rotational angular velocity of the 

body. 

Output: 

FM: The force and torque generated by the motor in the body coordinate system, 6-

dimensional vector, the first 3 dimensions are the resultant force generated by the motor module, 

and the last 3 dimensions are the resultant torque generated by the motor module. 

2) Parameters of the module 

Motor_ALL is masked, the input parameter is the "motor" structure vector in the 

"ModelName_init.m" file, and the parameter values refer to the part of the parameters of the 

motor_model plug-in in the xxx.sdf.jinja file. It contains 8 Motor sub-modules, which process one 

of the channel control signals of input_reference_ respectively, and can support the control of up 

to 8 motors of UAV. 

 

6.8.4 Motor module 

The motor sub-module is also masked. The input parameter is "motor(1)" in the 

"ModelName_init.m" file, which is defined and initialized in "ModelName_init.m". The final 

output of the module is the force and torque of a single motor module, with force in the first three 

dimensions and torque in the second three dimensions. 
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6.8.5 LiftDrag_ALL module 

1) Feature introduction 

 

Enter: 

(1) Windb: Input from the external Environment Model Bus, representing the relative wind speed 

of the body, as a 1x3 matrix variable. 

(2) wb: Input from outside the 6DOF Bus, which represents the rotational angular velocity of the 

body. 

(3) CtrlSurfaces: 8-dimensional vector, output signal from ESC module (rudder surface control 

signal only). 

(4) airdensity: The density of the air, used to calculate the dynamic pressure,.

21
*

2
q rho V=  

Output: 

FM: The force and torque in the body coordinate system generated by the rudder surface such as 

elevator and rudder, 6-dimensional vector, the first 3 dimensions are the resultant force, and the 

last 3 dimensions are the resultant torque. 

2) Module parameters 

The "LiftDrag_ALL" module is masked, and the input parameters are the LiftDrag structure 

variables in the "ModelName_init.m" file, LiftDrag (1), LiftDrag (2), LiftDrag (3)... Are the 

parameter structures for each rudder surface, or elevator, rudder and other different parts, and the 

order is the same as the channel definition order at the end of Gazebo "xxx.sdf" file. 
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6.8.6 LiftDrag module 

 

It is used to calculate the lift, drag and torque of the components responsible for the elevator, 

rudder, aileron and so on. The input parameters of the LiftDrag module are from the LiftDrag (1) 

structure in the "ModelName_init.m" file, which is defined and initialized in "ModelName_init.m". 

7. RflySim has supported the introduction of vehicle 

simulation operation 

7.1 Multi-rotor model 

The modeling and simulation case of any multi-rotor model is based on the platform unified 

Simulink modeling template proposed above. The only difference between them is the control 

efficiency model that maps the force and torque of all rotors (projection and summation of 

magnitude and direction) to the resultant force of the fuselage. This is achieved in the platform 

modeling template through the ModelParam_uavType parameter to the computer frame and torque 

distribution. At the same time, to realize different multi-rotor models, the parameters in the table 

below should be adapted 
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Table 1 Comparison table of model constant parameters1 

Parameter names 
The name of the parameter in the 

formula 
.m file parameter name 

Total mass 𝑚 ModelParam.uavMass 

Gravitational acceleration 𝑔 ModelParam.envGravityAcc 

Matrix of moment of inertia 𝐽 ModelParam.uavJ 

Multirotor fuselage radius 
𝑑

2
 ModelParam.uavR 

Propeller pull factor 𝑐𝑇 ModelParam.rotorCt 

Propeller torque coefficient 𝑐𝑀 ModelParam.rotorCm 

Throttle to motor steady-state speed 

curve slope 
𝐶𝑅 ModelParam.motorCr 

Throttle to motor steady-state speed 

curve zero 
ω𝑏 ModelParam.motorWb 

Motor propeller moment of inertia 𝐽𝑅𝑃 ModelParam.motorJm 

Motor response time constant 𝑇𝑚 ModelParam.motorT 

Drag coefficient 𝐶𝑑 ModelParam.uavCd 

Damping moment coefficient 𝐶𝑑𝑚 ModelParam.uavCCm 

 

7.1.1 Quadrotor 

7.1.1.1 Modeling principle 

1) Control efficiency model (force and torque) 

Map the force and torque of all rotors (projection and sum of magnitude and direction) to the 

body net force. Regarding the control efficiency model of the multi-rotor, we mainly divide it into 
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two aspects, the single propeller tension and inverse torque model and the overall machine tension 

and torque model. 

① Single propeller pull and reverse torque model 

When the multi-rotor is hovering in the absence of wind, is the speed of the propeller, is the 

rate of change of the angular velocity of the propeller (theoretically, it is no change of the speed 

when hovering in the absence of wind, but the change of battery power and the wear of the 

propeller may make a small change of the angular velocity of the propeller), and is a constant and 

can be determined by experiments𝜛𝑖
 𝑖�̇�𝑖𝑖𝑐𝑇𝑐𝑀 

The propeller pulling force can be expressed as follows. 𝑇𝑖 = 𝑐𝑇𝜛𝑖
2 

The static antitorsional torque can be expressed as:𝑀𝑖 = 𝑐𝑀𝜛𝑖
2 

The dynamic antitorsion moment can be expressed as follows.𝑀𝑖 = 𝑐𝑀𝜛𝑖
2 + 𝐽𝑅𝑃�̇�𝑖 

② Complete machine tension and torque model 

For the multi-rotor, in order to achieve control allocation, it is first necessary to determine the 

position of all motors in the body coordinate system. 

 

The Angle between the body shaft and the support arm where each motor is located is, and 

the distance between the center of the body and the motor is denoted as.𝑜𝑏𝑥𝑏𝜑𝑖 ∈ ℝ+ ∪ {0}𝑑 ∈

ℝ+ ∪ {0} 

For the X-shaped quadrotor, the pull and torque generated by the propeller can be expressed 

as follows. 

[

𝑓
𝜏𝑥
𝜏𝑦
𝜏𝑧

] =

[
 
 
 
 
 

𝑐𝑇 𝑐𝑇 𝑐𝑇 𝑐𝑇

−
√2

2
𝑑𝑐𝑇

√2

2
𝑑𝑐𝑇

√2

2
𝑑𝑐𝑇 −

√2

2
𝑑𝑐𝑇

√2

2
𝑑𝑐𝑇 −

√2

2
𝑑𝑐𝑇

√2

2
𝑑𝑐𝑇 −

√2

2
𝑑𝑐𝑇

𝑐𝑀 𝑐𝑀 −𝑐𝑀 −𝑐𝑀 ]
 
 
 
 
 

[
 
 
 
 
𝜛1
2

𝜛2
2

𝜛3
2

𝜛4
2]
 
 
 
 

 

Where is the total pulling force, and, are the combined torques in the x, y and z directions, 

respectively.𝑓𝜏𝑥𝜏𝑦𝜏𝑧 
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2) Power unit model 

pP

电池 电调#1 螺旋桨#1电机#1

动力单元 #1

动力系统

电调#2 螺旋桨#3电机#2

动力单元 #2

mP pP
电调 螺旋桨电机

动力单元 p#n

p#n p#n
p#n

... 动力单元 p# 1n −动力单元 #3 + +

运动环境
（碰撞、摩擦、气动、重
力、引力、磁场、风等）

电能

执行器

运动

机架系统
（机臂、机身、起落架等）

作用力
和力矩

三维环境

机体运动

传感器

运动信息

视觉信息
状态感知

控制器

控制系统

控制
信号

 

The power unit model is the whole power mechanism which is a group of brushless DC 

motor, electric and propeller. The input is the motor throttle command of 0 ~ 1, and the output is 

the propeller speed. 

