
Contents

RflySim Chapter 10 Cluster Control Algorithm Development ..2

Simulink Cluster Interface ...3

Python Cluster Interface ..5

Control model...5

Hardware and software are in the loop ...6

Executable file generation ..7

RflySim Chapter 10 Cluster Control

Algorithm Development

This lecture focuses on the communication architecture and collaborative control

technology of UAV cluster, which is systematically divided into two levels: basic experiment

and advanced experiment, aiming at realizing efficient networking communication and

precise formation control of UAV in local area network. The experimental platform integrates

RflyUdpFast communication module, supports MATLAB Simulink, Python and other

environments, and supports local single-machine simulation and cluster control experiments

under multi-machine networking.

底层控制器

CopterSim

模型

传感器&控制信
息

串口/传感器
&控制信息

UDP/模
型信息

视景

UDP/AI信息

串口/AI信息

虚
拟
集
线
器

A
I信

息

 RflySim3D

屏幕捕获&UDP/

三维视觉图像
(仅 RflySim3D)

基于视觉AI顶层控制器

自驾仪硬件在环仿真

Pixhawk/PX4

自驾仪软件在环仿真

PX4 SITL WinWSL

 Python/

 OpenCV

AI软件在环仿真

 Python/

 OpenCV

AI硬件在环仿真

单目&双目&
激光雷达&云台

传感器

机载计
算机

桌面计
算机

飞控
硬件

飞控
软件

3DDisplay

The concept of cluster originated from biological research. Based on the nesting behavior

of termites, French zoologist Grasse first proposed the concept of consensus autonomy

(Stigmergy): a mechanism of intermittent coordination between individuals, that is, without

any centralized planning and direct communication to complete complex intelligent activities.

This is the beginning of the concept of autonomous cluster coming into human vision and

gradually developing. From biological systems to Multi-Agent System (MAS), the concept of

cluster is also evolving and enriching. A multi-agent system is a system in which there are

multiple agents that need to be controlled at the same time. Each agent needs to compete

or cooperate with other agents while interacting with the environment. When a multi-agent

system has a large scale to perform very complex tasks, it is called a clusterADDIN

CNKISM.Ref.{4920E6A5E8AA40219922D8E4403E6268}[1]. Cluster control mainly studies the

consistency problem, that is, using distributed coordination control algorithm to make the

state or output of each agent in the "network" achieve a certain consistency. The so-called

distributed coordinated control algorithm is to form a coordinated global behavior through

simple local rules.

Simulink Cluster Interface

Open the "RflySimAPIs \ SimulinkSwarmAPI \" RflyUdpFullOne. Slx "file. As shown in the

lower left figure, the" RflySwarmAPI "module is the cluster communication module.

The Simulink S function of this module is realized by C + + mixed programming, and the

source file is shown in "RflyUdpFast. CPP" ".

 The "RflySwarmAPI" module needs to be in the same folder as "RflyUdpFast.mexw64" to

be called. Therefore, when creating a new slx project, copy the "RflySwarmAPI" module and

also copy the "RflyUdpFast.mexw64" file to the directory where the new slx file is located.

RflyUdpFast.mexw64 is a compilation of the "source file" RflyUdpFast. CPP "in MATLAB.

 Double-click on the "RflySwarm API" module in Simulink to see the details.

双击“RflySwarmAPI”模块，弹出本框

 (A) The first item "UDP IP Address" is the IP address of the target computer. If "127.0.0.1"

is input, it can only accept the Pixhawk autopilot status forwarded by the local CopterSim and

control it; "255.255.255.255" can receive and control the CopterSim program running in all

computers in the LAN (the CopterSim of other computers needs to check the "Online" button);

the designated IP such as "192.168.1.12" will only send control instructions to the host of the

IP address. Generally speaking, the "255.255.255.255" broadcast can meet the demand in a

small-scale cluster. When the number of aircraft continues to increase, the designated IP

needs to be enabled to reduce the network load and improve the communication speed and

reliability.

 (B) The second entry "UDP Port" "is the initial port number of the first aircraft, and the

default initial port is the 20100. Each CopterSim needs to occupy one port to send and receive

messages. For example, this module needs to simulate aircraft with aircraft ID of 10 ~ 15, and

this item needs to be filled with 20100 + 10 * 2 = 20120, and the latter item "Vehicle number"

aircraft quantity "needs to be filled with 5.

 (C) The third item "Vehicle number" represents the number of CopterSim to be

connected and controls the number of I/O ports of the module. If 10 is entered, the module

will automatically generate 10 pairs of I/O ports.

 (D) The fourth item "UDP mode" is the data mode protocol of the input and output

interface, mainly including the FullData complete mode (the most complete data, but the

amount of transmitted data is large); SimpleData reduced data mode (more aircraft > 8, to

avoid network congestion with too large data) and UltraSimple ultra-reduced mode (more

than 20 aircraft per computer), with less latency.