After receiving the throttle command and the battery output voltage, the electric regulator 

generates the equivalent average voltage as. 𝜎𝑈𝑏𝑈𝑚 = 𝜎𝑈𝑏Firstly, a voltage signal is input, and 

the motor can rotate to a steady speed. 𝜛𝑠𝑠This relationship is usually linear and is denoted by 

𝜛𝑠𝑠 = 𝐶𝑏𝑈𝑚 +𝜛𝑏 = 𝐶𝑅𝜎 +𝜛𝑏 

Where, and are constant parameters. 𝐶𝑅 = 𝐶𝑏𝑈𝑏𝐶𝑏𝜛𝑏Secondly, when a throttle command is 

given, it takes some time for the motor to reach the steady-state speed, which determines the 

dynamic response of the motor and is denoted as. 𝜛𝑠𝑠𝑇𝑚In general, the dynamic process of BLDC 

motor can be simplified as a first-order low-pass filter, and its transfer function can be written as 

follows. 

𝜛 =
1

𝑇𝑚𝑠 + 1
𝜛𝑠𝑠 

In other words, when a desired steady-state speed is given, the motor speed cannot be 

reached immediately, but needs to be adjusted over a period of time. 𝜛𝑠𝑠𝜛𝑠𝑠Combining the above 

two equations, the complete power unit model can be obtained as follows: 

𝜛 =
1

𝑇𝑚𝑠 + 1
(𝐶𝑅𝜎 +𝜛𝑏) 

7.1.1.2 Modeling and simulation case 

1) Quadrotor model based on maximum template 

*:\PX4PSP\RflySimAPIs\4.RflySimModel\2.AdvExps\e2_MultiModelCtrl\1.MultiModelCtrl

\ Readme.pdf 

2) Quadrotor model with collision detection 

*:\PX4PSP\RflySimAPIs\4.RflySimModel\2.AdvExps\e2_MultiModelCtrl\2.MultiModelCtrl

2.AdvExps/e2_MultiModelCtrl/1.MultiModelCtrl/Readme.pdf
2.AdvExps/e2_MultiModelCtrl/1.MultiModelCtrl/Readme.pdf
2.AdvExps/e2_MultiModelCtrl/2.MultiModelCtrlColl/Readme.pdf
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Coll\Readme.pdf 

7.1.2 hexacopter 

7.1.2.1 Modeling principle 

The only difference from the quadrotor is the control efficiency model, for the multirotor, in 

order to realize the control allocation, it is first necessary to determine the position of all the 

motors in the body coordinate system. 

 

For a multirotor with one propeller, label the propellers clockwise from to, as shown in the 

image above. 𝑛𝑟𝑖 = 1𝑖 = 𝑛𝑟 ≥ 5The Angle between the body shaft and the support arm where 

each motor is located is denoted by, and the distance between the center of the body and the first 

motor is denoted by.𝑜𝑏𝑥𝑏𝜑𝑖 ∈ ℝ+ ∪ {0}𝑖𝑑𝑖 ∈ ℝ+ ∪ {0}, 𝑖 = 1,2,… , 𝑛𝑟  

The pull force and torque generated by the propeller can be expressed as follows. 

[

𝑓
𝜏𝑥
𝜏𝑦
𝜏𝑧

] =

[
 
 
 

𝑐𝑇 𝑐𝑇 … 𝑐𝑇
−𝑑1𝑐𝑇 𝑠𝑖𝑛 𝜑1 −𝑑2𝑐𝑇 𝑠𝑖𝑛𝜑2 … −𝑑𝑛𝑟𝑐𝑇 𝑠𝑖𝑛 𝜑𝑛𝑟
−𝑑1𝑐𝑇 𝑐𝑜𝑠 𝜑1 −𝑑2𝑐𝑇 𝑐𝑜𝑠 𝜑2 … −𝑑𝑛𝑟𝑐𝑇 𝑐𝑜𝑠 𝜑𝑛𝑟

𝑐𝑀𝛿1 𝑐𝑀𝛿2 … 𝑐𝑀𝛿𝑛𝑟 ]
 
 
 

[
 
 
 
𝜛1
2

𝜛2
2

⋮
𝜛𝑛𝑟
2 ]
 
 
 

 

7.1.2.2 Modeling and simulation cases 

1) Six rotor model based on maximum template 

*:\PX4PSP\RflySimAPIs\4.RflySimModel \2.AdvExps\e2_MultiModelCtrl\4.HexModelCtrl\ 

Readme.pdf 

7.1.3 Quad-axis ocrotor 

7.1.3.1 Modeling principle 

Refer to the modeling principle of the six rotor and the four rotor 

7.1.3.2 Modeling and simulation case 

1) Quad-axis ocrotor model based on maximum template 

*:\PX4PSP\RflySimAPIs\4.RflySimModel 

\2.AdvExps\e2_MultiModelCtrl\5.OctoCoxRotor\Readme.pdf 

2.AdvExps/e2_MultiModelCtrl/2.MultiModelCtrlColl/Readme.pdf
2.AdvExps/e2_MultiModelCtrl/4.HexModelCtrl/Readme.pdf
2.AdvExps/e2_MultiModelCtrl/4.HexModelCtrl/Readme.pdf
2.AdvExps/e2_MultiModelCtrl/5.OctoCoxRotor/Readme.pdf
2.AdvExps/e2_MultiModelCtrl/5.OctoCoxRotor/Readme.pdf
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7.1.4 Octocoxrotor 

7.1.4.1 Modeling principle 

Refer to the modeling principle of the six rotor and the four rotor 

7.1.4.2 Modeling and simulation case 

1) Eight-rotor model based on maximum template 

*:\PX4PSP\RflySimAPIs\4.RflySimModel 

\2.AdvExps\e2_MultiModelCtrl\6.OctoX\Readme.pdf 

7.2 Small fixed wing 

7.2.1.1 Modeling principle 

1) Aerodynamic forces and torques 

 

Figure 0.1 Inertial coordinate system and body coordinate system01 

① Longitudinal aerodynamics 

Longitudinal aerodynamic forces and moments include lift, drag and pitch moments, under 

which the body will move in the plane (inertial coordinate system: North East ground), which is 

also known as the pitch plane𝑜𝑒𝑥𝑒𝑧𝑒 

2.AdvExps/e2_MultiModelCtrl/6.OctoX/Readme.pdf
2.AdvExps/e2_MultiModelCtrl/6.OctoX/Readme.pdf
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Lift, drag and pitch moments are all mainly affected by the change in Angle of attack. 𝛼It is 

also affected by the pitch rate of the body and the elevator. 𝜔𝑦𝑏𝛿𝑒Therefore, the formulas for lift, 

drag and pitching moment can be written as 

Lift𝑓𝑎𝑧 ≈
1

2
𝜌𝑉𝑎

2𝑆𝐶𝐿(𝛼,𝜔𝑦𝑏 , 𝛿𝑒) 

Drag𝑓𝑎𝑥 ≈
1

2
𝜌𝑉𝑎

2𝑆𝐶𝐷(𝛼, 𝜔𝑦𝑏 , 𝛿𝑒) 

Pitch moment𝑀𝑎𝑦 ≈
1

2
𝜌𝑉𝑎

2𝑆𝑐𝐶𝑚(𝛼, 𝜔𝑦𝑏 , 𝛿𝑒) 

Model simplification: Perform a first-order Taylor expansion on the above equation, and then 

dimensionless the partial derivative after the approximate linearization process 

𝐶𝐿
泰勒展开
⇒     𝐶𝐿0 +

𝜕𝐶𝐿
𝜕𝛼
𝛼 +

𝜕𝐶𝐿
𝜕𝑞
𝜔𝑦𝑏 +

𝜕𝐶𝐿
𝜕𝛿𝑒

𝛿𝑒
无量纲化
⇒     𝐶𝐿0 + 𝐶𝐿𝛼𝛼 + 𝐶𝐿𝑞

𝑐

2𝑉𝑎
𝜔𝑦𝑏 + 𝐶𝐿𝛿𝑒𝛿𝑒 

Finally, the longitudinal aerodynamic forces and torques are expressed as 

𝑓𝑎𝑧 =
1

2
𝜌𝑉𝑎

2𝑆 (𝐶𝐿0 + 𝐶𝐿𝛼𝛼 + 𝐶𝐿𝑞
𝑐

2𝑉𝑎
𝜔𝑦𝑏 + 𝐶𝐿𝛿𝑒𝛿𝑒) 

𝑓𝑎𝑥 =
1

2
𝜌𝑉𝑎

2𝑆 (𝐶𝐷0 + 𝐶𝐷𝛼𝛼 + 𝐶𝐷𝑞
𝑐

2𝑉𝑎
𝜔𝑦𝑏 + 𝐶𝐷𝛿𝑒𝛿𝑒) 

𝑀𝑎𝑦 =
1

2
𝜌𝑉𝑎

2𝑆𝑐 (𝐶𝑚0 + 𝐶𝑚𝛼𝛼 + 𝐶𝑚𝑞
𝑐

2𝑉𝑎
𝜔𝑦𝑏 + 𝐶𝑚𝛿𝑒𝛿𝑒) 

② Lateral aerodynamics 

The aerodynamic forces and moments in the transverse direction cause the fixed wing UAV 

to move along the axis direction (the body coordinate system), and also cause the roll and yaw 

motion𝑜𝑏𝑦𝑏 
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The aerodynamic force in the transverse direction is mainly affected by the sideslip Angle, 

but also by the roll rate, yaw rate, ailerons and rudder, which is denoted by 

Side forces𝑓𝑎𝑦 ≈
1

2
𝜌𝑉𝑎

2𝑆𝐶𝑌(𝛽,𝜔𝑥𝑏 , 𝜔𝑧𝑏 , 𝛿𝑎 , 𝛿𝑟) 

Roll torque𝑀𝑎𝑥 ≈
1

2
𝜌𝑉𝑎

2𝑆𝑏𝐶𝑙(𝛽, 𝜔𝑥𝑏 , 𝜔𝑧𝑏 , 𝛿𝑎 , 𝛿𝑟) 

Yaw moment𝑀𝑎𝑧 ≈
1

2
𝜌𝑉𝑎

2𝑆𝑏𝐶𝑛(𝛽,𝜔𝑥𝑏 , 𝜔𝑧𝑏 , 𝛿𝑎 , 𝛿𝑟) 

Model simplification: By applying the first-order Taylor expansion to the above equation and 

then dimensionless the partial derivative after the approximate linearization process, the linear 

representation of the aerodynamic force and moment in the transverse direction can finally be 

obtained as 

𝑓𝑎𝑦 =
1

2
𝜌𝑉𝑎

2𝑆 (𝐶𝑌0 + 𝐶𝑌𝛽𝛽 + 𝐶𝑌𝑃
𝑏

2𝑉𝑎
𝜔𝑥𝑏 + 𝐶𝑌𝑟

𝑏

2𝑉𝑎
𝜔𝑧𝑏 + 𝐶𝑌𝛿𝑎𝛿𝑎 + 𝐶𝑌𝛿𝑟𝛿𝑟) 

𝑀𝑎𝑥 =
1

2
𝜌𝑉𝑎

2𝑆𝑏 (𝐶𝑙0 + 𝐶𝑙𝛽𝛽 + 𝐶𝑙𝑌𝑃
𝑏

2𝑉𝑎
𝜔𝑥𝑏 + 𝐶𝑙𝑟

𝑏

2𝑉𝑎
𝜔𝑧𝑏 + 𝐶𝑙𝛿𝑎𝛿𝑎 + 𝐶𝑙𝛿𝑟𝛿𝑟) 

𝑀𝑎𝑧 =
1

2
𝜌𝑉𝑎

2𝑆𝑏 (𝐶𝑛0 + 𝐶𝑛𝛽𝛽 + 𝐶𝑛𝑃
𝑏

2𝑉𝑎
𝜔𝑥𝑏 + 𝐶𝑛𝑟

𝑏

2𝑉𝑎
𝜔𝑧𝑏 + 𝐶𝑛𝛿𝑎𝛿𝑎 + 𝐶𝑛𝛿𝑟𝛿𝑟) 

2) The thrust of the dynamical system 

In the modeling process, it is considered that the power system of the fixed-wing UAV is 

installed along the body shaft, and the thrust generated by the propeller power system at zero 

airspeed is𝑜𝑏𝑥𝑏 

𝑇 = 𝐶𝑇𝜌 (
𝑁

60
)
2

𝐷𝑃
4 

Therefore, when the airspeed is, the thrust of the power system is expressed as in the body 

coordinate system𝑉𝑎 
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𝑇 
𝑏 = [

𝑇 − 𝐾
𝑉𝑎

√𝑇
 0  
 0  

] 

7.2.1.2 Modeling and simulation case 

1) Fixed-wing model based on minimum input and output interface 

*:\PX4PSP\RflySimAPIs\4.RflySimModel\1.BasicExps\e2_FixWingModelCtrl\Readme.pdf 

2) Fixed wing model with collision detection 

*:\PX4PSP\RflySimAPIs\4.RflySimModel\2.AdvExps\e3_FWingModelCtrl\1.FixWingMode

lCtrlColl\Readme.pdf 

3) Fixed wing position control 

*:\PX4PSP\RflySimAPIs\4.RflySimModel\2.AdvExps\e3_FWingModelCtrl\2.FWPosCtrlAP

I\Readme.pdf 

4) Fixed wing attitude control 

*:\PX4PSP\RflySimAPIs\4.RflySimModel\2.AdvExps\e3_FWingModelCtrl\3.FWAttCtrlAPI

\Readme.pdf 

5) Fixed wing speed altitude yaw control 

*:\PX4PSP\RflySimAPIs\4.RflySimModel\2.AdvExps\e3_FWingModelCtrl\4.VelAltYawCtr

lAPI_Py\Readme.pdf 

*:\PX4PSP\RflySimAPIs\4.RflySimModel\2.AdvExps\e3_FWingModelCtrl\5.VelAltYawCtr

lAPI_Mat\Readme.pdf 

1.BasicExps/e2_FixWingModelCtrl/Readme.pdf
2.AdvExps/e3_FWingModelCtrl/1.FixWingModelCtrlColl/Readme.pdf
2.AdvExps/e3_FWingModelCtrl/1.FixWingModelCtrlColl/Readme.pdf
2.AdvExps/e3_FWingModelCtrl/2.FWPosCtrlAPI/Readme.pdf
2.AdvExps/e3_FWingModelCtrl/2.FWPosCtrlAPI/Readme.pdf
2.AdvExps/e3_FWingModelCtrl/3.FWAttCtrlAPI/Readme.pdf
2.AdvExps/e3_FWingModelCtrl/3.FWAttCtrlAPI/Readme.pdf
2.AdvExps/e3_FWingModelCtrl/4.VelAltYawCtrlAPI_Py/Readme.pdf
2.AdvExps/e3_FWingModelCtrl/4.VelAltYawCtrlAPI_Py/Readme.pdf
2.AdvExps/e3_FWingModelCtrl/5.VelAltYawCtrlAPI_Mat/Readme.pdf
2.AdvExps/e3_FWingModelCtrl/5.VelAltYawCtrlAPI_Mat/Readme.pdf
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7.3 Unmanned vehicles 

7.3.1 Refine the unmanned vehicle model 

7.3.1.1 Modeling principle 

ωx

u
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ωp倾斜角速度

u前进速度
ωr倾斜角速度

w前进速度

ωq倾斜角速度

v前进速度

 

Figure 0.2 Diagram of the vehicle coordinate system02 

1) Force and torque model of the tire 

前进方向
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回正力矩
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Figure 0.3 Tire model diagram03 
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Here, the mechanical characteristics of the vehicle tire are discussed based on the magic 

formula tire model. The magic formula condition of the tire model is shown in the figure. The 

input is the longitudinal slip rate, the lateral Angle, the inclination Angle, and the vertical load of 

the wheel. The output is longitudinal force, lateral force, overturning moment, rolling resistance 

moment and reversing moment. 