 (E) The fifth term is the "Sample Time", which should correspond to the Simulink

simulation time.

The RflyS warmAPI module has three UDP modes: FullData mode, SimpleData mode, and

Ultra Simple mode.

Python Cluster Interface

Note: To read and run the Python code, you need to install VS Code and associate it with

the platform Python38 environment. For the specific installation process, please refer to

Lecture 6 of the Advanced Course.

 The Python communication interface file for cluster control and the visual Python

control interface are identical, both in the "PX4MavCtrlV4.py" interface file, which is basically

used in the same way as in Lecture 6 of the advanced course.

The interface file used by the Python cluster control is "PX4MavCtrlV4.py", which is

identical to the API file used by the PythonVision vision control.

According to the tutorial in Lesson 6, Python communication with CopterSim/PX4

includes two communication modes (UDP structure and MAVLink data flow) and two

optimization modes (Full and Simple).

In MAVLink _ Full and MAVLink _ Simple communication modes (corresponding to

InitMavLoop (2) and InitMavLoop (3)), MAVLink data stream is directly used for

communication between Python and PX4 (transferred by CopterSim), which has a large

amount of data and occupies a high bandwidth. However, it is closer to the real machine

and has perfect functions, and it is easy to block broadband in large-scale clusters;

In UDP _ Full and UDP _ Simple modes (corresponding to InitMavLoop (0) and

InitMavLoop (1)), Python sends a simplified UDP structure message to communicate with

CopterSim, which compresses or decompresses it and then communicates with PX4 through

MAVLink. This method can effectively reduce the amount of data in the LAN, and is suitable

for cluster simulation control.

The Python script communicates with CopterSim using the 20100 + 2i series interface

to receive flight control data (the InitMavLoop function enables listening, and the UAV * * *

variable reads the data). 30100 + 2i serial interface to receive true data (InitTrueDataLoop

function to enable data listening, true * * * variable to read data).

In addition to co-simulation with PX4 and CopterSim (6 DOF high granularity model),

the cluster platform also supports Python and RflySim3D compact simulation (particle low

granularity model), uses Python internal compact aircraft model, with small amount of

calculation, and supports large-scale clusters.

Control model

At the control model level, the experimental platform includes a variety of models

suitable for cluster control, including but not limited to PX4 flight controller integration

scheme based on high-precision dynamic model, and custom controller design in Simulink

environment. At the same time, it also supports the simulation and control of many physical

models, such as particle model, rotor model and fixed-wing model.

From the perspective of model accuracy, the software/hardware-in-the-loop simulation

closed-loop method of using high-precision 6-Dof model (CopterSim) + real flight control

system (PX4) can effectively improve the credibility of the model, thereby reducing the gap

between simulation and real machine experiment.

However, the complexity of the code computation of the above architecture leads to the

limitation of the number of UAVs running on a computer (usually < 20 for SITL software in

the loop and < 30 for HITL hardware in the loop).

 In order to increase the number of cluster aircraft simulated by a single computer, it is

necessary to reduce the accuracy of the model and use a simplified flight control model.

Therefore, this platform has developed a particle multi-rotor model under Python, which

can realize 100-driving-level UAV cluster simulation on a single computer only with Python

and RflySim3D software (the free version only supports up to 12 routines), and the input and

output interfaces of each aircraft are consistent with SITL and HITL simulation. To ensure a

smooth transition to the real machine experiment.

Hardware and software are in the loop

In order to ensure the diversity and depth of the experiment, the platform supports two

simulation modes of software in the loop (SIL) and hardware in the loop (HIL) to fully verify

and debug the performance of the cluster control algorithm under virtual and actual hardware

conditions. In terms of control strategy, it covers a variety of control modes, such as position

control, speed control and attitude control, so as to explore the communication coordination

and control strategy of UAV cluster in complex task execution in an all-round way.

Executable file generation

MATLAB itself will occupy a lot of CPU and memory resources. When running the

complex Simulink control program, on the one hand, the amount of calculation is too large

to cause the algorithm to run slowly, which can not meet the real-time requirements (Simulink

runs 1 s larger than the real clock 1 s), so it can not control the cluster aircraft of the simulation

system (or the real system) in real time; Secondly, if Simulink takes up a lot of computing

resources in simulation, it will lead to less allocation of computing resources in RflySim3D and

CopterSim, resulting in poor aircraft simulation, severe aircraft shaking and even crash.

After the Simulink controller is compiled into exe, the algorithm can run without MATLAB, and

it is a binary executable file, so the running efficiency is very high, even if the large-scale

control algorithm, it can also ensure real-time control.

	RflySim Chapter 10 Cluster Control Algorithm Development
	Simulink Cluster Interface
	Python Cluster Interface
	Control model
	Hardware and software are in the loop
	Executable file generation