纵向滑移率s

侧偏角α
外倾角γ
车轮垂直载荷Fz

输入变量 输出变量

纵向力Fx

侧向力Fy

翻转力矩Mx

滚动阻力矩My

回正力矩Mz

魔术公式

 

Figure 0.4 Magic formula schematic diagram04 

① Longitudinal slip rate s 

Longitudinal tire slip rate refers to the degree of tire sliding in the longitudinal direction 

during vehicle driving. It is calculated by comparing the difference between the actual sliding 

speed of the tire and the theoretical sliding speed. The larger the value of the longitudinal slip rate 

of the tire, the greater the sliding degree of the tire in the longitudinal direction, and its expression 

is as follows: 

 𝑠 = (𝑉𝑥 − 𝑅𝜔)/𝑉𝑥  

Here, Vx is the longitudinal velocity of the vehicle (in m/s), R is the radius of the tire (in m), 

and ω is the angular velocity of the tire (in rad/s). 

② The sideslip Angle α 

Figure 0.4 shows that the side-slip Angle refers to the Angle between the tire and the vertical 

direction when the vehicle is moving. Figure 0.4 Magic formula schematic diagram04It describes 

the degree of deviation of the tire from the direction of travel of the vehicle when it is driving in a 

turn or curve. The sidestep Angle of the tire has an important impact on the handling performance 

and stability of the vehicle.  

③ Camber Angle γ 

Tire camber is the Angle at which the wheel tilts with respect to the vertical direction. It is an 

important parameter in the vehicle suspension system, which can affect the handling, driving 

stability and tire wear of the vehicle. 
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外倾角γ

 

Figure 0.5 Diagram of the camber Angle05 

④ Wheel vertical load F 

Wheel vertical load is the weight of the vehicle and the weight of the load distributed to a 

single tire. Generally, the vehicle is running smoothly or stationary on the plane, and the vertical 

load on each wheel is the same. 

⑤ Longitudinal force F 

  Longitudinal tire force refers to the force generated by the tire in the process of vehicle 

driving and related to the longitudinal movement of the vehicle, it mainly includes traction and 

braking force, traction is the force of the tire to push the vehicle forward, so that the vehicle can 

accelerate or maintain constant speed. When the driving force is applied to the tire, the friction 

between the tire and the ground will be generated, and this friction is the source of traction. 

Braking force refers to the resistance generated by the tire when braking, slowing down or 

stopping the vehicle. 

 

{
 
 
 
 

 
 
 
 
𝐹𝑥 = (𝐷 𝑠𝑖𝑛(𝐶 × 𝑎𝑟𝑐𝑡𝑎𝑛(𝐵𝑋1 − 𝐸(𝐵𝑋1 − 𝑎𝑟𝑐𝑡𝑎𝑛(𝐵𝑋1))))) + 𝑠𝑣
𝑋1 = 𝑠 + 𝑠ℎ
𝐶 = 𝐵0
𝐷 = 𝐵1𝐹𝑧

2 +𝐵2𝐹𝑍
𝐵 = (𝐵3𝐹𝑧

2 + 𝐵4𝐹𝑍) × 𝑒
−𝐵5𝐹𝑧/(𝐶 × 𝐷)

𝑠ℎ = 𝐵9𝐹𝑧 +𝐵10
𝑠𝑣 = 0

𝐸 = 𝐵6𝐹𝑧
2 + 𝐵7𝐹𝑧 + 𝐵8

  

Where, is the horizontal drift of the curve and is the vertical drift of the curve. 𝑠ℎ𝑠𝑣C is the 

shape factor of the curve, D is the peak factor of the curve, B is the stiffness factor, and E is the 

curvature factor of the curve. 

⑥ Lateral force F 

When the car is driving, due to the lateral tilt of the road surface, the centrifugal force when 

the curve is driving, etc., the wheel center generates a lateral force along the axle direction. 
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Because the wheel is elastic, so when the lateral force does not reach the maximum friction 

between the wheel and the ground, the lateral force causes the tire to deform, so that the wheel tilts, 

resulting in the wheel driving direction away from the predetermined driving route. 

 

{
 
 
 
 

 
 
 
 
𝐹𝑦 = (𝐷 𝑠𝑖𝑛(𝐶𝑎𝑟𝑐𝑡𝑎𝑛(𝐵𝑋1 − 𝐸(𝐵𝑋1 − 𝑎𝑟𝑐𝑡𝑎𝑛(𝐵𝑋1))))) + 𝑠𝑣
𝑋1 = 𝛼 + 𝑠ℎ
𝐶 = 𝐴0
𝐷 = 𝐴1𝐹𝑧

2 + 𝐴2𝐹𝑧

𝐵 = 𝐴3 𝑠𝑖𝑛 (2 𝑎𝑟𝑐𝑡𝑎𝑛
𝐹𝑧

𝐴4
) × (1 − 𝐴5|𝛾|)/(𝐶 × 𝐷)

𝑠ℎ = 𝐴9𝐹𝑧 + 𝐴10 + 𝐴8𝛾
𝑠𝑣 = 𝐴11𝐹𝑧𝛾 + 𝐴12𝐹𝑧 + 𝐴13
𝐸 = 𝐴6𝐹𝑧 + 𝐴7

  

⑦ Return to the positive moment M 

The reverting torque is the torque that acts on the tire around the OZ axis when the tire is 

sidetracked. In circular driving, the reverting torque is one of the main torques that bring the wheel 

back to a straight driving position. 

 

{
 
 
 
 

 
 
 
 
𝑀𝑧 = (𝐷𝑠𝑖𝑛(𝐶𝑎𝑟𝑐𝑡𝑎𝑛(𝐵𝑋1 − 𝐸(𝐵𝑋1 − 𝑎𝑟𝑐𝑡𝑎𝑛(𝐵𝑋1)))) + 𝑆𝑣)

𝑋1 = 𝛼 + 𝑠ℎ
𝐶 = 𝐶0
𝐷 = 𝐶1 ⋅ 𝐹𝑧

2 + 𝐶2 ⋅ 𝐹𝑧
𝐵 = (𝐶3 ⋅ 𝐹𝑧

2 + 𝐶4 ⋅ 𝐹𝑧) ⋅ (1 − 𝐶6 ⋅ |𝛾| ⋅ 𝑒 ⋅ (−𝐶5) ⋅ 𝐹𝑧)/(𝐶 ⋅ 𝐷)
𝑠ℎ = 𝐶11 ⋅ 𝛾 + 𝐶12 ⋅ 𝐹𝑧 + 𝐶13
𝑠𝑣 = (𝐶14 ⋅ 𝐹𝑧

2 + 𝐶15 ⋅ 𝐹𝑧) ⋅ 𝛾 + 𝐶16 ⋅ 𝐹𝑧 + 𝐶17
𝐸 = (𝐶7 ⋅ 𝐹𝑧

2 + 𝐶8 ⋅ 𝐹𝑧 + 𝐶9) ⋅ (1 − 𝐶10 ⋅ |𝛾|)

  

⑧ The reversing torque M 

The overturning torque is the torque exerted on the tire around the OX shaft when the tire is 

sidetracked. 

 𝑀𝑥 = −𝐹𝑧 ⋅ 𝐷𝑒 

Where, is the lateral deformation and 𝐷𝑒 = 𝐹𝑦/𝐿𝑠Ls is the lateral stiffness of the tire, which is 

often assumed to be a constant in the tire model. 

⑨ Rolling resistance moment M 

The torque opposite to the rolling direction of the tire is the tire rolling resistance. 

 𝑀𝑦 = 𝐹𝑧 ⋅ 𝑅𝑒 ⋅ 𝑅𝑝 

Here, Re is the rolling radius of the tire; R isp the rolling resistance coefficient. 

Table 2 Magic Formula parameter value table2 

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 

1.65 - 34 1250 3036 12.8 0.005 0.021 0.7739 0.0022 0.0134 

A10 A11 A12 A13 B0 B1 B2 B3 B4 B5 

0.0037 19.1656 12.1356 6.262 2.3737 9.46 1490 130 276 0.0886 
B6 B7 B8 B9 B10 C0 C1 C2 C3 C4 

0.0040 0.0615 1.2 0.0299 0.176 2.34 1.4950 6.4166 3.574 0.0877 

C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 

0.0984 0.00276 0.0001 0.1 1.3332 0.0255 0.0235 0.0302 0.0647 0.0211 

C15 C16 C17        

0.8946 0.0994 3.3369        
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2) Force and torque model for the full vehicle 
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Figure 0.6 Force diagram of the vehicle06 

The force and torque model of the vehicle can be expressed as follows: 
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Where FYX and F are the longitudinal force and lateral force of the vehicle 

respectively,MX,MY,MZ are the torques of the vehicle in three directions; Fxi(i=1,2,3,4), 

Fyi(i=1,2,3,4) are the longitudinal and lateral forces of each tire, which have been obtained by the 

magic formula of the tire model. 

7.3.1.2 Modeling and simulation case 

3.CustExps\e4_TrailerModelCtrl\Readme.pdf 

7.3.2 Akaman Chassis unmanned vehicle 

7.3.2.1 Modeling and simulation case 

1) Akaman chassis unmanned vehicle model based on minimum input and output 

interface 

*:\PX4PSP\RflySimAPIs\4.RflySimModel\1.BasicExps\e3_CarAckermanModeCtrl\Readme.

pdf 

2) Position control for unmanned vehicles on Akaman chassis 

*:\PX4PSP\RflySimAPIs\4.RflySimModel\2.AdvExps\e5_CarAckermanCtrl\1.CarAckerman

3.CustExps/e4_TrailerModelCtrl/Readme.pdf
1.BasicExps/e3_CarAckermanModeCtrl/Readme.pdf
1.BasicExps/e3_CarAckermanModeCtrl/Readme.pdf
2.AdvExps/e5_CarAckermanCtrl/1.CarAckermanPosCtrl_Py/Readme.pdf
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PosCtrl_Py\Readme.pdf 

3) Akaman chassis unmanned vehicle speed control 

*:\PX4PSP\RflySimAPIs\4.RflySimModel\2.AdvExps\e5_CarAckermanCtrl\3.CarAckerman

VelCtrl_Py\Readme.pdf 

7.3.3 Differential autonomous vehicles 

7.3.3.1 Modeling and simulation case 

1) Differential unmanned vehicle model based on minimum input and output interface 

*:\PX4PSP\RflySimAPIs\4.RflySimModel\1.BasicExps\e4_CarR1DiffModelCtrl\Readme.pd

f 

For the rest: 2.AdvExps\e6_CarR1DiffCtrl\Readme.pdf 

7.4 VTOL UAV 

7.4.1 4+1 droop 

7.4.1.1 Modeling and simulation case 

*:\PX4PSP\RflySimAPIs\4.RflySimModel\2.AdvExps\e4_VTOLModelCtrl\1.VTOLModelC

trl\Readme.pdf 

7.4.2 Quadrotor tail-mount draping 

7.4.2.1 Modeling and simulation case 

*:\PX4PSP\RflySimAPIs\4.RflySimModel\2.AdvExps\e4_VTOLModelCtrl\2.TailsitterMode

lCtrl\Readme.pdf 

7.5 Unmanned Vessel 

Replenishment required 

7.6 Helicopters 

7.6.1.1 Modeling and simulation case 

2.AdvExps\e8_Helicopter\Readme.pdf 

7.7 Unmanned Underwater craft 

7.7.1.1 Modeling and simulation case 

2.AdvExps\e9_UUV\Readme.pdf 

2.AdvExps/e5_CarAckermanCtrl/1.CarAckermanPosCtrl_Py/Readme.pdf
2.AdvExps/e5_CarAckermanCtrl/3.CarAckermanVelCtrl_Py/Readme.pdf
2.AdvExps/e5_CarAckermanCtrl/3.CarAckermanVelCtrl_Py/Readme.pdf
1.BasicExps/e4_CarR1DiffModelCtrl/Readme.pdf
1.BasicExps/e4_CarR1DiffModelCtrl/Readme.pdf
2.AdvExps/e6_CarR1DiffCtrl/Readme.pdf
2.AdvExps/e4_VTOLModelCtrl/1.VTOLModelCtrl/Readme.pdf
2.AdvExps/e4_VTOLModelCtrl/1.VTOLModelCtrl/Readme.pdf
2.AdvExps/e4_VTOLModelCtrl/2.TailsitterModelCtrl/Readme.pdf
2.AdvExps/e4_VTOLModelCtrl/2.TailsitterModelCtrl/Readme.pdf
2.AdvExps/e8_Helicopter/Readme.pdf
2.AdvExps/e9_UUV/Readme.pdf
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8. External control interface 

8.1 QGC 

QGC (QGroundControl) external control interfaces are mainly as follows: 

MAVLink message interface: through the MAVLink message protocol, it communicates with 

the flight control to realize the control and monitoring of the aircraft. 

UDP command interface: Send and receive control instructions through UDP protocol to 

realize the control of the aircraft. 

TCP command interface: send and receive control instructions through TCP protocol to 

realize the control of the aircraft. 

WebSocket interface: data exchange and communication through WebSocket protocol to 

realize the control and monitoring of the aircraft. 

8.2 Simulink control interface 

Simulink provides a variety of ways to implement the external control interface of the UAV. 

The commonly used methods are: 

Simulink Coder is used to generate the Simulink model into C code, and then the C code is 

used to interact with the external control program. 

UDP or TCP/IP protocol is used to communicate between Simulink and external control 

program. 

Use Simulink Real-Time Workshop and hardware connection boards for real-time control. 

8.3 Python Control interface 

Python external control interfaces generally control the speed, position, attitude and other 

states of the vehicle. The following common interfaces are: 

Fixed wing takeoff control interface: "sendMavTakeOff", controls the fixed wing to take off at 

a specified location. 

   def sendMavTakeOff(self,xM=0,yM=0,zM=0,YawRad=0,PitchRad=0): 

        """ Send command to make aircraft takeoff to the desired local position (m) 

Unlocking interface: "SendMavArm", vehicle unlocking command. 

  def SendMavArm(self, isArm=0): 

        """ Send command to PX4 to arm or disarm the drone 

Target position control interface: "SendPosNED" to send the target position as well as the yaw 

Angle in the North East ground coordinate system. 

def SendPosNED(self,x=0,y=0,z=0,yaw=0): 

        """ Send vehicle targe position (m) to PX4 in the earth north-east-down (NED) frame 

with yaw control (rad) 

        when the vehicle fly above the ground, then z < 0 

Fixed wing cruise radius interface: "SendCruiseRadius", changes the cruise radius of the 
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fixed wing. 

def SendCruiseRadius(self,rad=0):  

        """ Send command to change the Cruise Radius (m) of the aircraft 

Vehicle attitude sending interface: "SendAttPX4", send the target attitude in the right front and 

lower coordinate system. 

def SendAttPX4(self,att=[0,0,0,0],thrust=0.5,CtrlFlag=0,AltFlg=0): 

        """ Send vehicle targe attitude to PX4 in the body forward-rightward-downward (FRD) 

frame  

Fixed wing cruise speed interface: "SendCruiseSpeed", changes the cruise speed of the fixed 

wing. 

def SendCruiseSpeed(self,Speed=0):  

        """ Send command to change the Cruise speed (m/s) of the aircraft 

Target position control interface: "SendPosNEDNoYaw", send the target position in the North 

east ground coordinate system. 

 def SendPosNEDNoYaw(self,x=0,y=0,z=0): 

        """ Send vehicle targe position (m) to PX4 in the earth north-east-down (NED) frame 

without yaw control (rad) 

        when the vehicle fly above the ground, then z < 0 

Ground speed control interface: "SendGroundSpeed", controls the fixed wing ground speed. 

def SendGroundSpeed(self,Speed=0):  

        """ Send command to change the ground speed (m/s) of the aircraft 

Target speed control interface: "SendVelNEDNoYaw", send command to change the ground 

speed (m/s) in the north east ground coordinate system. 

def SendVelNEDNoYaw(self,vx,vy,vz): 

        """ Send targe vehicle speed (m/s) to PX4 in the earth north-east-down (NED) frame 

without yaw control 

        when the vehicle fly upward, the vz < 0 

Target speed control interface: "SendVelNED", sends the target speed as well as yaw angular 

velocity in the North East ground coordinate system. 

  def SendVelNED(self,vx=0,vy=0,vz=0,yawrate=0): 

        """ Send targe vehicle speed (m/s) to PX4 in the earth north-east-down (NED) frame 

with yawrate (rad/s) 

        when the vehicle fly upward, the vz < 0 

Target speed control interface: "SendVelFRD", sends the target speed as well as yaw angular 

speed in the right front and bottom coordinate system. 

def SendVelFRD(self,vx=0,vy=0,vz=0,yawrate=0): 

        """ Send vehicle targe speed (m/s) to PX4 in the body forward-rightward-downward 

(FRD) frame with yawrate control (rad/s) 

        when the vehicle fly upward, the vz < 0 

Target speed control interface: "SendVelNoYaw", sends the target speed in the right front and 

lower coordinate system. 

def SendVelNoYaw(self,vx,vy,vz): 

        """ Send vehicle targe speed (m/s) to PX4 in the body forward-rightward-downward 

(FRD) frame without yawrate control (rad) 

        when the vehicle fly upward, the vz < 0 

Target position control interface: "SendPosFRD", sends the target position and yaw Angle in 
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the right front and bottom coordinate system. 

 def SendPosFRD(self,x=0,y=0,z=0,yaw=0): 

        """ Send vehicle targe position (m) to PX4 in the body forward-rightward-downward 

(FRD) frame with yaw control (rad) 

        when the vehicle fly above the ground, then z < 0 

Target position control interface: "SendPosFRDNoYaw", sends the target position in the right 

front and lower coordinate system. 

def SendPosFRDNoYaw(self,x=0,y=0,z=0): 

        """ Send vehicle targe position (m) to PX4 in the body forward-rightward-downward 

(FRD) frame without yaw control (rad) 

        when the vehicle fly above the ground, then z < 0 

Maximum speed control interface: "SendCopterSpeed", which sets the maximum flight speed 

of the rotor. 

def SendCopterSpeed(self,Speed=0):  

        """ send command to set the maximum speed of the multicopter 

Fixed wing landing control interface: "sendMavLand" to set the position where the fixed wing 

is expected to land. 

def sendMavLand(self,xM,yM,zM): 

        """ Send command to make aircraft land to the desired local position (m) 

 

9 Synthesize the model 

9.1 Synthesis Model Protocol 

9.1.1 Background 

The controller is implemented on the basis of the original dynamic model to form a 

comprehensive model. The controller uses MATLAB Simulink to realize basic attitude control and 

fixed-point function. The controller directly takes the real state of the model as input. The key of 

synthesizing model protocol is to define the input and output interface. The overall interface 

design only considers the full mode, while the simplified mode is considered in CopterSim. 

Model parameters: Contains model parameters and controller parameters. Consider adding 

an interface for setting controller parameters in CflightModel. 

Input interface: Consider the messages that the synthesis model sends to or receives from 

CopterSim. 

Command input: Used to control basic processes such as unlocking, taking off, and landing 

of the UAV. Command input goes inside InSIL. 

Commands Support or not 

Unlock Support 

Take-off Support 

Landing Support 

Return flight Support 
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Hover Suitable for fixed wing 

Set the current desired 

position 

Simply support the command to complete the trajectory 

control 

 

Collision input: Given by the collision detection scheme. 

typedef struct { 

  real_T TerrainZ; 

  real32_T inFloatsCollision[20];  

} Collision_Multicopter_T; 

OffBoard control: The PX4 can be controlled by an independent helper computer via cable 

or wifi. The partner computers typically communicate via the MAVLink API. The vehicle 

executes the position, speed, and attitude commands set by the offboard computer through 

MVLink. Offboard mode is mainly used to perform complex air maneuvers, such as automatic 

path tracking, target tracking, etc. For missions such as takeoff, landing, and return, specialized 

flight modes such as AUTO.TAKEOFF, AUTO.LAND, and AUTO.RTL are often used 

Rotorcraft Mavlink Offboard message 

SET_POSITION_TARGET_LOCAL_NED 

Desired position (x, y, z), desired velocity (vx, vy, vz), desired acceleration (afx, afy, afz). The desi

red velocity is added to the output of the position controller as the input to the velocity controll

er. The desired acceleration is added to the output of the velocity controller and is used to calcu

late the thrust vector. Supported coordinate systems include MAV_FRAME_LOCAL_NED, M

AV_FRAME_BODY_NED. 

SET_POSITION_TARGET_GLOBAL_INT 

Desired position (lat_int, lon_int, alt), desired velocity (vx, vy, vz), desired acceleration (afx, afy, 

afz). The desired velocity is added to the output of the position controller as the input to the vel

ocity controller. The incorporation of the desired acceleration is not yet perfect. Supported coo

rdinate system MAV_FRAME_GLOBAL. 

SET_ATTITUDE_TARGET 

1 Attitude SET_ATTITUDE_TARGET.q+ Throttle SET_ATTITUDE_TARGET.thrust 

2 Angular rate SET_ATTITUDE_TARGET body_roll_rate, body_pitch_rate, body_yaw_rate+ 

throttle set_attitude_target.thrust. 

 

The above is the Offboard control message officially supported by PX4. The coordinate 

system and various combination modes are more complex. The messages controlled by this 

Offboard are mainly divided into two types. One is the position type, which is often used in 

formation flight. One is the attitude class, which is often used for stunts. 

# Set desired position, velocity, acceleration message, yaw Angle, yaw Angle rate, 

integer for position when using latitude and longitude high 

set_position_target_local_ned_send(self, time_boot_ms, target_system, target_component, 

coordinate_frame, type_mask, x, y, z, vx, vy, vz, afx, afy, afz, yaw, yaw_rate, 

force_mavlink1=False) 

# Set desired pose, angular rate, throttle 

set_attitude_target_send(self, time_boot_ms, target_system, target_component, type_mask, 

q, body_roll_rate, body_pitch_rate, body_yaw_rate, thrust, force_mavlink1=False) 
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9.1.2 Synthesis model Offboard control design 

The Offboard control mode supported by the integrated model. 

Terminal Supported or not 

python Offboard Support 

Matlab Offboard Support 

 

9.1.3 Complete typing with inSIL 

inSILInts protocol 

The zeroth digit of the inSILInts is used to characterize and modify the state, and a 

corresponding bit of 1 indicates that the system is in the corresponding state. For example, the first 

bit indicates simulation mode, and when the first bit of the received inSILInts[0] is 1, it indicates 

that the system enters simulation mode. 

Only when 0:hasCMD is 1, the state should be set once, otherwise the integrated model will 

continue to use the original state. The original state can come from the external setting value, or it 

can be an internal state automatic transition. For example, after receiving the take-off command, it 

first switches to the take-off mode, and automatically switches to the fixed-point mode after the 

take-off is completed. 

inSILInts[0] Vehicle Command Bitmap 

0:hasCMD 1: SIL 2: 

Armed 

3: 4: 5: 6: 7: 

Have new 

orders 

Emulation Unlock      

8:Takeoff 9: Position 10: 

Land 

11: 

Return 

12:Lotie

r 

13:Heigh

t 

14:Hor 15

: 

Take-off Fixed 

/waypoint 

Landin

g 

Turnin

g back 

Hover 

(fixed 

wing) 

Fixed 

height 

mode 

Horizonta

l position 

control 

 

16:OffboardPo

s 

17:OffboardAt

t 

18: 19: 20: 21: 22: 23

: 

Offboad 

Position 

Control series 

Offboad 

Position Pose 

Series 

      

24: 25: 26: 27: 28: 29: 30: 31

: 

        

Note: When enabling position control, horizontal position and vertical position are enabled at 

the same time 

Bits 0-7 of inSILInts[1] are position class flags, and bits 8-15 are posture class flags. 

inSILInts[1] Offboard control flag 

0:hasPo 1:hasVel 2:hasAcc 3:hasYaw 4:hasYawRa 5: 6: 7: 
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s te 

Locatio

n 

Speed Acceleration Yaw Angle Yaw Angle 

rate 

   

8:hasAtt 9:hasRollRat

e 

10:hasPitchRat

e 

11: hasThrust 12: 13

: 

14

: 

15

: 

Posture Roll Angle 

rate 

Pitch Angle 

rate 

Yaw angular 

rate 

Throttle    

16:NED 17:Global 18: 19: 20: 21

: 

22

: 

23

: 

Position 

and 

speed 

NED 

Position and 

speed Global 

      

24: 25: 26: 27: 28: 29

: 

30

: 

31

: 

Integer 

type 

latitude 

Integer Type 

Precision 

      

 

inSILInts[6] represents the latitude of the integer type, and inSILInts[7] represents the 

longitude of the integer type. 

Remark: The corresponding value is 1 for position control only, 2 for speed control only, 8 

for yaw Angle control only, and 16 for angular rate control only. If the combination of multiple 

controls is required, the value of the separate control is added. 

The inSILFloats protocol 

inSILFloats are used to store the actual data, and the meaning can change depending on what 

you set up in inSILInts. The first three represent locations, but inSILInts controls which coordinate 

system they are in. 

inSILFloats[0-2] =pos; 

inSILFloats[3-5]=vel; / / speed | | pitch, roll and yaw of the remote control signal 

inSILFloats [3] can be used as a rate 

InSILFloats [6-8] = acc; 

inSILFloats[9-11]=att; // Attitude control uses Euler angles, which are more intuitive 

for the user. 

inSILFloats[12-14]=attRate; 

inSILFloats[15]=thrust; // throttle 

9.1.4 The output interface 

The integrated model output interface remains the same as the original output interface. 

struct outHILStateData{ 

    uint32_t time_boot_ms; // message timestamp ms 

    uint32_t copterID;     // aircraft ID 

    int32_t GpsPos[3];     // Filtered GPS latitude and longitude, where latitude and longitude 

(degrees *1e7), height upward positive (in m*1e3->mm) 

    int32_t GpsVel[3];     // Filtered GPS speed, NE ground, (in m/s*1e2->cm/s) 

    int32_t gpsHome[3];     //GPS raw data, where latitude and longitude (degrees *1e7), height 

upward positive (in m*1e3->mm) 
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    int32_t relative_alt;  // Filtered GPS relative height, NE, (in m*1e3->mm) 

    int32_t hdg;           // filtered GPS heading Angle, NE ground, (in m*1e3->mm) 

    int32_t satellites_visible; //GPS raw data, number of satellites 

    int32_t fix_type;     //GPS raw data, positioning accuracy level, 3 means fixed 

    int32_t resrveInit;       // reserve bit Int 

    float AngEular[3];    // Filtered aircraft Euler Angle in rad 

    float localPos[3];    // filtered local location in m 

    float localVel[3];    // filtered local location in m/s 

    float pos_horiz_accuracy;   // filter state, horizontal positioning error, in m 

    float pos_vert_accuracy; // filter status, vertical positioning error in m 

    float resrveFloat;      // reserve bit Float 

} 

Simulink receives state structures 

struct outHILStateShort{ 

    int checksum; // checksum bit 1234567890 

    int32_t gpsHome[3];     //Home GPS position, lat&long: deg*1e7, alt: m*1e3 and up 

is positive 

    float AngEular[3];    //Estimated Euler angle, unit: rad 

    float localPos[3];    //Estimated locoal position, NED, unit: m Consider changing 

it to double 

    float localVel[3];    //Estimated locoal velocity, NED, unit: m/s 

} 

9.2.Synthesis model implementation 

The synthesis model is implemented using MATLAB automatic code generation DLL model, 

which encapsulates the necessary interfaces for CopterSim to load and call. 

9.2.1 Implementation of rotorcraft synthesis model 

9.2.1.1 Protocol analysis 

Protocol parsing is the parsing of network packets received by CopterSim into the 

instructions of Section 3.2. inSILInts is an 8-dimensional input that currently only uses the zeroth 

number instruction and the first number Offboard mode. Subsequent 6th and 7th numbers will be 

used as integer representations of latitude and longitude in the Global coordinate system. In the 

figure below, the inSILInts vector is broken down into eight individual numbers. 

 

Each bit of the insilints has a meaning, so we need to parse each bit further. The following 

figure uses the Bitwise module to parse the bit.Bit 0 is not used yet. The first bit identifies whether 
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the simulation mode is used. When the bit is 1, it means that the simulation mode is used. When 

the bit is 0, it means that the hardware is in the loop mode. The second bit indicates whether to 

unlock, other bits also include the take-off, landing, and return functions, the specific meaning of 

which is referred to Section 3.2.2. 

 

The following is a sign that indicates which offboard control information is available: The 

protocol in Section 3.2.2 supports full PX4 offboard control, which supports the most urgent 

requirements for the project at hand, including position, speed, yaw, and yaw Angle rate. 

 

Further, parse the actual position, velocity values, etc. sent by the offboard as shown in the 

figure below. In the top image, it is used to indicate whether the corresponding value exists or not, 

while the bottom image shows the specific value. Currently only position, velocity, yaw, and yaw 

Angle rate are used. In the parse of the figure below, the hasVel flag and the hasYawRate flag are 

used. When these two flags are false, it means that there is no input for speed and yaw Angle rate, 

at which point it will switch to remote control mode. In remote control mode, 1500 represents a 

desired speed or desired yaw Angle rate of 0. 
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9.2.1.2 Navigator 

In order for the integrated model to be able to receive upper level commands, such as take-off, 

landing, return and other functions, these upper level commands need to be converted into a series 

of desired positions. This work is done by the Navigator module. The Navigator first needs to 

receive these commands, and then it needs to rely on the current location information and the 

desired location information set by the user to get the desired location. For example, the user can 

set the altitude for take-off, return, and landing. In addition, the user only needs to send the take-

off command once by design, so the Navigator needs to determine whether the take-off is 

complete by itself, so it needs to know both the desired position and the actual position. 

 

Below is the internal implementation of Navigator. At the top is the take-off module, which 

has the lowest priority. That is, the priority relation of receiving takeoff, return and landing at the 

same time is: takeoff < return < landing. When the user does not specify the height, its default 

height is -10m under NED coordinates. Consider that by design, after a successful take-off 

command is received, the Navigator will continue to generate the desired position until the 
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specified altitude is taken off. So the Mode Trans module is designed. The function of the module 

is to switch to the takeoff mode when the takeoff command is received, and it will switch to the 

position mode when the aircraft reaches the specified altitude. In the process of takeoff, the 

aircraft will not respond to the position set by the user. 

On the return flight, the aircraft will return to the home point position from its current 

position with the same altitude. The return altitude can also be set. When no altitude is specified, 

the altitude at the previous moment is taken as the desired altitude, that is, altitude maintenance. 

Because by default, when the height is not set, the height value is 0. Considering that the GPS 

positioning accuracy is generally not more than 1m, 1m is used as the criterion for whether the 

height is set. The home point is the initial position recorded during the first run to the location 

acquisition when the model is running. 

Landing is the highest priority command, and you can also specify the height when you land. 

This is taking into account that landing does not necessarily land at the home point position. Other 

external modules can detect the current distance from the ground to determine the landing altitude, 

so a setting altitude interface is reserved for landing. 

 

The output of the Navigator is NavPos, which refers to the desired position information. 

Naving means that the Navigator is in the process of executing an instruction, and when Naving is 

True, it sets hasPos to true. 

9.2.1.3 Controllers 

The rotorcraft integrated model is a four-stage PID controller, including a position loop, a 
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velocity loop, an attitude loop and an angular velocity loop. Currently, the controller supports the 

control of position, velocity, yaw Angle and yaw Angle rate. When no position control is 

performed, the hasPos flag is false and the output of the position controller is 0, which can be 

observed in the figure below. When no speed signal or yaw angular velocity signal is received, the 

remote control mode will be entered. At present, only the remote control interface is reserved, the 

value of the remote control is set to 1500, and the remote control is not really enabled. 

 

  

 

9.2.1.4 Models 

Shown below is the model of the quadrotor. The model can receive input from the internal 

controller as well as input from the external controller. These two modes are controlled through 

inSIL, and when this flag is true, it indicates the simulation mode and the PWM wave pulse width 

is obtained from the internal controller. When the flag is false, the PWM wave will be obtained 
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from the outside. 

Main modules included in the model: motor model, 6DOF dynamics model, 6DOF 

kinematics model, environment model, collision model, sensor model. For the internal control, 

because no filter is designed, the true value is used directly. However, the sensor data output to 

CopterSim is noisy, and the influence of the environment model will be reflected in the sensor. 

 

9.2.2 Implementation of fixed-wing integrated model 

9.2.2.1 Protocol analysis 

Fixed wings and rotors follow mutually compatible protocols, but the fixed wing mode is 

different from the rotor because the fixed wing cannot hover like the quadrotor. Shown below is a 

breakdown of the protocol within the fixed-wing integrated model. Position, Height, Hor are 

added, and the behavior of take-off, return, and landing is also different from that of rotorcraft. 

Take off, control altitude and speed. Take off at a fixed pitch Angle when the fixed wing 

receives the command to take off, default 15°. The user can set the take-off height, and when the 

take-off height is reached, the model will make a judgment internally and exit the take-off mode. 

When the take-off is successful, if no further operation instructions are received, it will continue to 

fly forward and no adjustments of throttle, pitch and roll will be made. 

Position, while controlling horizontal position and altitude. The user can specify the position 

control mode directly through the inSILInts, and the system can also automatically trigger the 

position mode when returning or landing. In the position mode, if the corresponding position is set, 

fly to the corresponding position first. After reaching the designated position, if the next position 

is not specified, it will automatically hover. In the return mode, essentially the horizontal Position 

is back to the starting point and supports the specified return height, so this function can be 

implemented using the Position mode. On landing, the altitude of the aircraft is first adjusted, as 

shown in the AdjustHeight diagram. The adjustment of the altitude of the aircraft is completed by 
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circling, and the horizontal position will also change during circling, so the position mode is also 

used for control. 

Height mode controls the altitude and airspeed, but does not control the horizontal position, 

that is, the aircraft will only fly forward. Height mode is used during take-off and at the end of the 

landing phase (when the aircraft has reached its altitude). 

Hor mode is to control the horizontal position alone. This mode is supported by current 

models, but is generally less used. 

 

Unlike rotorcraft, fixed wings do not have free control of speed in all directions. It is possible 

to set the speed in the horizontal direction. In the full protocol, the desired speed has 3 

components and only use the first component as the rate in the horizontal direction in the fixed 

wing. 
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9.2.2.2 Navigator 

The implementation of the fixed-wing Navigator is similar to that of the rotorcraft, but with 

the addition of the InTakeoff, InReturn, InLand, AdjustHeight flags. Because the fixed wing has 

different operations during take-off, return, and landing, these signs are used to make a distinction. 

During take-off, the output of TECS controller pitch is masked and set directly to a fixed Angle of 

15°. While during the return flight, the complete position control needs to be triggered 

automatically. For landing, there are two phases: an altitude adjustment phase, marked by 

AdjustHeight, which triggers full position control; The other is the landing phase, which only 

controls the altitude. Because the ground friction is not modeled, the speed of the landing is not 

controlled for the time being. 

In addition, after the return mode is executed, only the landing mode can be executed. In the 

following mode switch, you will exit from the return mode only if you receive the landing 

command. 
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9.2.2.3 Controller 

The position controller for a fixed wing is very different from the position controller for a 

rotorcraft because the fixed wing needs to maintain a certain speed once it takes off. 

In the following figure, the L1 controller is used to control the horizontal position. The 

internal implementation of the controller will not be explained here, only focusing on the input 

and output of the controller. The L1 controller needs to calculate the desired roll Angle based on 

the current desired horizontal position, the last desired horizontal position, the current horizontal 

position, and the current horizontal speed jointly. It can be seen that the L1 controller has many 

inputs, but only one roll Angle as its output. The L1 controller does not operate for the entire flight, 

so using switch simplifies the internal implementation of the L1 controller. 

 

  The TECS controller is used for altitude and speed control. For the fixed wing, only the 

airspeed is controlled, and the speed in all directions cannot be arbitrarily controlled. TECS 

provides a solution by reflecting the problem in terms of energy rather than the initial set point. 

The total energy of a vehicle is the sum of the kinetic and potential energy of the vehicle. Thrust 

(controlled through the throttle) can add to the total energy of the aircraft. A given total energy 

state can be achieved by any combination of potential and kinetic energy. In other words, the total 

energy of the vehicle flying at a low airspeed at a high altitude is equivalent to flying at a high 

airspeed at a low altitude. We call this situation the specific energy balance, which is calculated 

based on the current altitude and the true airspeed set point. The specific energy balance of the 

vehicle can be controlled by controlling the pitch Angle. An increase in the pitch Angle converts 
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kinetic energy to potential energy, and a decrease in the pitch Angle does the opposite. In this way, 

the control problem is decoupled by converting the initial airspeed and altitude set points into 

energy values (airspeed and altitude are coupled, but energy values can be controlled 

independently). We use the throttle to adjust the specific total energy of the vehicle, and the pitch 

Angle to maintain a specific balance between potential energy (altitude) and kinetic energy (true 

airspeed). 

    The TECS controller inputs the desired rate and altitude values, feeds in the current height 

and rate values, and finally outputs the desired pitch Angle and throttle values. 
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